1
|
Rathe SK, Marko TA, Edwards EN, Ridder PH, Varshney J, Williams KB, Johnson JE, Moriarity BS, Largaespada DA. Techniques for Validating CRISPR Changes Using RNA-Sequencing Data. Genes (Basel) 2025; 16:369. [PMID: 40282329 PMCID: PMC12027141 DOI: 10.3390/genes16040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/29/2025] Open
Abstract
The use of CRISPR to knockdown or knockout genes is a powerful tool for understanding the specific role of a gene in disease development. However, it can cause many unanticipated changes to the transcriptome that are not detected by DNA amplification and Sanger sequencing of the target site. Various RNA-sequencing techniques can be used to identify these changes and effectively gauge the full impact of the CRISPR knockout, thereby providing a means of selecting appropriate clones for further experimentation. BACKGROUND/OBJECTIVES RNA-seq data from 4 CRISPR knockout experiments were analyzed and techniques developed to both confirm the success of the CRISPR modifications and identify potential issues. METHODS A broad-based analysis of RNA-sequencing data identified many CRISPR-based changes not identified by PCR amplification of DNA around the CRISPR target site. These changes included an inter-chromosomal fusion event, exon skipping, chromosomal truncation, and the unintentional transcriptional modification and amplification of a neighboring gene. CONCLUSIONS The inadvertent modifications identified by the evaluation of 4 CRISPR experiments highlight the value of using RNA-seq to identify transcriptional changes to cells altered by CRISPR, many of which cannot be recognized by evaluating DNA alone. Specific guidelines are presented for designing and analyzing CRISPR experiments using RNA-seq data.
Collapse
Affiliation(s)
- Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tracy A. Marko
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyle B. Williams
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - James E. Johnson
- Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Nie X, Wang D, Pan Y, Hua Y, Lü P, Yang Y. Discovery, classification and application of the CPISPR-Cas13 system. Technol Health Care 2024; 32:525-544. [PMID: 37545273 DOI: 10.3233/thc-230258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is an acquired immune system of bacteria and archaea. Continued research has resulted in the identification of other Cas13 proteins. OBJECTIVE This review briefly describes the discovery, classification, and application of the CRISPR-Cas13 system, including recent technological advances in addition to factors affecting system performance. METHODS Cas13-based molecular therapy of human, animal, and plant transcriptomes was discussed, including regulation of gene expression to combat pathogenic RNA viruses. In addition, the latest progress, potential shortcomings, and challenges of the CRISPR-Cas system for treatment of animal and plant diseases are reviewed. RESULTS The CRISPR-Cas system VI is characterized by two RNA-guided higher eukaryotes and prokaryotes nucleotide-binding domains. CRISPR RNA can cleave specific RNA through the interaction between the stem-loop rich chain of uracil residues and the Cas13a protein. The CRISPR-Cas13 system has been applied for gene editing in animal and plant cells, in addition to biological detection via accurate targeting of single-stranded RNA. CONCLUSION The CRISPR-Cas13 system offers a high-throughput and convenient technology for detection of viruses and potentially the development of anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Xiaojuan Nie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Pan
- School of Experimental Animal Center, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Wei B, Xiao S, Lou W. In silico whole-transcriptome analysis reveals a potential hsa_circ_0000375-miR-424-5p-TPM2/SRPX/SRGAP1 regulatory network related to liver metastasis of colorectal cancer. Heliyon 2023; 9:e21688. [PMID: 37954397 PMCID: PMC10638074 DOI: 10.1016/j.heliyon.2023.e21688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Liver metastasis is the main lethal cause of colorectal cancer (CRC). The knowledge of role and mechanism of circular RNA (circRNA) in liver metastasis of CRC is still inadequate. In this study, whole-transcriptome analysis was performed using three datasets (GSE147597, GSE147602 and GSE147603). A total of 14 potential circRNAs were identified, after which their structural patterns and binding miRNAs were obtained. Next, 45 differentially expressed miRNAs (DEmiRNAs) between CRC without and with liver metastasis were acquired, consisting 38 upregulated and 7 downregulated miRNAs. After conducting intersection analysis, expression validation and correlation analysis, miR-761 and miR-424-5p were selected as the most potential miRNAs linked to liver metastasis of CRC. Subsequently, the target genes of miR-761 or miR-424-5p were predicted and differentially expressed genes (DEGs) between CRC without and with liver metastasis were obtained. 257 genes that were commonly appeared in predicted genes and DEGs were significantly enriched in "epithelial-to-mesenchymal transition" and "signaling by Robo receptor". Among these enriched genes, only TPM2, SRPX and SRGAP1 were significantly negatively correlated with miR-424-5p and were positively linked to hsa_circ_0000375 in CRC without or with liver metastasis. Collectively, the current findings elucidated a potential hsa_circ_0000375-miR-424-5p-TPM2/SRPX/SRGAP1 network contributing to liver metastasis of CRC.
Collapse
Affiliation(s)
- Bajin Wei
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyuan Xiao
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Cortese K, Ponassi M, Profumo A, Coronel Vargas G, Iervasi E, Gagliani MC, Bellese G, Tavella S, Castagnola P. Lipid Metabolism Reprogramming and Trastuzumab Resistance in Breast Cancer Cell Lines Overexpressing the ERBB2 Membrane Receptor. MEMBRANES 2023; 13:540. [PMID: 37367744 DOI: 10.3390/membranes13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023]
Abstract
Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer.
Collapse
Affiliation(s)
- Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- DIMES, Department of Experimental Medicine, Cellular Oncology Unit, Università di Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Patrizio Castagnola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
6
|
Pawlak MR, Smiley AT, Ramirez MP, Kelly MD, Shamsan GA, Anderson SM, Smeester BA, Largaespada DA, Odde DJ, Gordon WR. RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes. Nat Commun 2023; 14:2468. [PMID: 37117218 PMCID: PMC10147940 DOI: 10.1038/s41467-023-38157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Collapse
Affiliation(s)
- Matthew R Pawlak
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Smiley
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Paz Ramirez
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Marcus D Kelly
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wendy R Gordon
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Tumor-Derived Exosomal miR-29b Reduces Angiogenesis in Pancreatic Cancer by Silencing ROBO1 and SRGAP2. J Immunol Res 2022; 2022:4769385. [PMID: 36277474 PMCID: PMC9586796 DOI: 10.1155/2022/4769385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Exosomal miR-29b reportedly plays a role during cancer metastasis. However, its exact function and underlying mechanism during pancreatic cancer (PC) have not been investigated. Methods. Exosomes from PC cells were prepared and identified. Transmission electron microscopy (TEM) and confocal microscopy were used to examine structural characteristics of the exosomes and verify their internalization by human umbilical vein endothelial cells (HUVECs). The tube formation and migration abilities of HUVECs were detected. VEGF content was assessed by ELISA. GW4869 was used to suppress exosome release. Luciferase reporter assays were performed to verify the predicted interaction of miR-29b with ROBO1 and SRGAP2 mRNA. Results. Exosomal miRNA-29b was differentially expressed in the conditioned medium of PC cells. Exosomes from PC cells were verified by TEM and western blotting. Treatment with the exosomal inhibitor (GW4869) prevented an increase in miR-29b expression and recused the reduced VEGF expression and tube formation and migration abilities of HUVECs cocultured with BxPC3 and AsPC-1 cells that overexpressed miR-29b. Furthermore, the downregulation of ROBO1 and SRGAP2 in cocultured HUVECs was also reduced after additional treatment with GW4869. After incubation with miR-29b exosomes, HUVECs had lower VEGF concentrations and reduced migration and tube formation rates; however, those effects were eliminated by subsequent transfection with the miR-29b inhibitor. Luciferase reporter assays verified the interaction of miR-29b with ROBO1 and SRGAP2. That interaction was also supported by rescue assays showing that overexpression of ROBO1 and SRGAP2 also reduced the antiangiogenic effect of exosomal miR-29b in HUVECs. Conclusion. Exosomal miR-29b originating from PC cells protected HUVECs from PC cell-induced angiogenesis by attenuating ROBO1 and SRGAP2 expression. Our findings suggest a strategy for treating PC.
Collapse
|
8
|
Mondal C, Gacha-Garay MJ, Larkin KA, Adikes RC, Di Martino JS, Chien CC, Fraser M, Eni-Aganga I, Agullo-Pascual E, Cialowicz K, Ozbek U, Naba A, Gaitas A, Fu TM, Upadhyayula S, Betzig E, Matus DQ, Martin BL, Bravo-Cordero JJ. A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling. Cell Rep 2022; 40:111358. [PMID: 36130489 PMCID: PMC9596226 DOI: 10.1016/j.celrep.2022.111358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/06/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGA-P1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-β2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-β2-mediated signaling axis. Disseminated tumor cells can remain quiescent or actively proliferate in distant organs, contributing to aggressive disease. Mondal et al. identify srGAP1 as a regulator of a proliferative-to-invasive decision by breast cancer (BC) cells through a TGF-β2-mediated signaling axis.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Majo J Gacha-Garay
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kathryn A Larkin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rebecca C Adikes
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen-Chi Chien
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madison Fraser
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ireti Eni-Aganga
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esperanza Agullo-Pascual
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katarzyna Cialowicz
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, UC Berkeley, CA 94720, USA
| | - David Q Matus
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin L Martin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Tang Y, Liu G, Jia Y, Sun T. SRGAP2 controls colorectal cancer chemosensitivity via regulation of mitochondrial complex I activity. Hum Cell 2022; 35:1928-1938. [PMID: 36059022 DOI: 10.1007/s13577-022-00781-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Mitochondrial respiration and metabolism play an important role in the occurrence and development of colorectal cancer (CRC). In this study, we identified a functional pool of SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2) in the mitochondria of CRC cells as an important regulator of CRC chemosensitivity. We found that SRGAP2 levels were increased in CRC cells in comparison to normal colorectal cells. Loss of mitochondrial SRGAP2 led to significant decrease in mitochondrial respiration and strongly sensitized the CRC cells to chemotherapy drugs. Mechanistically, SRGAP2 physically interacts with mitochondrial complex I and positively modulates its activity. In particular, chemosensitization upon SRGAP2 loss was phenocopied by the treatment of complex I inhibitor. Thus, our results demonstrate that SRGAP2 functions as a key regulator of CRC chemosensitivity, identifying SRGAP2 as a promising therapeutic target to enhance the efficacy of chemotherapy in CRC.
Collapse
Affiliation(s)
- Yongqin Tang
- Department of Gastrointestinal Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Guijun Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanhan Jia
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tao Sun
- Department of Gastrointestinal Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China.
| |
Collapse
|
10
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
11
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
12
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
13
|
The emerging roles of srGAPs in cancer. Mol Biol Rep 2021; 49:755-759. [PMID: 34825319 DOI: 10.1007/s11033-021-06872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
GTPase activating proteins (GAPs) were initially considered as the inhibitors of cell signaling pathways because of their nature to activate the intrinsic GTPase activity of the RhoGTPases. But recent studies of dysregulated GAPs in many cancers such as glioblastoma, colorectal cancer, breast cancer, and renal cancer have elucidated the important roles of GAPs in carcinogenesis and GAPs have been shown to perform multiple nonconventional functions in different contexts. We have discussed the recent developments in the roles played by different types of srGAPs (SLIT-ROBO Rho GTPase-activating proteins) in cancer.
Collapse
|
14
|
Yuan J, Yuan Z, Ye A, Wu T, Jia J, Guo J, Zhang J, Li T, Cheng X. Low GNG12 Expression Predicts Adverse Outcomes: A Potential Therapeutic Target for Osteosarcoma. Front Immunol 2021; 12:758845. [PMID: 34691083 PMCID: PMC8527884 DOI: 10.3389/fimmu.2021.758845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Background G protein subunit gamma 12 (GNG12) is observed in some types of cancer, but its role in osteosarcoma is unknown. This study hypothesized that GNG12 may be a potential biomarker and therapeutic target. We aimed to identify an association between GNG12 and osteosarcoma based on the Gene Expression Omnibus and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) databases. Methods Osteosarcoma samples in GSE42352 and TARGET database were selected as the test cohorts. As the external validation cohort, 78 osteosarcoma specimens from The Second Affiliated Hospital of Nanchang University were collected. Patients with osteosarcoma were divided into high and low GNG12 mRNA-expression groups; differentially expressed genes were identified as GNG12-related genes. The biological function of GNG12 was annotated using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and immune infiltration analysis. Gene expression correlation analysis and competing endogenous RNA regulatory network construction were used to determine potential biological regulatory relationships of GNG12. Overall survival, Kaplan–Meier analysis, and log-rank tests were calculated to determine GNG12 reliability in predicting survival prognosis. Results GNG12 expression decreased in osteosarcoma samples. GNG12 was a highly effective biomarker for osteosarcoma [area under the receiver operating characteristic (ROC) curve (AUC) = 0.920], and the results of our Kaplan–Meier analysis indicated that overall survival and progression-free survival differed significantly between low and high GNG-expression group (p < 0.05). Functional analyses indicated that GNG12 may promote osteosarcoma through regulating the endoplasmic reticulum. Expression correlation analysis and competing endogenous RNA network construction showed that HOTTIP/miR-27a-3p may regulate GNG12 expression. Furthermore, the subunit suppresses adaptive immunity via inhibiting M1 and M2 macrophage infiltration. GNG12 was inhibited in metastatic osteosarcoma compared with non-metastatic osteosarcoma, and its expression predicted survival of patients (1, 3, and 5-year AUCs were 0.961, 0.826, and 0.808, respectively). Conclusion This study identified GNG12 as a potential biomarker for osteosarcoma prognosis, highlighting its potential as an immunotherapy target.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhao Yuan
- Clinical Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Aifang Ye
- Department of Otorhinolaryngology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Tianlong Wu
- Institute of Orthopaedics of Jiangxi Province, Nanchang, China
| | - Jingyu Jia
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, China
| | - Jia Guo
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopaedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma. Life Sci 2021; 277:119592. [PMID: 33984363 DOI: 10.1016/j.lfs.2021.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the common malignancies worldwide. Slit-Robo GTPase-activating proteins (SRGAPs) have been shown to regulate the occurrence and development of various tumors. However, their specific roles in HCC remain elusive. METHODS The expression pattern, genetic alteration and prognostic value of SRGAPs in HCC are analyzed by bioinformatics tools. The biological functions of SRGAP2 in HCC cells are demonstrated by in vitro experiments. The high-throughput RNA sequencing is conducted to explore the underlying molecular mechanisms of SRGAP2 in HCC cells. RESULTS The expression levels of SRGAP1 and SRGAP2 are significantly elevated in HCC tissues compared to the normal both in Oncomine and TCGA datasets, and SRGAP2 are dramatically upregulated both in mRNA and protein levels. Moreover, higher SRGAP2 is significantly related to the clinical stages of HCC. Meanwhile, SRGAP2 might be an independent prognostic indicator, as it correlates negatively with the clinical outcomes of HCC patients. Further SRGAP2-silencing experiments imply that SRGAP2 might remarkably promote the migration and invasion of HCC cells in an EMT-independent pattern. Based on the high-throughput RNA sequencing of SRGAP2-knockdown HCC cells, enrichment and network analyses demonstrate that SRGAP2 is closely associated with cellular metabolic signaling. CONCLUSIONS Our study firstly illustrates the crucial role of SRGAP2 in the metastasis of HCC and explores its underlying molecular mechanisms. We identify SRGAP2 as a promising prognostic biomarker and a novel therapeutic target for HCC patients.
Collapse
|
16
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
17
|
Liu W, Wang S, Lin B, Zhang W, Ji G. Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors. BMC Musculoskelet Disord 2021; 22:149. [PMID: 33546657 PMCID: PMC7866880 DOI: 10.1186/s12891-021-04020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Background Malignant tumors of the musculoskeletal system, especially osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, pose a major threat to the lives and health of adolescents and children. Current treatments for musculoskeletal tumors mainly include surgery, chemotherapy, and radiotherapy. The problems of chemotherapy resistance, poor long-term outcome of radiotherapy, and the inherent toxicity and side effects of chemical drugs make it extremely urgent to seek new treatment strategies. Main text As a potent gene editing tool, the rapid development of CRISPR/Cas9 technology in recent years has prompted scientists to apply it to the study of musculoskeletal tumors. This review summarizes the application of CRISPR/Cas9 technology for the treatment of malignant musculoskeletal tumors, focusing on its essential role in the field of basic research. Conclusion CRISPR, has demonstrated strong efficacy in targeting tumor-related genes, and its future application in the clinical treatment of musculoskeletal tumors is promising.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Shubin Wang
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Binhui Lin
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guangrong Ji
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
18
|
Abstract
The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article: Bone Joint Res 2020;9(7):351–359.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Bone and Joint Center, Henry Ford Hospital, Integrative Biosciences Center, Detroit, Michigan, USA
| |
Collapse
|
19
|
Smeester BA, Slipek NJ, Pomeroy EJ, Bomberger HE, Shamsan GA, Peterson JJ, Crosby MR, Draper GM, Becklin KL, Rahrmann EP, McCarthy JB, Odde DJ, Wood DK, Largaespada DA, Moriarity BS. SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis. Oncogene 2019; 39:1049-1062. [PMID: 31582836 DOI: 10.1038/s41388-019-1041-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
Semaphorins, specifically type IV, are important regulators of axonal guidance and have been increasingly implicated in poor prognoses in a number of different solid cancers. In conjunction with their cognate PLXNB family receptors, type IV members have been increasingly shown to mediate oncogenic functions necessary for tumor development and malignant spread. In this study, we investigated the role of semaphorin 4C (SEMA4C) in osteosarcoma growth, progression, and metastasis. We investigated the expression and localization of SEMA4C in primary osteosarcoma patient tissues and its tumorigenic functions in these malignancies. We demonstrate that overexpression of SEMA4C promotes properties of cellular transformation, while RNAi knockdown of SEMA4C promotes adhesion and reduces cellular proliferation, colony formation, migration, wound healing, tumor growth, and lung metastasis. These phenotypic changes were accompanied by reductions in activated AKT signaling, G1 cell cycle delay, and decreases in expression of mesenchymal marker genes SNAI1, SNAI2, and TWIST1. Lastly, monoclonal antibody blockade of SEMA4C in vitro mirrored that of the genetic studies. Together, our results indicate a multi-dimensional oncogenic role for SEMA4C in metastatic osteosarcoma and more importantly that SEMA4C has actionable clinical potential.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Heather E Bomberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph J Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Margaret R Crosby
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Garrett M Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kelsie L Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - James B McCarthy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - David J Odde
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA. .,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Huang W, Huang C, Ding H, Luo J, Liu Y, Fan R, Xiao F, Fan X, Jiang Z. Involvement of miR-145 in the development of aortic dissection via inducing proliferation, migration, and apoptosis of vascular smooth muscle cells. J Clin Lab Anal 2019; 34:e23028. [PMID: 31489719 PMCID: PMC6977357 DOI: 10.1002/jcla.23028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
Aim The current study aimed to examine miR‐145's contribution to thoracic aortic dissection (AD) development by modulating the biological functions of vascular smooth muscle cells (VSMCs). Methods The concentration of circulating miR‐145 was determined in patients with AD and healthy controls using quantitative polymerase chain reaction (qPCR). Aortic specimens were obtained from both individuals with Stanford type A AD undergoing surgical treatment and deceased organ donors (serving as controls) whose causes of death were nonvascular diseases. Then, qPCR and fluorescence in situ hybridization were applied to assess miR‐145 amounts and location, respectively. Furthermore, qPCR and immunoblot were employed to determine SMAD3 (the target gene of miR‐145, involved in the TGF‐β pathway) amounts at the gene and protein levels, respectively. Moreover, in vitro transfection of VSMCs with miR‐145 mimics or inhibitors was conducted. Finally, the 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, Transwell assay and flow cytometry were employed for detecting VSMC proliferation, migration, and apoptosis, respectively. Results The amounts of miR‐145 in plasma and aortic specimens were markedly reduced in the AD group in comparison with control values (P < .05). miR‐145 was mostly located in VSMCs. Proliferation and apoptosis of VSMCs were significantly induced in vitro by the downregulation of miR‐145. Also, miR‐145 modulated SMAD3 expression. Conclusions miR‐145 was found to be downregulated in patients with AD, which induced the proliferation, migration, and apoptosis of VSMCs by targeting SMAD3. This suggested the involvement of miR‐145 in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wenhui Huang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China.,Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheng Huang
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huanyu Ding
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianfang Luo
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuan Liu
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruixin Fan
- Department of Cardiovascular Surgery, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Xiao
- Department of Cardiovascular Surgery, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
21
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
22
|
Jiang Z, Liang G, Xiao Y, Qin T, Chen X, Wu E, Ma Q, Wang Z. Targeting the SLIT/ROBO pathway in tumor progression: molecular mechanisms and therapeutic perspectives. Ther Adv Med Oncol 2019; 11:1758835919855238. [PMID: 31217826 PMCID: PMC6557020 DOI: 10.1177/1758835919855238] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
The SLITs (SLIT1, SLIT2, and SLIT3) are a family of secreted proteins that mediate positional interactions between cells and their environment during development by signaling through ROBO receptors (ROBO1, ROBO2, ROBO3, and ROBO4). The SLIT/ROBO signaling pathway has been shown to participate in axonal repulsion, axon guidance, and neuronal migration in the nervous system and the formation of the vascular system. However, the role of the SLIT/ROBO pathway has not been thoroughly clarified in tumor development. The SLIT/ROBO pathway can produce both beneficial and detrimental effects in the growth of malignant cells. It has been confirmed that SLIT/ROBO play contradictory roles in tumorigenesis. Here, we discuss the tumor promotion and tumor suppression roles of the SLIT/ROBO pathway in tumor growth, angiogenesis, migration, and the tumor microenvironment. Understanding these roles will help us develop more effective cancer therapies.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Liang
- Department of Hepatobiliary Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
23
|
Ho NTT, Kutzner A, Heese K. A Novel Divergent Gene Transcription Paradigm-the Decisive, Brain-Specific, Neural |-Srgap2-Fam72a-| Master Gene Paradigm. Mol Neurobiol 2019; 56:5891-5899. [PMID: 30685845 DOI: 10.1007/s12035-019-1486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Brain development and repair largely depend on neural stem cells (NSCs). Here, we suggest that two genes, i.e., Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2) and Fam72a (family with sequence similarity to 72, member A), constitute a single, NSC-specific, |-Srgap2-Fam72a-| master gene pair co-existing in reciprocal functional dependency. This gene pair has a dual, commonly used, intergenic region (IGR) promotor, which is a prerequisite in controlling human brain plasticity. We applied fluorescence cellular microscopy and fluorescence-activated cell sorting (FACS) to assess rat |-Srgap2-Fam72a-| master gene IGR promotor activity upon stimulation with two contrary growth factors: nerve growth factor (Ngf, a differentiation growth factor) and epidermal growth factor (Egf, a mitotic growth factor). We found that Ngf and Egf acted on the same IGR gene promotor element of the |-Srgap2-Fam72a-| master gene to mediate cell differentiation and proliferation, respectively. Ngf mediated Srgap2 expression and neuronal survival and differentiation while Egf activated Fam72a transcription and cell proliferation. Our data provide new insights into the specific regulation of the |-Srgap2-Fam72a-| master gene with its dual IGR promotor that controls two reverse-oriented functional-dependent genes located on opposite DNA strands. This structure represents a novel paradigm for controlling transcription of divergent genes in regulating NSC gene expression. This paradigm may allow for novel therapeutic approaches to restore or improve higher cognitive functions and cure cancers.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
24
|
Beckmann PJ, Larson JD, Larsson AT, Ostergaard JP, Wagner S, Rahrmann EP, Shamsan GA, Otto GM, Williams RL, Wang J, Lee C, Tschida BR, Das P, Dubuc AM, Moriarity BS, Picard D, Wu X, Rodriguez FJ, Rosemarie Q, Krebs RD, Molan AM, Demer AM, Frees MM, Rizzardi AE, Schmechel SC, Eberhart CG, Jenkins RB, Wechsler-Reya RJ, Odde DJ, Huang A, Taylor MD, Sarver AL, Largaespada DA. Sleeping Beauty Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. Cancer Res 2019; 79:905-917. [PMID: 30674530 DOI: 10.1158/0008-5472.can-18-1261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/07/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
Medulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using Sleeping Beauty (SB) transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified SB-driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with FOXR2 activation. This represents the first genetically induced mouse model of CNS-PNET and a rare model of group 3 and 4 medulloblastoma. We identified several putative proto-oncogenes including Arhgap36, Megf10, and Foxr2. Genetic manipulation of these genes demonstrated a robust impact on tumorigenesis in vitro and in vivo. We also determined that FOXR2 interacts with N-MYC, increases C-MYC protein stability, and activates FAK/SRC signaling. Altogether, our study identified several promising therapeutic targets in medulloblastoma and CNS-PNET. SIGNIFICANCE: A transposon-induced mouse model identifies several novel genetic drivers and potential therapeutic targets in medulloblastoma and CNS-PNET.
Collapse
Affiliation(s)
- Pauline J Beckmann
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jon D Larson
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alex T Larsson
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jason P Ostergaard
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Sandra Wagner
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Eric P Rahrmann
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - George M Otto
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California
| | - Rory L Williams
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Bioengineering, California Institute of Technology, Pasadena, California
| | - Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Catherine Lee
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Barbara R Tschida
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Paramita Das
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Xiaochong Wu
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Quincy Rosemarie
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan D Krebs
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Amy M Molan
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Addison M Demer
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Michelle M Frees
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Anthony E Rizzardi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Stephen C Schmechel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota.,Department of Clinical Sciences, College of Medicine, Florida State University, Sarasota, Florida
| | - Charles G Eberhart
- Department of Pathology, Ophthalmology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, 200 First Street Southwest, Rochester, Minnesota
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Annie Huang
- Division of Hematology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aaron L Sarver
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
25
|
Rahane CS, Kutzner A, Heese K. A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature. J Neurooncol 2018; 141:57-70. [PMID: 30414097 DOI: 10.1007/s11060-018-03029-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Glioblastoma multiform (GBM) is a neural stem cell (NSC)-derived malignant brain tumor with complex genetic alterations challenging clinical treatments. FAM72 is a NSC-specific protein comprised of four paralogous genes (FAM72 A-D) in the human genome, but its functional tumorigenic significance is unclear. METHODS We conducted an in-depth expression and somatic mutation data analysis of FAM72 (A-D) in GBM using the comprehensive human clinical cancer study database cBioPortal [including The Cancer Genome Atlas (TCGA)]. RESULTS We established a FAM72 transcription profile across TCGA correlated with the expression of the proliferative marker MKI67 and a tissue-specific gene-mutation signature represented by pivotal genes involved in driving the cell cycle. FAM72 paralogs are overexpressed in cancer cells, specifically correlating with the mitotic cell cycle genes ASPM, KIF14, KIF23, CENPE, CENPE, CEP55, SGO1, and BUB1, thereby contributing to centrosome and mitotic spindle formation. FAM72 expression correlation identifies a novel GBM-specific gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B, and PIK3C2G) in the de novo pathway of primary GBM predestined as viable targets for therapeutics. CONCLUSION Our newly identified primary GBM-specific gene-mutation signature, along with FAM72, could thus provide a new basis for prognostic biomarkers for diagnostics of GBM and could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Chinmay Satish Rahane
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
26
|
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15:7571-7578. [PMID: 29725462 PMCID: PMC5920363 DOI: 10.3892/ol.2018.8313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are non-coding RNAs that post-transcriptionally control target genes, and are involved in tumorigenesis, apoptosis, proliferation, invasion, metastasis and chemoresistance. However, data concerning miRNAs in ovarian cancer remain incomplete. The present study aimed to identify miRNAs that affected the malignant phenotype of ovarian cancer, and to analyze their potential mechanisms. The data demonstrated that miR-205 promoted cell proliferation and invasion of ovarian cancer cells via suppressing Phosphatase and tensin homolog (PTEN)/mothers against decapentaplegic homolog 4 (SMAD4) expression. Based on the Cancer Genome Atlas database analysis results, it was identified that miR-205 was significantly upregulated in ovarian cancer tissues and markedly correlated with poor prognosis in patients with ovarian cancer; its abnormal expression was also confirmed in tissues from patients with ovarian cancer by reverse transcription quantitative polymerase chain reaction. Additional Gene Ontology analysis revealed that the target genes of miR-205 were associated with cell proliferation and invasion. Consistent with the database analysis, miR-205 overexpression significantly promoted ovarian cancer cell proliferation and invasion in vitro. To additionally explore the mechanism by which miR-205 was associated with proliferation and invasion of ovarian cancer cells, a protein-protein interaction network was constructed based on miR-205 target genes associated with proliferation and invasion, and it was revealed that PTEN and SMAD4 were key target genes of miR-205. In ovarian cancer tissues, the expression levels of PTEN and SMAD4 were significantly downregulated, suggesting that miR-205 may suppress the expression of PTEN and SMAD4 in vivo. In vitro, miR-205 overexpression markedly suppressed the expression of SMAD4 and PTEN, additionally verifying that PTEN and SMAD4 were the target genes of miR-205 in ovarian cancer cells. These results elucidated the tumor-promoting role of miR-205 and established miR-205 as a potential treatment target for ovarian cancer.
Collapse
Affiliation(s)
- Ping Chu
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aihua Liang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aili Jiang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Lu Zong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett 2018; 422:56-69. [PMID: 29458143 DOI: 10.1016/j.canlet.2018.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/01/2023]
Abstract
Suppressor of variegation 3-9 homolog 2 (SUV39H2) is a member of the SUV39H subfamily of lysine methyltransferases. Its role in colorectal cancer (CRC) proliferation and metastasis has remained unexplored. Here, we determined that SUV39H2 was upregulated in CRC tissues compared with that in adjacent non-neoplastic tissues. Further statistical analysis revealed that high SUV39H2 expression was strongly associated with distant metastasis (P = 0.016) and TNM stage (P = 0.038) and predicted a shorter overall survival (OS; P = 0.018) and progression-free survival (PFS; P = 0.018) time for CRC patients. Both in vitro and in vivo assays demonstrated that ectopically expressed SUV39H2 enhanced CRC proliferation and metastasis, while SUV39H2 knockdown inhibited CRC proliferation and metastasis. A molecular screen of SUV39H2 targets found that SUV39H2 negatively regulated the expression of SLIT guidance ligand 1 (SLIT1). Moreover, rescue assays suggested that SLIT1 could antagonize the function of SUV39H2 in CRC. Mechanistic studies indicated that SUV39H2 can directly bind to the SLIT1 promoter, suppressing SLIT1 transcription by catalyzing histone H3 lysine 9 (H3K9) tri-methylation. In summary, we propose that SUV39H2 can predict CRC patient prognosis and stimulate CRC malignant phenotypes via SLIT1 promoter tri-methylation.
Collapse
|
28
|
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
Collapse
Affiliation(s)
- Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| |
Collapse
|
29
|
Kazanietz MG, Caloca MJ. The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Res 2017; 77:5445-5451. [PMID: 28807941 DOI: 10.1158/0008-5472.can-17-1456] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
Rho family GTPases are critical regulators of cellular functions that play important roles in cancer progression. Aberrant activity of Rho small G-proteins, particularly Rac1 and their regulators, is a hallmark of cancer and contributes to the tumorigenic and metastatic phenotypes of cancer cells. This review examines the multiple mechanisms leading to Rac1 hyperactivation, particularly focusing on emerging paradigms that involve gain-of-function mutations in Rac and guanine nucleotide exchange factors, defects in Rac1 degradation, and mislocalization of Rac signaling components. The unexpected pro-oncogenic functions of Rac GTPase-activating proteins also challenged the dogma that these negative Rac regulators solely act as tumor suppressors. The potential contribution of Rac hyperactivation to resistance to anticancer agents, including targeted therapies, as well as to the suppression of antitumor immune response, highlights the critical need to develop therapeutic strategies to target the Rac pathway in a clinical setting. Cancer Res; 77(20); 5445-51. ©2017 AACR.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Maria J Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|