1
|
Baravkar SB, Lu Y, Zhao Q, Peng H, Zhou W, Hong S. Rationally Designed Pentapeptide Analogs of Aβ19-23 Fragment as Potent Inhibitors of Aβ42 Aggregation. Molecules 2025; 30:2071. [PMID: 40363876 PMCID: PMC12073614 DOI: 10.3390/molecules30092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer's disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16-20 (KLVFF) have been reported in recent years. Herein, we report pentapeptides 1-4, based on the β-turn-inducing fragment Aβ19-23 (FFAED). The synthesis of peptides 1-4 was carried out using Fmoc/tBu-based solid-phase peptide synthesis technique, and it was found that pentapeptide 3 potently inhibit the aggregation propensity of Aβ42, when incubated with it at 37 °C for 48 h. The aggregation inhibition study was conducted using thioflavin T-based fluorescence assay and circular dichroism spectroscopy, and supported by transmission electron microscope imaging. The conformational change on the aggregation of Aβ42 and aggregation inhibition by peptides 1-4 was further evaluated using 1H-15N HSQC NMR spectroscopy. The results demonstrated that the most potent analog, peptide 3, effectively disrupts the aggregation process. This study is the first to demonstrate that an Aβ19-23 fragment mimic can disrupt the aggregation propensity of Aβ42.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Weilie Zhou
- Department of Physics & Adavanced Materials Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Fukui R, Hafizal U, Kageyama Y, Irie Y, Matsushima Y, Hosoi K, Nakayama T, Kaneda D, Hashizume Y, Miki K, Kita A, Mukaisho KI, Kushima R, Tooyama I, Irie K. Identification of the binding site and immunoreactivity of anti-Aβ antibody 11A1: Comparison with the toxic conformation-specific TxCo-1 antibody. Biochem Biophys Res Commun 2025; 758:151655. [PMID: 40120343 DOI: 10.1016/j.bbrc.2025.151655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Since the advent of anti-amyloid β (Aβ) immunotherapy, exemplified by lecanemab, the development of effective therapeutic agents with minimal side effects has become an urgent priority. Over the past two decades, a number of antibodies have been developed that target toxic Aβ species. The 11A1 antibody is one such example, and is made from E22P-Aβ9-35, which is prone to adopt a toxic conformation with a turn at positions 22/23, as an antigen. This antibody is unique in that it stains not only extracellular but also intracellular Aβ in human AD brains. To identify its recognition domain, we performed X-ray crystallography of 11A1 in complex with E22P-Aβ10-34. We found that 11A1 is a novel N-terminal antibody that recognizes Tyr10-His14 of Aβ. Immunohistochemical studies showed that 11A1 stains senile plaques and vascular Aβ aggregates in brain samples of AD patients. On the other hand, 11A1 recognized Aβ aggregates in neurons, astrocytes, perivascular tissue, and microvesicles of non-AD patients, suggesting that 11A1 can detect a wide range of Aβ types regardless of AD pathology. In contrast, the recently developed TxCo-1 antibody, which specifically recognizes the toxic turn at positions 22/23 of Aβ42, stained only senile plaques and vascular Aβ aggregates from AD patients, but not Aβ species from non-AD patients. These results suggest that the toxic turn structure may be one of the key epitopes for achieving high affinity for pathological Aβ aggregates while minimizing nonspecific binding to aggregates unrelated to pathology.
Collapse
Affiliation(s)
- Rara Fukui
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Uswah Hafizal
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Yusuke Kageyama
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan.
| | - Yumi Irie
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuka Matsushima
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Katsuma Hosoi
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Takahisa Nakayama
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Daita Kaneda
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Toyohashi, 441-8124, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Toyohashi, 441-8124, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan, Osaka, 590-0494, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Ryoji Kushima
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan; Organization for Research Initiatives and Development, Doshisha University, Tatara Miyakodani, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
3
|
Spetz MR, Kim H, Chavarria D, Conger DJ, Shattuck-Brandt R, Shekharan SR, Shostak A, Ligocki AP, Brien HJ, Embalabala RJ, Mobley BC, Schrag MS, Lippmann ES, Brunger JM. Amyloid-β-regulated gene circuits for programmable Alzheimer's disease therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642808. [PMID: 40161792 PMCID: PMC11952467 DOI: 10.1101/2025.03.12.642808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized in part by the accumulation of the protein amyloid-β (Aβ). Monoclonal antibodies (mAbs) that target Aβ for clearance from the brain have received FDA approval; however, these therapies are accompanied by serious side effects, and their cognitive benefit for patients remains of tremendous debate. Here, we present a potential engineered cell therapy for AD in which we enlist cells of the central nervous system as programmable agents for sculpting the neurodegenerative niche toward one that mitigates glial reactivity and neuronal loss. We constructed a suite of Aβ-sensitive synthetic Notch (synNotch) receptors from clinically tested anti-Aβ mAbs and show that cells expressing these receptors can recognize synthetic Aβ42 and Aβ40 with differential sensitivity. We express these receptors in astrocytes, cells native to the brain that are known to become dysfunctional in AD. These synNotch astrocytes, which upregulate selected transgenes upon exposure to synthetic and human brain-derived amyloid, were engineered to express potential therapeutic transgenes in response to Aβ, including brain-derived neurotrophic factor and antagonists of the cytokines tumor necrosis factor and interleukin-1. SynNotch astrocytes that express such antagonists in response to Aβ partially attenuate a cytokine-induced reactive astrocyte phenotype and promote barrier properties in brain microvascular endothelial cells. Additionally, engineered Aβ-synNotch cells potently upregulate transgene expression in response to Aβ deposited in the 5xFAD mouse brain, demonstrating the capacity to recognize Aβ in situ. Overall, our work supports Aβ-synNotch receptors as promising tools to generate a cell-based therapy for AD with targeted functionalities to positively influence the AD niche.
Collapse
Affiliation(s)
- Madeline R Spetz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Dylan J Conger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | | | - Swathi R Shekharan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Alena Shostak
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Alexander P Ligocki
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Hannah J Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Rebecca J Embalabala
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew S Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
4
|
Kim BH, Kim S, Nam Y, Park YH, Shin SM, Moon M. Second-generation anti-amyloid monoclonal antibodies for Alzheimer's disease: current landscape and future perspectives. Transl Neurodegener 2025; 14:6. [PMID: 39865265 PMCID: PMC11771116 DOI: 10.1186/s40035-025-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.S. Food and Drug Administration has approved three anti-amyloid MABs, aducanumab (Aduhelm®), lecanemab (Leqembi®), and donanemab (Kisunla™). Notably, lecanemab received traditional approval after demonstrating clinical benefit, supporting the Aβ cascade hypothesis. These MABs targeting Aβ are categorized based on their affinity to diverse conformational features of Aβ, including monomer, fibril, protofibril, and plaque forms of Aβ as well as pyroglutamate Aβ. First-generation MABs targeting the non-toxic monomeric Aβ, such as solanezumab, bapineuzumab, and crenezumab, failed to demonstrate clinical benefit for AD in clinical trials. In contrast, second-generation MABs, including aducanumab, lecanemab, donanemab, and gantenerumab directed against pathogenic Aβ species and aggregates have shown that reducing Aβ deposition can be an effective strategy to slow cognitive impairment in AD. In this review, we provide a comprehensive overview of the current status, mechanisms, outcomes, and limitations of second-generation MABs for the clinical treatment of AD. Moreover, we discuss the perspectives and future directions of anti-amyloid MABs in the treatment of AD.
Collapse
Affiliation(s)
- Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Seong Min Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
5
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
|
6
|
Wicker A, Shriram J, Decourt B, Sabbagh MN. Passive Anti-amyloid Beta Monoclonal Antibodies: Lessons Learned over Past 20 Years. Neurol Ther 2024; 13:1571-1595. [PMID: 39378014 PMCID: PMC11541067 DOI: 10.1007/s40120-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs cognitive and functional abilities, placing a substantial burden on both patients and caregivers. Current symptomatic treatments fail to halt the progression of AD, highlighting the urgent need for more effective disease-modifying therapies (DMTs). DMTs under development are classified as either passive or active on the basis of their mechanisms of eliciting an immune response. While this review will touch on active immunotherapies, we primarily focus on anti-amyloid beta monoclonal antibodies (mAbs), a form of passive immunotherapy, discussing their multifaceted role in AD treatment and the critical factors influencing their therapeutic efficacy. With two mAbs now approved and prescribed in the clinical setting, it is crucial to reflect on the lessons learned from trials of earlier mAbs that have shaped their development and contributed to their current success. These insights can then guide the creation of even more effective mAbs, ultimately enhancing therapeutic outcomes for patients with AD while minimizing adverse events.
Collapse
Affiliation(s)
- Alexandra Wicker
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jahnavi Shriram
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Marwan Noel Sabbagh
- Alzheimer's and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
7
|
França VLB, Bezerra EM, da Costa RF, Carvalho HF, Freire VN, Matos G. Alzheimer's Disease Immunotherapy and Mimetic Peptide Design for Drug Development: Mutation Screening, Molecular Dynamics, and a Quantum Biochemistry Approach Focusing on Aducanumab::Aβ2-7 Binding Affinity. ACS Chem Neurosci 2024; 15:3543-3562. [PMID: 39302203 PMCID: PMC11450751 DOI: 10.1021/acschemneuro.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Seven treatments are approved for Alzheimer's disease, but five of them only relieve symptoms and do not alter the course of the disease. Aducanumab (Adu) and lecanemab are novel disease-modifying antiamyloid-β (Aβ) human monoclonal antibodies that specifically target the pathophysiology of Alzheimer's disease (AD) and were recently approved for its treatment. However, their administration is associated with serious side effects, and their use is limited to early stages of the disease. Therefore, drug discovery remains of great importance in AD research. To gain new insights into the development of novel drugs for Alzheimer's disease, a combination of techniques was employed, including mutation screening, molecular dynamics, and quantum biochemistry. These were used to outline the interfacial interactions of the Aducanumab::Aβ2-7 complex. Our analysis identified critical stabilizing contacts, revealing up to 40% variation in the affinity of the Adu chains for Aβ2-7 depending on the conformation outlined. Remarkably, two complementarity determining regions (CDRs) of the Adu heavy chain (HCDR3 and HCDR2) and one CDR of the Adu light chain (LCDR3) accounted for approximately 77% of the affinity of Adu for Aβ2-7, confirming their critical role in epitope recognition. A single mutation, originally reported to have the potential to increase the affinity of Adu for Aβ2-7, was shown to decrease its structural stability without increasing the overall binding affinity. Mimetic peptides that have the potential to inhibit Aβ aggregation were designed by using computational outcomes. Our results support the use of these peptides as promising drugs with great potential as inhibitors of Aβ aggregation.
Collapse
Affiliation(s)
- Victor L. B. França
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Eveline M. Bezerra
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Roner F. da Costa
- Department
of Sciences, Mathematics and Statistics, Federal Rural University of Semi-Arid (UFERSA), 59625-900 Mossoró, RN, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864 Campinas, São
Paulo, Brazil
| | - Valder N. Freire
- Department
of Physics, Federal University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| | - Geanne Matos
- Department
of Physiology and Pharmacology, Federal
University of Ceará, 60430-270 Fortaleza, Ceará, Brazil
| |
Collapse
|
8
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
9
|
Miller B, Kim S, Cao K, Mehta HH, Thumaty N, Kumagai H, Iida T, McGill C, Pike CJ, Nurmakova K, Levine ZA, Sullivan PM, Yen K, Ertekin‐Taner N, Atzmon G, Barzilai N, Cohen P. Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology. Aging Cell 2024; 23:e14153. [PMID: 38520065 PMCID: PMC11258485 DOI: 10.1111/acel.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Su‐Jeong Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Cao
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hemal H. Mehta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neehar Thumaty
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroshi Kumagai
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Tomomitsu Iida
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cassandra McGill
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kamila Nurmakova
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics)Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Kelvin Yen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gil Atzmon
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Nir Barzilai
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pinchas Cohen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Han Y, Desai AA, Zupancic JM, Smith MD, Tessier PM, Ruotolo BT. Native ion mobility-mass spectrometry reveals the binding mechanisms of anti-amyloid therapeutic antibodies. Protein Sci 2024; 33:e5008. [PMID: 38723181 PMCID: PMC11081520 DOI: 10.1002/pro.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid β (Aβ) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aβ species during the dynamic Aβ aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aβ oligomers and three Aβ-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aβ monomers, while aducanumab preferentially binds Aβ monomers and dimers and A34 preferentially binds Aβ dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aβ binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aβ antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.
Collapse
Affiliation(s)
- Yilin Han
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Alec A. Desai
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer M. Zupancic
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew D. Smith
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Peter M. Tessier
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Department of Pharmaceutical SciencesUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
11
|
Tan S, Wu L, Liu J, Wu Z, Cheng Q, Qu Q, Zhu L, Yan Y, Wu H, Ling TJ, Liu RT, Yang S. Quercetin-3-O-glc-1-3-rham-1-6-glucoside decreases Aβ production, inhibits Aβ aggregation and neurotoxicity, and prohibits the production of inflammatory cytokines. Eur J Pharmacol 2024; 970:176491. [PMID: 38503399 DOI: 10.1016/j.ejphar.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aβ) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aβ oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aβ is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aβ generation and anti-Aβ aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aβ production by reducing β-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aβ oligomer formation by directly binding to Aβ. Moreover, YCC31 could attenuate Aβ-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.
Collapse
Affiliation(s)
- Shuo Tan
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Linmei Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Liu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhaoyuan Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiang Cheng
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiuhao Qu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lianghao Zhu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yizhu Yan
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hao Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shigao Yang
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Nolan RP, Printz MA. Modeling the subcutaneous pharmacokinetics of antibodies co-administered with rHuPH20. Clin Transl Sci 2024; 17:e13788. [PMID: 38561908 PMCID: PMC10985223 DOI: 10.1111/cts.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Predicting the subcutaneous (SC) pharmacokinetics (PK) of antibodies in humans is challenging, with clinical data currently being the only reliable data source for modeling SC absorption and bioavailability. Recombinant human hyaluronidase PH20 (rHuPH20) is an enzyme that facilitates SC delivery of high-dose, high-volume therapeutics. Numerous monoclonal antibodies have been co-administered SC with rHuPH20 in a clinical setting, establishing an extensive PK database. The goal of this work is to demonstrate how aggregated clinical data can be leveraged in a universal modeling framework for characterizing SC antibody PK, resulting in parameterization that can be used in predictive simulations of new antibodies. Data for 10 individual antibodies co-administered SC with rHuPH20 were obtained from publicly available sources. PK modeling of each antibody was conducted using the same model structure, but uniquely parameterized. The model structure consisted of a two-compartment model to capture linear kinetics, plus a target-binding mechanism to accommodate nonlinear kinetics driven by antibody-target complex formation and elimination. The clinical PK profiles for all antibodies were accurately described using the universal modeling framework. The SC PK parameters of absorption and bioavailability were consistent across the range of antibody and target properties evaluated. SC administration with rHuPH20 yielded a 30% increase in absorption rate on average and similar or better bioavailability. These parameter values can serve as initial conditions for model-based PK predictions for new antibodies co-administered SC with rHuPH20 to enable evaluation of optimal SC dose and schedule regimens prior to and during clinical development.
Collapse
|
13
|
Bilodeau PA, Dickson JR, Kozberg MG. The Impact of Anti-Amyloid Immunotherapies on Stroke Care. J Clin Med 2024; 13:1245. [PMID: 38592119 PMCID: PMC10931618 DOI: 10.3390/jcm13051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-amyloid immunotherapies have recently emerged as treatments for Alzheimer's disease. While these therapies have demonstrated efficacy in clearing amyloid-β and slowing cognitive decline, they have also been associated with amyloid-related imaging abnormalities (ARIA) which include both edema (ARIA-E) and hemorrhage (ARIA-H). Given that ARIA have been associated with significant morbidity in cases of antithrombotic or thrombolytic therapy, an understanding of mechanisms of and risk factors for ARIA is of critical importance for stroke care. We discuss the latest data regarding mechanisms of ARIA, including the role of underlying cerebral amyloid angiopathy, and implications for ischemic stroke prevention and management.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Division of Neuroimmunology and Neuroinfectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John R. Dickson
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
15
|
Noorda K, Noorda K, Sabbagh MN, Bertelson J, Singer J, Decourt B. Amyloid-Directed Antibodies: Past, Present, and Future. J Alzheimers Dis 2024; 101:S3-S22. [PMID: 39422953 DOI: 10.3233/jad-240189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disorder in patient demographics over 65 years old causing debilitating cognitive impairment. Most commonly, AD is diagnosed clinically as "probable AD", and definitive diagnosis is confirmed through postmortem brain autopsies to detect extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated tau tangles. The exact mechanism causing AD is still unknown, but treatments for AD have been actively investigated. Currently, immunotherapies have shown substantial promise in reducing the pathologic and clinical signs of AD. Objective This review aims to evaluate passive immunotherapies deemed to have promise for further development and use in the treatment of AD. Methods Immunotherapies were selected via a narrative review of medications that have potential clinical effectiveness with a status of FDA accepted, FDA fast-track, FDA status pending, or emerging therapies poised to pursue FDA approval. Results This review has yielded two anti-Aβ monoclonal antibodies (mAb) that are currently fully FDA approved, one mAb granted FDA fast-track status, two therapies on hold, three discontinued medications, and three promising emerging therapies. Conclusions We conclude that, in the near future, passive immunotherapies will be the preferred and evidence-based method of treatment for AD with the presence of brain Aβ deposits for both symptom management and potential slowing of disease progression. Specifically, lecanemab and donanemab will require further clinical studies to optimize patient selection based on safety profiles. Despite some key limitations, these two drugs are paving the way for disease-modifying treatments in patients displaying early signs of amyloid pathology.
Collapse
Affiliation(s)
- Keith Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Kevin Noorda
- School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - John Bertelson
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; and The University of Texas Health at Austin, Austin, TX, USA
| | - Jonathan Singer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Psychological Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
16
|
Neațu M, Covaliu A, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Monoclonal Antibody Therapy in Alzheimer's Disease. Pharmaceutics 2023; 16:60. [PMID: 38258071 PMCID: PMC11154277 DOI: 10.3390/pharmaceutics16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative condition marked by the progressive deterioration of cognitive abilities, memory impairment, and the accumulation of abnormal proteins, specifically beta-amyloid plaques and tau tangles, within the brain. Despite extensive research efforts, Alzheimer's disease remains without a cure, presenting a significant global healthcare challenge. Recently, there has been an increased focus on antibody-based treatments as a potentially effective method for dealing with Alzheimer's disease. This paper offers a comprehensive overview of the current status of research on antibody-based molecules as therapies for Alzheimer's disease. We will briefly mention their mechanisms of action, therapeutic efficacy, and safety profiles while addressing the challenges and limitations encountered during their development. We also highlight some crucial considerations in antibody-based treatment development, including patient selection criteria, dosing regimens, or safety concerns. In conclusion, antibody-based therapies present a hopeful outlook for addressing Alzheimer's disease. While challenges remain, the accumulating evidence suggests that these therapies may offer substantial promise in ameliorating or preventing the progression of this debilitating condition, thus potentially enhancing the quality of life for the millions of individuals and families affected by Alzheimer's disease worldwide.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Anca Covaliu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
17
|
Fedele E. Anti-Amyloid Therapies for Alzheimer's Disease and the Amyloid Cascade Hypothesis. Int J Mol Sci 2023; 24:14499. [PMID: 37833948 PMCID: PMC10578107 DOI: 10.3390/ijms241914499] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past 30 years, the majority of (pre)clinical efforts to find an effective therapy for Alzheimer's disease (AD) focused on clearing the β-amyloid peptide (Aβ) from the brain since, according to the amyloid cascade hypothesis, the peptide was (and it is still considered by many) the pathogenic determinant of this neurodegenerative disorder. However, as reviewed in this article, results from the numerous clinical trials that have tested anti-Aβ therapies to date indicate that this peptide plays a minor role in the pathogenesis of AD. Indeed, even Aducanumab and Lecanemab, the two antibodies recently approved by the FDA for AD therapy, as well as Donanemab showed limited efficacy on cognitive parameters in phase III clinical trials, despite their capability of markedly lowering Aβ brain load. Furthermore, preclinical evidence demonstrates that Aβ possesses several physiological functions, including memory formation, suggesting that AD may in part be due to a loss of function of this peptide. Finally, it is generally accepted that AD could be the result of many molecular dysfunctions, and therefore, if we keep chasing only Aβ, it means that we cannot see the forest for the trees.
Collapse
Affiliation(s)
- Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
18
|
Fan X, Xu L, Zhang J, Wang Y, Wu Z, Sun W, Yao X, Wang X, Guan S, Shan Y. Mechanism Exploration of Amyloid-β-42 Disaggregation by Single-Chain Variable Fragments of Alzheimer's Disease Therapeutic Antibodies. Int J Mol Sci 2023; 24:ijms24098371. [PMID: 37176076 PMCID: PMC10179127 DOI: 10.3390/ijms24098371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a specific neurodegenerative disease. This study adopts single-chain variable fragments (scFvs) as a potential immunotherapeutic precursor for AD. According to the remarkable effects of monoclonal antibodies, such as the depolymerization or promotion of Aβ42 efflux by Crenezumab, Solanezumab, and 12B4, it is attractive to prepare corresponding scFvs targeting amyloid-β-42 protein (Aβ42) and investigate their biological activities. Crenezumab-like scFv (scFv-C), Solanezumab-like scFv (scFv-S), and 12B4-like scFv (scFv-12B4) were designed and constructed. The thermal stabilities and binding ability to Aβ42 of scFv-C, scFv-S, and scFv-12B4 were evaluated using unfolding profile and enzyme-linked immunosorbent assay. As the results indicated that scFv-C could recognize Aβ42 monomer/oligomer and promote the disaggregation of Aβ42 fiber as determined by the Thioflavin-T assay, the potential mechanism of its interaction with Aβ42 was investigated using molecular dynamics analysis. Interactions involving hydrogen bonds and salt bonds were predicted between scFv-C and Aβ42 pentamer, suggesting the possibility of inhibiting further aggregation of Aβ42. The successfully prepared scFvs, especially scFv-C, with favorable biological activity targeting Aβ42, might be developed for a potentially efficacious clinical application for AD.
Collapse
Affiliation(s)
- Xing Fan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianhao Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yidan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zirui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenjing Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun 130052, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
20
|
Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer's disease. Front Neurol 2023; 14:1147757. [PMID: 37006475 PMCID: PMC10050585 DOI: 10.3389/fneur.2023.1147757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Backgrounds and objectives Currently, no consensus has been reached on the therapeutic implications of monoclonal antibodies against amyloid-beta (Aβ) in Alzheimer's disease (AD). This study aimed to examine the effectiveness and safety of monoclonal antibodies against Aβ as a whole and also to determine the superiority of individual antibodies vis-à-vis placebo in mild or moderate AD. Methods Literature retrieval, article selection, and data abstraction were performed independently and in duplicate. Cognition and function were appraised by the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Disability Assessment for Dementia (DAD), and Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB). Effect sizes are expressed as standardized mean difference (SMD) with a 95% confidence interval (CI). Results Twenty-nine articles involving 108 drug-specific trials and 21,383 participants were eligible for synthesis. Of the four assessment scales, only CDR-SB was significantly reduced after using monoclonal antibodies against Aβ relative to placebo (SMD: -0.12; 95% CI: -0.2 to -0.03; p = 0.008). Egger's tests indicated a low likelihood of publication bias. At individual levels, bapineuzumab was associated with a significant increase in MMSE (SMD: 0.588; 95% CI: 0.226-0.95) and DAD (SMD: 0.919; 95% CI: 0.105-1.943), and a significant decrease in CDR-SB (SMD: -0.15; 95% CI: -0.282-0.018). Bapineuzumab can increase the significant risk of serious adverse events (OR: 1.281; 95% CI: 1.075-1.525). Conclusion Our findings indicate that monoclonal antibodies against Aβ can effectively improve instrumental activities of daily life in mild or moderate AD. In particular, bapineuzumab can improve cognition and function, as well as activities of daily life, and meanwhile, it triggers serious adverse events.
Collapse
Affiliation(s)
- Ying Hao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Mingrui Dong
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingtong Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Plascencia-Villa G, Perry G. Lessons from antiamyloid-β immunotherapies in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:267-292. [PMID: 36803816 DOI: 10.1016/b978-0-323-85555-6.00019-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The amyloid hypothesis, that established amyloid-β (Aβ) peptide as the primary cause of Alzheimer's disease (AD) and related dementia, has driven the development of treatments for neurodegeneration for 30 years. During the last decades, more than 200 clinical trials testing more than 30 anti-Aβ immunotherapies have been assessed as potential treatments for AD. A vaccine against Aβ was the first immunotherapy intended to avoid aggregation of Aβ into fibrils and senile plaques, but it dramatically failed. Several other vaccines have been proposed as potential AD treatments, targeting different domains or structural motifs of Aβ aggregates, but without clear clinical benefits or effectiveness. In contrast, anti-Aβ therapeutic antibodies have focused on recognizing and removing Aβ aggregates (oligomers, fibrils, or plaques) by eliciting immune clearance. In 2021, the first anti-Aβ antibody, aducanumab (branded as Aduhelm), received FDA approval under an accelerated approval process. The effectiveness and the overall processes regarding the approval of Aduhelm have been under major criticism and scrutiny, prompting a vote of no confidence by public and private health providers, limiting the coverage only to patients enrolled in clinical trials and not for the general elderly patients. Additionally, another three therapeutic anti-Aβ antibodies are following the same path for potential FDA approval. Here, we present the current status of anti-Aβ immunotherapies under evaluation in preclinical and clinical trials for the treatment of AD and related dementia, with a discussion of the main findings and critical lessons learned from the observations from Phase III, II, and I clinical trials of anti-Aβ vaccines and antibodies.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neurosciences, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX, United States
| | - George Perry
- Department of Neurosciences, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX, United States.
| |
Collapse
|
22
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
23
|
Sandberg A, Berenjeno-Correa E, Rodriguez RC, Axenhus M, Weiss SS, Batenburg K, Hoozemans JJM, Tjernberg LO, Scheper W. Aβ42 oligomer-specific antibody ALZ-201 reduces the neurotoxicity of Alzheimer's disease brain extracts. Alzheimers Res Ther 2022; 14:196. [PMID: 36578089 PMCID: PMC9798723 DOI: 10.1186/s13195-022-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), amyloid-β 1-42 (Aβ42) neurotoxicity stems mostly from its soluble oligomeric aggregates. Studies of such aggregates have been hampered by the lack of oligomer-specific research tools and their intrinsic instability and heterogeneity. Here, we developed a monoclonal antibody with a unique oligomer-specific binding profile (ALZ-201) using oligomer-stabilising technology. Subsequently, we assessed the etiological relevance of the Aβ targeted by ALZ-201 on physiologically derived, toxic Aβ using extracts from post-mortem brains of AD patients and controls in primary mouse neuron cultures. METHODS Mice were immunised with stable oligomers derived from the Aβ42 peptide with A21C/A30C mutations (AβCC), and ALZ-201 was developed using hybridoma technology. Specificity for the oligomeric form of the Aβ42CC antigen and Aβ42 was confirmed using ELISA, and non-reactivity against plaques by immunohistochemistry (IHC). The antibody's potential for cross-protective activity against pathological Aβ was evaluated in brain tissue samples from 10 individuals confirmed as AD (n=7) and non-AD (n=3) with IHC staining for Aβ and phosphorylated tau (p-Tau) aggregates. Brain extracts were prepared and immunodepleted using the positive control 4G8 antibody, ALZ-201 or an isotype control to ALZ-201. Fractions were biochemically characterised, and toxicity assays were performed in primary mouse neuronal cultures using automated high-content microscopy. RESULTS AD brain extracts proved to be more toxic than controls as demonstrated by neuronal loss and morphological determinants (e.g. synapse density and measures of neurite complexity). Immunodepletion using 4G8 reduced Aβ levels in both AD and control samples compared to ALZ-201 or the isotype control, which showed no significant difference. Importantly, despite the differential effect on the total Aβ content, the neuroprotective effects of 4G8 and ALZ-201 immunodepletion were similar, whereas the isotype control showed no effect. CONCLUSIONS ALZ-201 depletes a toxic species in post-mortem AD brain extracts causing a positive physiological and protective impact on the integrity and morphology of mouse neurons. Its unique specificity indicates that a low-abundant, soluble Aβ42 oligomer may account for much of the neurotoxicity in AD. This critical attribute identifies the potential of ALZ-201 as a novel drug candidate for achieving a true, clinical therapeutic effect in AD.
Collapse
Affiliation(s)
- Anders Sandberg
- grid.451585.8Alzinova AB, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Ernesto Berenjeno-Correa
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rosa Crespo Rodriguez
- grid.509540.d0000 0004 6880 3010Department of Neurochemistry, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands
| | - Michael Axenhus
- grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sophia Schedin Weiss
- grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Batenburg
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen J. M. Hoozemans
- grid.509540.d0000 0004 6880 3010Department of Neuropathology, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands
| | - Lars O. Tjernberg
- grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wiep Scheper
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Ramakrishnan V, Friedrich C, Witt C, Sheehan R, Pryor M, Atwal JK, Wildsmith K, Kudrycki K, Lee S, Mazer N, Hofmann C, Fuji RN, Jin J, Ramanujan S, Dolton M, Quartino A. Quantitative systems pharmacology model of the amyloid pathway in Alzheimer's disease: Insights into the therapeutic mechanisms of clinical candidates. CPT Pharmacometrics Syst Pharmacol 2022; 12:62-73. [PMID: 36281062 PMCID: PMC9835125 DOI: 10.1002/psp4.12876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Despite considerable investment into potential therapeutic approaches for Alzheimer's disease (AD), currently approved treatment options are limited. Predictive modeling using quantitative systems pharmacology (QSP) can be used to guide the design of clinical trials in AD. This study developed a QSP model representing amyloid beta (Aβ) pathophysiology in AD. The model included mechanisms of Aβ monomer production and aggregation to form insoluble fibrils and plaques; the transport of soluble species between the compartments of brain, cerebrospinal fluid (CSF), and plasma; and the pharmacokinetics, transport, and binding of monoclonal antibodies to targets in the three compartments. Ordinary differential equations were used to describe these processes quantitatively. The model components were calibrated to data from the literature and internal studies, including quantitative data supporting the underlying AD biology and clinical data from clinical trials for anti-Aβ monoclonal antibodies (mAbs) aducanumab, crenezumab, gantenerumab, and solanezumab. The model was developed for an apolipoprotein E (APOE) ɛ4 allele carrier and tested for an APOE ɛ4 noncarrier. Results indicate that the model is consistent with data on clinical Aβ accumulation in untreated individuals and those treated with monoclonal antibodies, capturing increases in Aβ load accurately. This model may be used to investigate additional AD mechanisms and their impact on biomarkers, as well as predict Aβ load at different dose levels for mAbs with known targets and binding affinities. This model may facilitate the design of scientifically enriched and efficient clinical trials by enabling a priori prediction of biomarker dynamics in the brain and CSF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jin Y. Jin
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Michael Dolton
- Roche Products Australia Pty LtdNew South WalesSydneyAustralia
| | | |
Collapse
|
25
|
Ostrowitzki S, Bittner T, Sink KM, Mackey H, Rabe C, Honig LS, Cassetta E, Woodward M, Boada M, van Dyck CH, Grimmer T, Selkoe DJ, Schneider A, Blondeau K, Hu N, Quartino A, Clayton D, Dolton M, Dang Y, Ostaszewski B, Sanabria-Bohórquez SM, Rabbia M, Toth B, Eichenlaub U, Smith J, Honigberg LA, Doody RS. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults With Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol 2022; 79:1113-1121. [PMID: 36121669 PMCID: PMC9486635 DOI: 10.1001/jamaneurol.2022.2909] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022]
Abstract
Importance Alzheimer disease (AD), a neurodegenerative disease characterized by β-amyloid plaques and τ tangles in the brain, represents an unmet medical need with no fully approved therapeutics to modify disease progression. Objective To investigate the safety and efficacy of crenezumab, a humanized monoclonal immunoglobulin G4 antibody targeting β-amyloid oligomers, in participants with prodromal to mild (early) AD. Design, Setting, and Participants Two phase 3 multicenter randomized double-blind placebo-controlled parallel-group efficacy and safety studies of crenezumab in participants with early AD, CREAD and CREAD2, were initiated in 2016 and 2017, respectively, and were designed to evaluate the efficacy and safety of crenezumab in participants with early AD. CREAD (194 sites in 30 countries) and CREAD2 (209 sites in 27 countries) were global multicenter studies. A total of 3736 and 3664 participants were screened in CREAD and CREAD2, respectively. A total of 3736 and 3664 participants were screened in CREAD and CREAD2, respectively. Both trials enrolled individuals aged 50 to 85 years with early AD. Participants with some comorbidities and evidence of cerebral infarction or more than 4 microbleeds or areas of leptomeningeal hemosiderosis on magnetic resonance imaging were excluded. After 2923 and 2858 were excluded, respectively, 813 participants in CREAD and 806 in CREAD2 were randomly assigned in a 1:1 ratio to either placebo or crenezumab. In the final analysis, there were 409 participants in the placebo group and 404 in the crenezumab group in CREAD and 399 in the placebo group and 407 in the crenezumab group in CREAD2. Data were analyzed up until January 2019 and August 2019, respectively. Interventions Participants received placebo or 60 mg/kg crenezumab intravenously every 4 weeks for up to 100 weeks. Main Outcomes and Measures The primary outcome was change from baseline to week 105 in Clinical Dementia Rating-Sum of Boxes (CDR-SB) score. Results There were 813 participants in CREAD (mean [SD] age, 70.7 [8.2] years; 483 female and 330 male) and 806 in CREAD2 (mean [SD] age, 70.9 [7.7] years; 456 female and 350 male). Baseline characteristics were balanced between both groups. The between-group difference in mean change from baseline in CDR-SB score (placebo minus crenezumab) was -0.17 (95% CI, -0.86 to 0.53; P = .63) at week 105 in the CREAD study (88 placebo; 86 crenezumab). Compared with previous trials, no new safety signals were identified, and amyloid-related imaging abnormalities with edema were rare, mild, and transient. No meaningful changes in AD biomarkers were observed. Both studies were discontinued following a preplanned interim analysis indicating that CREAD was unlikely to meet the primary end point. Conclusions and Relevance Crenezumab was well tolerated but did not reduce clinical decline in participants with early AD. Trial Registration ClinicalTrials.gov Identifiers: CREAD, NCT02670083; CREAD2, NCT03114657.
Collapse
Affiliation(s)
| | - Tobias Bittner
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Genentech, Inc, South San Francisco, California
| | | | | | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Emanuele Cassetta
- Fatebenefratelli Foundation, Associazione Fatebenefratelli Per la Ricerca Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Michael Woodward
- Austin Health Continuing Care Clinical Service Unit, Heidelberg, Germany
- University of Melbourne, Melbourne, Victoria, Australia
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Nan Hu
- Genentech, Inc, South San Francisco, California
| | - Angelica Quartino
- Genentech, Inc, South San Francisco, California
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden
| | | | - Michael Dolton
- Roche Products Australia Pty Ltd, Sydney, New South Wales, Australia
| | - Yifan Dang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Sanofi Genzyme, Waltham, Massachusetts
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Balazs Toth
- Genentech, Inc, South San Francisco, California
| | | | - Jillian Smith
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Rachelle S. Doody
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Genentech, Inc, South San Francisco, California
| |
Collapse
|
26
|
Song C, Zhang T, Zhang Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196751. [PMID: 36235284 PMCID: PMC9570743 DOI: 10.3390/molecules27196751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Soluble aggregation of amyloid β-peptide 1-42 (Aβ42) and deposition of Aβ42 aggregates are the initial pathological hallmarks of Alzheimer's disease (AD). The bipolar nature of Aβ42 molecule results in its ability to assemble into distinct oligomers and higher aggregates, which may drive some of the phenotypic heterogeneity observed in AD. Agents targeting Aβ42 or its aggregates, such as anti-Aβ42 antibodies, can inhibit the aggregation of Aβ42 and toxicity of Aβ42 aggregates to neural cells to a certain extent. However, the epitope specificity of an antibody affects its binding affinity for different Aβ42 species. Different antibodies target different sites on Aβ42 and thus elicit different neuroprotective or cytoprotective effects. In the present review, we summarize significant information reflected by anti-Aβ42 antibodies in different immunotherapies and propose an overview of the structure (conformation)-toxicity relationship of Aβ42 aggregates. This review aimed to provide a reference for the directional design of antibodies against the most pathogenic conformation of Aβ42 aggregates.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
27
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
28
|
Zhao P, Zhang N, An Z. Engineering antibody and protein therapeutics to cross the blood-brain barrier. Antib Ther 2022; 5:311-331. [PMID: 36540309 PMCID: PMC9759110 DOI: 10.1093/abt/tbac028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Diseases in the central nervous system (CNS) are often difficult to treat. Antibody- and protein-based therapeutics hold huge promises in CNS disease treatment. However, proteins are restricted from entering the CNS by the blood-brain barrier (BBB). To achieve enhanced BBB crossing, antibody-based carriers have been developed by utilizing the endogenous macromolecule transportation pathway, known as receptor-mediated transcytosis. In this report, we first provided an overall review on key CNS diseases and the most promising antibody- or protein-based therapeutics approved or in clinical trials. We then reviewed the platforms that are being explored to increase the macromolecule brain entry to combat CNS diseases. Finally, we have analyzed the lessons learned from past experiences and have provided a perspective on the future engineering of novel delivery vehicles for antibody- and protein-based therapies for CNS diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| |
Collapse
|
29
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
30
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
31
|
Irie Y, Matsushima Y, Kita A, Miki K, Segawa T, Maeda M, Yanagita RC, Irie K. Structural basis of the 24B3 antibody against the toxic conformer of amyloid β with a turn at positions 22 and 23. Biochem Biophys Res Commun 2022; 621:162-167. [PMID: 35839743 DOI: 10.1016/j.bbrc.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022]
Abstract
Amyloid β-protein (Aβ) oligomers are involved in the early stages of Alzheimer's disease (AD) and antibodies against these toxic oligomers could be useful for accurate diagnosis of AD. We identified the toxic conformer of Aβ42 with a turn at positions 22/23, which has a propensity to form toxic oligomers. The antibody 24B3, developed by immunization of a toxic conformer surrogate E22P-Aβ9-35 in mice, was found to be useful for AD diagnosis using human cerebrospinal fluid (CSF). However, it is not known how 24B3 recognizes the toxic conformation of wild-type Aβ in CSF. Here, we report the crystal structure of 24B3 Fab complexed with E22P-Aβ11-34, whose residues 16-26 were observed in electron densities, suggesting that the residues comprising the toxic turn at positions 22/23 were recognized by 24B3. Since 24B3 bound only to Aβ42 aggregates, several conformationally restricted analogs of Aβ42 with an intramolecular disulfide bond to mimic the conformation of toxic Aβ42 aggregates were screened by enzyme immunoassay. As a result, only F19C,A30homoC-SS-Aβ42 (1) bound significantly to 24B3. These data provide a structural basis for its low affinity to the Aβ42 monomer and selectivity for its aggregate form.
Collapse
Affiliation(s)
- Yumi Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuka Matsushima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan, Osaka, 590-0494, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Tatsuya Segawa
- Immuno-Biological Laboratories Co, Ltd, Gunma, 375-0005, Japan
| | - Masahiro Maeda
- Immuno-Biological Laboratories Co, Ltd, Gunma, 375-0005, Japan
| | - Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
32
|
Santoro A, Grimaldi M, Buonocore M, Stillitano I, Gloria A, Santin M, Bobba F, Sublimi Saponetti M, Ciaglia E, D'Ursi AM. New Aβ(1-42) ligands from anti-amyloid antibodies: Design, synthesis, and structural interaction. Eur J Med Chem 2022; 237:114400. [PMID: 35489223 DOI: 10.1016/j.ejmech.2022.114400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), is the most common neurodegenerative disorder of the aging population resulting in progressive cognitive and functional decline. Accumulation of amyloid plaques around neuronal cells is considered a critical pathogenetic event and, in most cases, a hallmark of the pathology. In the attempt to identify anti-AD drug candidates, hundreds of molecules targeting Aβ peptides have been screened. Peptide molecules have been widely explored, appreciating chemical stability, biocompatibility, and low production cost. More recently, many anti-Aβ(1-42) monoclonal antibodies have been developed, given the excellent potential of immunotherapy for treating or preventing AD. Antibodies are versatile ligands that bind a large variety of molecules with high affinity and specificity; however, their extensive therapeutic application is complex and requires huge economic investments. Novel approaches to identify alternative antibody formats are considered with great interest. In this context, taking advantage of the favorable peptide properties and the availability of Aβ-antibodies structural data, we followed an innovative research approach to identify short peptide sequences on the model of the binding sites of Aβ(1-42)/antibodies. WAibH and SYSTPGK were designed as mimics of solanezumab and aducanumab, respectively. Circular dichroism and nuclear magnetic resonance analysis reveal that the antibody-derived peptides interact with Aβ(1-42) in the soluble monomeric form. Moreover, AFM microscopy imaging shows that WAibH and SYSTPGK are capable of controlling the Aβ(1-42) aggregation. The strategy to identify WAibH and SYSTPGK is innovative and can be widely applied for new anti-Aβ antibody mimicking peptides.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20, Mostra d'Oltremare, 80125, Naples, Italy
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Fabrizio Bobba
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Matilde Sublimi Saponetti
- Department of Physics, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 84081, Baronissi, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
33
|
Shi M, Chu F, Zhu F, Zhu J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer's Disease: A Focus on Aducanumab and Lecanemab. Front Aging Neurosci 2022; 14:870517. [PMID: 35493943 PMCID: PMC9039457 DOI: 10.3389/fnagi.2022.870517] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related dementia in the world, and its main pathological features consist of amyloid-β (Aβ) plaque deposits and neurofibrillary tangles formed by hyperphosphorylated tau protein. So far, only a few AD treatments approved have been applied in the clinic, but the effects of these drugs are limited only for partial symptomatic relief to patients with AD and are unable to alter AD progression. Later, all efforts for AD treatments with targeting the pathogenic factors were unsuccessful over the past decades, which suggested that the pathogenesis of AD is complex. Recently, disease-modifying therapies (DMTs) that can change the underlying pathophysiology of AD, with anti-Aβ monoclonal antibodies (mabs) (e.g., aducanumab, bapineuzumab, gantenerumab, solanezumab, and lecanemab) have been developed successively and conducted in clinical trials based on the theory that a systemic failure of cell-mediated Aβ clearance contributes to AD occurrence and progression. In the review, we summarized recent studies on the therapeutic effects and clinical trial results of these mabs in patients with AD. Specifically, we focused on the discussion of the impact of aducanumab and lecanemab on AD pathology and clinical profiles. The review provides a possible evidence for applying immunotherapy with anti-Aβ mabs in AD and analyzes lessons learned from these clinical trials in order to further study the therapeutic and adverse effects of these anti-Aβ mabs on AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
34
|
Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov 2022; 21:306-318. [PMID: 35177833 DOI: 10.1038/s41573-022-00391-w] [Citation(s) in RCA: 399] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Many drugs that target amyloid-β (Aβ) in Alzheimer disease (AD) have failed to demonstrate clinical efficacy. However, four anti-Aβ antibodies have been shown to mediate the removal of amyloid plaque from brains of patients with AD, and the FDA has recently granted accelerated approval to one of these, aducanumab, using reduction of amyloid plaque as a surrogate end point. The rationale for approval and the extent of the clinical benefit from these antibodies are under intense debate. With the aim of informing this debate, we review clinical trial data for drugs that target Aβ from the perspective of the temporal interplay between the two pathognomonic protein aggregates in AD - Aβ plaques and tau neurofibrillary tangles - and their relationship to cognitive impairment, highlighting differences in drug properties that could affect their clinical performance. On this basis, we propose that Aβ pathology drives tau pathology, that amyloid plaque would need to be reduced to a low level (~20 centiloids) to reveal significant clinical benefit and that there will be a lag between the removal of amyloid and the potential to observe a clinical benefit. We conclude that the speed of amyloid removal from the brain by a potential therapy will be important in demonstrating clinical benefit in the context of a clinical trial.
Collapse
Affiliation(s)
- Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA.
| | - Bart De Strooper
- VIB Centre for Brain Disease Research, KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
35
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
36
|
Discovery of a novel pseudo β-hairpin structure of N-truncated amyloid-β for use as a vaccine against Alzheimer's disease. Mol Psychiatry 2022; 27:840-848. [PMID: 34776512 DOI: 10.1038/s41380-021-01385-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) are deposits of amyloid-beta (Aβ) protein in amyloid plaques in the brain. The Aβ peptide exists in several forms, including full-length Aβ1-42 and Aβ1-40 - and the N-truncated species, pyroglutamate Aβ3-42 and Aβ4-42, which appear to play a major role in neurodegeneration. We previously identified a murine antibody (TAP01), which binds specifically to soluble, non-plaque N-truncated Aβ species. By solving crystal structures for TAP01 family antibodies bound to pyroglutamate Aβ3-14, we identified a novel pseudo β-hairpin structure in the N-terminal region of Aβ and show that this underpins its unique binding properties. We engineered a stabilised cyclic form of Aβ1-14 (N-Truncated Amyloid Peptide AntibodieS; the 'TAPAS' vaccine) and showed that this adopts the same 3-dimensional conformation as the native sequence when bound to TAP01. Active immunisation of two mouse models of AD with the TAPAS vaccine led to a striking reduction in amyloid-plaque formation, a rescue of brain glucose metabolism, a stabilisation in neuron loss, and a rescue of memory deficiencies. Treating both models with the humanised version of the TAP01 antibody had similar positive effects. Here we report the discovery of a unique conformational epitope in the N-terminal region of Aβ, which offers new routes for active and passive immunisation against AD.
Collapse
|
37
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
38
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
39
|
Mahdiabadi S, Momtazmanesh S, Perry G, Rezaei N. Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Rev Neurosci 2021; 33:365-381. [PMID: 34506700 DOI: 10.1515/revneuro-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
40
|
Dolton MJ, Chesterman A, Moein A, Sink KM, Waitz A, Blondeau K, Kerchner GA, Hu N, Brooks L, Wetzel-Smith MK, Roden A, Deshmukh A, Peng K, Carrasco-Triguero M, Smith J, Ostrowitzki S, Quartino A. Safety, Tolerability, and Pharmacokinetics of High-Volume Subcutaneous Crenezumab, With and Without Recombinant Human Hyaluronidase in Healthy Volunteers. Clin Pharmacol Ther 2021; 110:1337-1348. [PMID: 34347883 DOI: 10.1002/cpt.2385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Compared with intravenous formulations, subcutaneous (s.c.) formulations of therapeutic monoclonal antibodies may provide increased patient access and more convenient administration options, although historically high-volume s.c. administration (> 10-15 mL) has been challenging. We report results from two phase I studies in healthy participants (GP29523 and GP40201) that evaluated s.c. crenezumab, an anti-Aβ monoclonal antibody in development for individuals at risk for autosomal-dominant Alzheimer's disease. GP29523 assessed safety, tolerability, and pharmacokinetics (PK) in 68 participants (aged 50-80 years) who received single ascending doses (600-7,200 mg) of crenezumab or placebo (4-40 mL). GP40201 assessed safety, tolerability, and PK in 72 participants (aged 18-80 years) who received different combinations of dose (1,700-6,800 mg), infusion volume (10-40 mL), and flow rate (2-4 mL/minute), with/without recombinant human hyaluronidase (rHuPH20). There were no serious or dose-limiting adverse events in either study. There were no meaningful differences in pain scores among reference placebo (4 mL), test placebo (4-40 mL), or crenezumab (600-7,200 mg) in GP29523, or across treatments with varying infusion volume, flow rate, dose, or rHuPH20 co-administration or concentration in GP40201. Transient erythema was the most common infusion site reaction in both studies. In GP40201 at volumes of ≥ 20 mL, rHuPH20 co-administration appeared to reduce infusion site swelling incidence, but, in some cases, was associated with larger areas of infusion site erythema. Crenezumab exhibited approximately dose-proportional PK, and s.c. bioavailability was 66% and independent of dose or rHuPH20 co-administration. High-dose, high-concentration, high-volume s.c. crenezumab formulated with/without rHuPH20 was well-tolerated in healthy participants, with an acceptable safety profile.
Collapse
Affiliation(s)
| | | | - Anita Moein
- Genentech, Inc., South San Francisco, California, USA
| | - Kaycee M Sink
- Genentech, Inc., South San Francisco, California, USA
| | - Ariel Waitz
- Genentech, Inc., South San Francisco, California, USA
| | | | | | - Nan Hu
- Genentech, Inc., South San Francisco, California, USA
| | - Logan Brooks
- Genentech, Inc., South San Francisco, California, USA
| | | | - Amanda Roden
- Genentech, Inc., South San Francisco, California, USA
| | - Ajay Deshmukh
- Genentech, Inc., South San Francisco, California, USA
| | - Kun Peng
- Genentech, Inc., South San Francisco, California, USA
| | | | - Jill Smith
- Roche Products Limited, Welwyn Garden City, UK
| | | | | |
Collapse
|
41
|
Decourt B, Boumelhem F, Pope ED, Shi J, Mari Z, Sabbagh MN. Critical Appraisal of Amyloid Lowering Agents in AD. Curr Neurol Neurosci Rep 2021; 21:39. [PMID: 34110536 PMCID: PMC8192384 DOI: 10.1007/s11910-021-01125-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW According to the amyloid cascade hypothesis, removing amyloid beta (Aβ) should cure Alzheimer's disease (AD). In the past three decades, many agents have been tested to try to lower Aβ production, prevent Aβ aggregation, and dissolve Aβ deposits. However, the paucity in definitive preventative or curative properties of these agents in clinical trials has resulted in more avant-garde approaches to therapeutic investigations. Immunotherapy has become an area of focus for research on disease-modifying therapies for neurodegenerative diseases. In this review, we highlight the current clinical development landscape of monoclonal antibody (mAb) therapies that target Aβ plaque formation and removal in AD. RECENT FINDINGS Multiple potential disease-modifying therapeutics for AD are in active development. Targeting Aβ with mAbs has the potential to treat various stages of AD: prodromal, prodromal to mild, mild, and mild to moderate. Monoclonal antibodies discussed here include aducanumab, lecanemab, solanezumab, crenezumab, donanemab, and gantenerumab. The final decision by the FDA regarding the approval of aducanumab will offer valuable insight into the trajectory of drug development for mAbs in AD and other neurodegenerative diseases. Future directions for improving the treatment of AD will include more inquiry into the efficacy of mAbs as disease-modifying agents that specifically target Aβ peptides and/or multimers. In addition, a more robust trial design for AD immunotherapy agents should improve outcomes such that objective measures of clinical efficacy will eventually lead to higher chances of drug approval.
Collapse
Affiliation(s)
- Boris Decourt
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | | | - Evans D Pope
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Jiong Shi
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Marwan Noel Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| |
Collapse
|
42
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Madrasi K, Das R, Mohmmadabdul H, Lin L, Hyman BT, Lauffenburger DA, Albers MW, Rissman RA, Burke JM, Apgar JF, Wille L, Gruenbaum L, Hua F. Systematic in silico analysis of clinically tested drugs for reducing amyloid-beta plaque accumulation in Alzheimer's disease. Alzheimers Dement 2021; 17:1487-1498. [PMID: 33938131 PMCID: PMC8478725 DOI: 10.1002/alz.12312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/28/2023]
Abstract
Introduction Despite strong evidence linking amyloid beta (Aβ) to Alzheimer's disease, most clinical trials have shown no clinical efficacy for reasons that remain unclear. To understand why, we developed a quantitative systems pharmacology (QSP) model for seven therapeutics: aducanumab, crenezumab, solanezumab, bapineuzumab, elenbecestat, verubecestat, and semagacestat. Methods Ordinary differential equations were used to model the production, transport, and aggregation of Aβ; pharmacology of the drugs; and their impact on plaque. Results The calibrated model predicts that endogenous plaque turnover is slow, with an estimated half‐life of 2.75 years. This is likely why beta‐secretase inhibitors have a smaller effect on plaque reduction. Of the mechanisms tested, the model predicts binding to plaque and inducing antibody‐dependent cellular phagocytosis is the best approach for plaque reduction. Discussion A QSP model can provide novel insights to clinical results. Our model explains the results of clinical trials and provides guidance for future therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Lin Lin
- Applied Biomath, Concord, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert A Rissman
- Department of Neurosciences, UCSD School of Medicine, La Jolla, California, USA
| | | | | | - Lucia Wille
- Applied Biomath, Concord, Massachusetts, USA
| | | | - Fei Hua
- Applied Biomath, Concord, Massachusetts, USA
| |
Collapse
|
44
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
45
|
Asadbegi M, Shamloo A. Evaluating the Multifunctionality of a New Modulator of Zinc-Induced Aβ Aggregation Using a Novel Computational Approach. J Chem Inf Model 2021; 61:1383-1401. [PMID: 33617717 DOI: 10.1021/acs.jcim.0c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high concentration of zinc metal ions in Aβ aggregations is one of the most cited hallmarks of Alzheimer's disease (AD), and several substantial pieces of evidence emphasize the key role of zinc metal ions in the pathogenesis of AD. In this study, while designing a multifunctional peptide for simultaneous targeting Aβ aggregation and chelating the zinc metal ion, a novel and comprehensive approach is introduced for evaluating the multifunctionality of a multifunctional drugs based on computational methods. The multifunctional peptide consists of inhibitor and chelator domains, which are included in the C-terminal hydrophobic region of Aβ, and the first four amino acids of human albumin. The ability of the multifunctional peptide in zinc ion chelation has been investigated using molecular dynamics (MD) simulations of the peptide-zinc interaction for 300 ns, and Bennett's acceptance ratio (BAR) method has been used to accurately calculate the chelation free energy. Data analysis demonstrates that the peptide chelating domain can be stably linked to the zinc ion. Besides, the introduced method used for evaluating chelation and calculating the free energy of peptide binding to zinc ions was successfully validated by comparison with previous experimental and theoretical published data. The results indicate that the multifunctional peptide, coordinating with the zinc metal ion, can be effective in Aβ inhibition by preserving the native helical structure of the Aβ42 monomer as well as disrupting the β-sheet structure of Aβ42 aggregates. Detailed assessments of the Aβ42-peptide interactions elucidate that the inhibition of Aβ is achieved by considerable hydrophobic interactions and hydrogen bonding between the multifunctional peptide and the hydrophobic Aβ regions, along with interfering in stable bridges formed inside the Aβ aggregate.
Collapse
Affiliation(s)
- Mohsen Asadbegi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| |
Collapse
|
46
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
47
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
48
|
Chen Y, Wei G, Zhao J, Nussinov R, Ma B. Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chem Neurosci 2020; 11:3233-3244. [PMID: 32991803 PMCID: PMC8921974 DOI: 10.1021/acschemneuro.0c00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapies using antibodies to lower assembled Aβ provide a promising approach and have been widely studied. Anti-amyloid antibodies are often selective to amyloid conformation, and the lack of amyloid-antibody structural information limits our understanding of these antibodies' conformation selection. Gantenerumab and crenezumab are two anti-Aβ antibodies that bind multiple forms of Aβ with different Aβ epitope preferences. Here, using molecular dynamic (MD) simulations, we study the binding of these two antibodies to the Aβ1-40 fibril, whose conformation is derived from an AD patient's brain tissue. We find that gantenerumab recognizes the Aβ1-11 monomer fragment only at slightly lower pH than the physiological environment where His6 of Aβ1-11 is protonated. Both gantenerumab and crenezumab bind with integrated Aβ fibril rather than binding to monomers within the fibril. Gantenerumab preferentially binds to the N-terminal region of the Aβ1-40 fibril, and the binding is driven by aromatic interactions. Crenezumab can recognize the N-terminal region, as well as the cross-section of the Aβ1-40 fibril, indicating its multiple binding modes in Aβ fibril recognition. These results demonstrate conformation-dependent interactions of antibody-amyloid recognition.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Jun Zhao
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
50
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|