1
|
Crowell HL, Nagesan RS, Davis Rabosky AR, Kolmann MA. Differential performance of aqueous- and ethylic-Lugol's iodine stain to visualize anatomy in μCT-scanned vertebrates. J Anat 2025; 246:678-684. [PMID: 39323056 PMCID: PMC11996703 DOI: 10.1111/joa.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Museum specimens are an increasingly important tool for studying global biodiversity. With the advent of diffusible iodine-based contrast-enhanced computed tomography (diceCT), researchers can now visualize an organism's internal soft tissue anatomy without the need for physical dissection or other highly destructive sampling methods. However, there are many considerations when deciding which method of staining to use for diceCT to produce the best gray-scale contrast for facilitating downstream anatomical analyses. The general lack of direct comparisons among staining methodologies can make it difficult for researchers to determine which approaches are most appropriate for their study. Here, we compare the performance of ethylic-Lugol's iodine solution with aqueous-Lugol's staining solution across several vertebrate orders to assess differential imaging outcomes. We found that ethylic-Lugol's is better for visualizing muscle attachment to bone but provides overall lower contrast between soft tissue types. Comparatively, aqueous-based Lugol's provides high-contrast imaging among soft tissue types, although bone is more difficult to discern. We conclude that the choice of staining methodology largely depends on the type of anatomical data the researcher wishes to collect, and we provide a decision-based framework for assessing which staining methodology (ethylic or aqueous) is most appropriate for desired imaging results.
Collapse
Affiliation(s)
- Hayley L. Crowell
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ramon S. Nagesan
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Alison R. Davis Rabosky
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew A. Kolmann
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
2
|
Ahn EJ, Kim KW. Specimen preparation for X-ray micro-computed tomography of forest pests. Appl Microsc 2025; 55:3. [PMID: 40172758 PMCID: PMC11965078 DOI: 10.1186/s42649-025-00108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
X-ray micro-computed tomography (XCT) is an X-ray-based three-dimensional (3D) imaging technique that enables non-destructive imaging of both external and internal structures. It is widely used for studying biological specimens such as animals and plants. In this review, we discuss various specimen preparation methods for the technique, particularly focusing on forest pests, with six representative cases. Specimen preparation methods for forest pests can be broadly categorized into three groups based on mounting types: (i) simple mounting, (ii) liquid-cell mounting, and (iii) dry-cell mounting. The simple mounting method is particularly suitable for adult beetles due to their exoskeleton. The dehydration process minimizes specimen movement during scanning, ensuring better imaging quality. In the case of liquid-cell mounting, the specimen is immersed in a liquid medium for scanning, which effectively preserves the soft tissues of larvae and pupae. The dry-cell mounting does not involve fixation or dehydration and is particularly useful for analyzing immobilized specimens. To enhance the quality of 3D images, selecting an appropriate preparation method is essential. Since forest pests display varying sizes and types, the choice of preparation method should be based on the specific characteristics of the specimens of interest and research objectives. This review provides valuable insights for researchers and practitioners seeking to identify the most suitable and effective mounting method for XCT scanning of forest pests.
Collapse
Affiliation(s)
- Eun Jung Ahn
- Department of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Republic of Korea
- Animal & Plant Research Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Ki Woo Kim
- Department of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Republic of Korea.
- Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
3
|
Penna‐Gonçalves V, Willmott NJ, Kelly MBJ, Black JR, Lowe EC, Herberstein ME. Comparing microCT Staining and Scanning Methodology for Brain Studies in Various Sizes of Spiders. J Comp Neurol 2025; 533:e70017. [PMID: 39833126 PMCID: PMC11937621 DOI: 10.1002/cne.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in microCT are facilitating the investigation of microstructures in spiders and insects leading to an increased number of studies investigating their neuroanatomy. Although microCT is a powerful tool, its effectiveness depends on appropriate tissue preparation and scan settings, particularly for soft, non-sclerotized tissues, such as muscles, organs, and neural tissues. As the application of microCT in spiders is only in its infancy, published protocols are often difficult to implement due to substantial size variation of the specimens. The present study was initiated to determine how to account for this variation. Our work builds on previous methods using microCT to image spider brains, with the aim to consolidate current knowledge and reduce time spent troubleshooting appropriate methodology, thereby facilitating future studies of spiders and their central nervous systems (CNS). We tested three different preparation and imaging techniques based on published protocols with minor modifications using 216 spiders with prosoma lengths ranging from 1.25 mm (small spiders) to 13.33 mm (large spiders). We compared the efficacy of the various specimen preparations, staining methods, and scan settings by categorizing the quality of dorsal and lateral microCT scans. We observed that only the phosphotungstic acid (PTA) staining agent resulted in complete staining of the prosoma and the CNS, allowing the CNS structures to be distinguished for small, medium, and large spiders. The use of image averaging, increased number of projections, image exposure timing, and detector binning did not greatly affect image quality for small and larger spiders but reduced noise. These settings did help improve image quality for medium spiders in conjunction with higher resolutions and an aluminum filter. We discussed the suitability of methods concerning spider size, effort, chemical risk, and image quality.
Collapse
Affiliation(s)
| | | | - Michael B. J. Kelly
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Jay R. Black
- School of Geography, Earth and Atmospheric SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Elizabeth C. Lowe
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
| | - Marie E. Herberstein
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Department of BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
4
|
Macrì S, Di-Poï N. The SmARTR pipeline: A modular workflow for the cinematic rendering of 3D scientific imaging data. iScience 2024; 27:111475. [PMID: 39720527 PMCID: PMC11667014 DOI: 10.1016/j.isci.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Advancements in noninvasive surface and internal imaging techniques, along with computational methods, have revolutionized 3D visualization of organismal morphology-enhancing research, medical anatomical analysis, and facilitating the preservation and digital archiving of scientific specimens. We introduce the SmARTR pipeline (Small Animal Realistic Three-dimensional Rendering), a comprehensive workflow integrating wet lab procedures, 3D data acquisition, and processing to produce photorealistic scientific data through 3D cinematic rendering. This versatile pipeline supports multiscale visualizations-from tissue-level to whole-organism details across diverse living organisms-and is adaptable to various imaging sources. Its modular design and customizable rendering scenarios, enabled by the global illumination modeling and programming modules available in the free MeVisLab software and seamlessly integrated into detailed SmARTR networks, make it a powerful tool for 3D data analysis. Accessible to a broad audience, the SmARTR pipeline serves as a valuable resource across multiple life science research fields and for education, diagnosis, outreach, and artistic endeavors.
Collapse
Affiliation(s)
- Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Yi KH, Lee HJ, Lee JH. Micro-CT study of human laryngeal structures using phosphotungstic agent staining. Surg Radiol Anat 2024; 46:1929-1935. [PMID: 39503882 DOI: 10.1007/s00276-024-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Traditional dissection methods are primarily limited by challenges in identifying minute structures, which can lead to irreversible tissue damage. Anatomical observation of the larynx is particularly challenging in educational and clinical settings owing to its microscopic structures and complex three-dimensional (3D) nature, making it difficult to dissect. Therefore, this study aimed to demonstrate that micro-computed tomography (micro-CT) imaging of the larynx can serve as an effective alternative for educational and clinical purposes, overcoming these limitations. METHODS Three laryngeal specimens were obtained from cadavers, stained with a phosphotungstic acid-based contrast agent, and imaged using enhanced micro-CT. The resulting images were reconstructed in three dimensions, allowing for a detailed 3D observation of the specimens. RESULTS Phosphotungstic contrast-enhanced micro-CT provided comprehensive anatomical information on laryngeal structures, including muscles, nerves, arteries, and vocal folds. CONCLUSION This study demonstrates the high effectiveness of micro-CT in producing detailed structural images of the larynx, enabling 3D observation of even the smallest anatomical structures. These images can be applied in both educational and clinical settings to analyze the human larynx, effectively overcoming the limitations of traditional dissection methods. This approach facilitates the analysis of laryngeal structures that are otherwise difficult to observe with the naked eye.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Maylin Clinic (Apgujeong), Seoul, Republic of Korea
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyung-Jin Lee
- Department of Anatomy, CHA University School of Medicine, 335 Pangyo-ro, Seongnam, 13448, Republic of Korea
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, 1332, Seongnam-daero, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
6
|
Chapuis L, Andres CS, Gerneke DA, Radford CA. Bioimaging marine crustacean brain: quantitative comparison of micro-CT preparations in an Alpheid snapping shrimp. Front Neurosci 2024; 18:1428825. [PMID: 39659887 PMCID: PMC11628493 DOI: 10.3389/fnins.2024.1428825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Non-invasive bioimaging techniques like X-ray micro-computed tomography (μCT), combined with contrast-enhancing techniques, allow the 3D visualization of the central nervous system in situ, without the destruction of the sample. However, quantitative comparisons of the most common fixation and contrast-enhancing protocols are rare, especially in marine invertebrates. Using the snapping shrimp (Alpheus richardsoni) as a model, we test three common fixation and staining agents combinations to prepare specimens prior to μCT scanning. The contrast ratios of the resulting images are then quantitatively compared. Our results show that a buffered iodine solution on a specimen fixed with 10% formalin offers the best nervous tissue discriminability. This optimal combination allows a semi-automated segmentation of the central nervous system organs from the μCT images. We thus provide general guidance for μCT applications, particularly suitable for marine crustaceans. Species-specific morphological adaptations can then be characterized and studied in the context of evolution and behavioral ecology.
Collapse
Affiliation(s)
- Lucille Chapuis
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Cara-Sophia Andres
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Dane A. Gerneke
- Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Craig A. Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
7
|
Ngu MS, Vanselow DJ, Sugarman AL, Saint-Fort RA, Zaino CR, Yakovlev MA, Cheng KC, Ang KC. Staining and resin embedding of whole Daphnia magna samples for micro-CT imaging enabling 3D visualization of cells, tissues, and organs. PLoS One 2024; 19:e0313389. [PMID: 39514482 PMCID: PMC11548835 DOI: 10.1371/journal.pone.0313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Micro-CT imaging is a powerful tool for generating high-resolution, isotropic, three-dimensional datasets of whole, centimeter-scale model organisms. At histological resolutions, micro-CT can be used for whole-animal qualitative and quantitative characterization of tissue and organismal structure in health and disease. The small size, global freshwater distribution, wide range of cell size and structures of micron scale, and common use of Daphnia magna in toxicological and environmental studies make it an ideal model for demonstrating the potential power of micro-CT-enabled whole-organism phenotyping. This protocol details the steps involved in D. magna samples preparation for micro-CT, including euthanasia, fixation, staining, and resin embedding. Micro-CT reconstructions of samples imaged using synchrotron micro-CT reveal histological (microanatomic) features of organ systems, tissues, and cells in the context of the entire organism at sub-micron resolution and in 3D. The enabled "3D histology" and 3D renderings can be used for morphometric analyses across cells, tissues, and organ systems.
Collapse
Affiliation(s)
- Mee S. Ngu
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Daniel J. Vanselow
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Andrew L. Sugarman
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachelle A. Saint-Fort
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Carolyn R. Zaino
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Maksim A. Yakovlev
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Keith C. Cheng
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Institute for Computational and Data Sciences, Pennsylvania State University, State College, Pennsylvania, United States of America
- Molecular and Precision Medicine Program, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Khai C. Ang
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
8
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Hildebrand T, Novak J, Nogueira LP, Boccaccini AR, Haugen HJ. Durability assessment of hydrogel mountings for contrast-enhanced micro-CT. Micron 2023; 174:103533. [PMID: 37660476 DOI: 10.1016/j.micron.2023.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Micro-computed tomography (micro-CT) provides valuable data for studying soft tissue, though it is often affected by sample movement during scans and low contrast in X-ray absorption. This can result in lower image quality and geometric inaccuracies, collectively known as 'artefacts'. To mitigate these issues, samples can be embedded in hydrogels and enriched with heavy metals for contrast enhancement. However, the long-term durability of these enhancements remains largely unexplored. In this study, we examine the effects of two contrast enhancement agents - iodine and phosphotungstic acid (PTA) - and two hydrogels - agarose and Poloxamer 407 - over a 14-day period. We used Drosophila melanogaster as a test model for our investigation. Our findings reveal that PTA and agarose are highly durable, while iodine and poloxamer hydrogel exhibits higher leakage rates. These observations lay the foundation for estimating contrast stabilities in contrast-enhanced micro-CT with hydrogel embedding and serve to inform future research in this field.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway.
| | - Jan Novak
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway; Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Aldo Roberto Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
10
|
Clark EG, Cornara D, Brodersen CR, McElrone AJ, Parkinson DY, Almeida RPP. Anatomy of an agricultural antagonist: Feeding complex structure and function of three xylem sap-feeding insects illuminated with synchrotron-based 3D imaging. J Morphol 2023; 284:e21639. [PMID: 37708508 DOI: 10.1002/jmor.21639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Many insects feed on xylem or phloem sap of vascular plants. Although physical damage to the plant is minimal, the process of insect feeding can transmit lethal viruses and bacterial pathogens. Disparities between insect-mediated pathogen transmission efficiency have been identified among xylem sap-feeding insects; however, the mechanistic drivers of these trends are unclear. Identifying and understanding the structural factors and associated integrated functional components that may ultimately determine these disparities are critical for managing plant diseases. Here, we applied synchrotron-based X-ray microcomputed tomography to digitally reconstruct the morphology of three xylem sap-feeding insect vectors of plant pathogens: Graphocephala atropunctata (blue-green sharpshooter; Hemiptera, Cicadellidae) and Homalodisca vitripennis (glassy-winged sharpshooter; Hemiptera, Cicadellidae), and the spittlebug Philaenus spumarius (meadow spittlebug; Hemiptera, Aphrophoridae). The application of this technique revealed previously undescribed anatomical features of these organisms, such as key components of the salivary complex. The visualization of the 3D structure of the precibarial valve led to new insights into the mechanism of how this structure functions. Morphological disparities with functional implications between taxa were highlighted as well, including the morphology and volume of the cibarial dilator musculature responsible for extracting xylem sap, which has implications for force application capabilities. These morphological insights will be used to target analyses illuminating functional differences in feeding behavior.
Collapse
Affiliation(s)
- Elizabeth G Clark
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Daniele Cornara
- Department of Soil, Plant, and Food Sciences (DiSSPA), University of Bari, Bari, Italy
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | | | - Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
11
|
Yi KH, Lee S, Lee JH, Lee HJ. Observation of Anatomical Structures in the Human Larynx Using Micro-Computed Tomography with Lugol's Solution Enhancement. Diagnostics (Basel) 2023; 13:3005. [PMID: 37761372 PMCID: PMC10530111 DOI: 10.3390/diagnostics13183005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Histological and naked-eye dissections are frequently used to investigate human anatomy. However, limitations of conventional methods include tissue damage and difficulty in observing structures, rendering findings limited. Micro-computed tomography (micro-CT) allows for a three-dimensional observation with whole-mount staining for contrast enhancement. A precise anatomical understanding of the larynx is essential for both the medical and surgical fields; however, the larynx is difficult to dissect because of its minuscule and complex structures. Therefore, we aimed to clarify the detailed anatomy of the larynx using micro-CT. The study was conducted on twelve specimens of cadavers using Lugol-based-contrast micro-CT. Using Lugol-micro-CT, relevant information on human structures was obtained. Consequently, we successfully employed the Lugol-micro-CT technique in the analysis of specific human soft tissue structures that are challenging to analyze using conventional methods.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOURProject, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea;
- Maylin Clinic (Apgujeong), Seoul 07335, Republic of Korea
| | - Siyun Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA;
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyung-Jin Lee
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Scherberich J, Windfelder AG, Krombach GA. Analysis of fixation materials in micro-CT: It doesn't always have to be styrofoam. PLoS One 2023; 18:e0286039. [PMID: 37315002 DOI: 10.1371/journal.pone.0286039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Good fixation of filigree specimens for micro-CT examinations is often a challenge. Movement artefacts, over-radiation or even crushing of the specimen can easily occur. Since different specimens have different requirements, we scanned, analysed and compared 19 possible fixation materials under the same conditions in the micro-CT. We focused on radiodensity, porosity and reversibility of these fixation materials. Furthermore, we have made sure that all materials are cheap and easily available. The scans were performed with a SkyScan 1173 micro-CT. All dry fixation materials tested were punched into 5 mm diameter cylinders and clamped into 0.2 ml reaction vessels. A voxel size of 5.33 μm was achieved in a 180° scan in 0.3° steps. Ideally, fixation materials should not be visible in the reconstructed image, i.e., barely binarised. Besides common micro-CT fixation materials such as styrofoam (-935 Hounsfield Units) or Basotect foam (-943 Hounsfield Units), polyethylene air cushions (-944 Hounsfield Units), Micropor foam (-926 Hounsfield Units) and polyurethane foam, (-960 Hounsfield Units to -470 Hounsfield Units) have proved to be attractive alternatives. Furthermore, more radiopaque materials such as paraffin wax granulate (-640 Hounsfield Units) and epoxy resin (-190 Hounsfield Units) are also suitable as fixation materials. These materials often can be removed in the reconstructed image by segmentation. Sample fixations in the studies of recent years are almost all limited to fixation in Parafilm, Styrofoam, or Basotect foam if the fixation type is mentioned at all. However, these are not always useful, as styrofoam, for example, dissolves in some common media such as methylsalicylate. We show that micro-CT laboratories should be equipped with various fixation materials to achieve high-level image quality.
Collapse
Affiliation(s)
- Jan Scherberich
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| | - Anton G Windfelder
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Hesse, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| |
Collapse
|
13
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
- Benedikt Geier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Pediatrics and Infectious Diseases, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Esther Gil-Mansilla
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Life Science Mass Spectrometry, Bremen 28359, Germany
- MALDI Imaging Lab, University of Bremen, Bremen 28359, Germany
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Metabolomics, Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
14
|
Ando N, Kono T, Ogihara N, Nakamura S, Yokota H, Kanzaki R. Modeling the musculoskeletal system of an insect thorax for flapping flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:066010. [PMID: 36044880 DOI: 10.1088/1748-3190/ac8e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Indirect actuation of the wings via thoracic deformation is a unique mechanism widely observed in flying insect species. The physical properties of the thorax have been intensively studied in terms of their ability to efficiently generate wingbeats. The basic mechanism of indirect wing actuation is generally explained as a lever model on a cross-sectional plane, where the dorsoventral movement of the mesonotum (dorsal exoskeleton of the mesothorax) generated by contractions of indirect muscles actuates the wing. However, the model considers the mesonotum as an ideal flat plane, whereas the mesonotum is hemispherical and becomes locally deformed during flight. Furthermore, the conventional model is two-dimensional; therefore, three-dimensional wing kinematics by indirect muscles have not been studied to date. In this study, we develop structural models of the mesonotum and mesothorax of the hawkmothAgrius convolvuli, reconstructed from serial cross-sectional images. External forces are applied to the models to mimic muscle contraction, and mesonotum deformation and wing trajectories are analyzed using finite element analysis. We find that applying longitudinal strain to the mesonotum to mimic strain by depressor muscle contraction reproduces local deformation comparable to that of the thorax during flight. Furthermore, the phase difference of the forces applied to the depressor and elevator muscles changes the wing trajectory from a figure eight to a circle, which is qualitatively consistent with the tethered flight experiment. These results indicate that the local deformation of the mesonotum due to its morphology and the thoracic deformation via indirect power muscles can modulate three-dimensional wing trajectories.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tokuro Kono
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Rivera-Quiroz FA, Miller JA. Micro-CT visualization of the CNS: Performance of different contrast-enhancing techniques for documenting the spider brain. J Comp Neurol 2022; 530:2474-2485. [PMID: 35598086 PMCID: PMC9540357 DOI: 10.1002/cne.25343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
Abstract
Spider brain and central nervous system (CNS) have remained unexplored, due in part to the difficulty of observing these organs, usually only possible through histological preparations. Recently, internal anatomy studies have been supplemented by the inclusion of X‐ ray micro‐CT. Unmineralized tissue such as the body of invertebrates requires a staining process to enhance tissue X‐ray absorption and improve contrast during observation. Many current protocols are based on iodine staining requiring critical point drying (CPD) of the sample for optimal contrast. This process induces shrinking of the soft tissue generating artifacts in the morphology, volume, and even position of internal structures. Phosphotungstic acid (PTA) is an alternative staining agent recently used in marine invertebrate and plant studies. Here, we used several specimens of the common spider Araneus diadematus to visualize the spider brain and compare both contrast‐enhancing ethanol‐based solutions. We assessed a gradient of staining times, observed and tested the repercussions of CPD, and examined the use of vacuum to accelerate PTA diffusion. We show that PTA provides the best contrast on micro‐CT scans in ethanol eliminating the need for CPD, and offering more realistic in situ visualizations of the internal organs. In combination with different scanning settings, PTA allowed observation of internal organs like the CNS, digestive system, muscles, and finer structures like the retina, visual nerves, and optic neuropiles. This fast and less invasive method could facilitate the proper documentation of the internal anatomy in the context of evolutionary, developmental and functional studies.
Collapse
Affiliation(s)
- Francisco Andres Rivera-Quiroz
- Understanding Evolution Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute for Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Jeremy A Miller
- Understanding Evolution Research Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Wang Y, Hou Y, Wang M, Wang Y, Xu W, Zhang Y, Wang J. Intrapuparial Development and Age Estimation of Calliphora grahami (Diptera: Calliphoridae) for Postmortem Interval Estimation. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:454-466. [PMID: 35048986 DOI: 10.1093/jme/tjab224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 06/14/2023]
Abstract
Calliphora grahami (Aldrich, 1930) (Diptera: calliphoridae) is a forensically important blow fly that is widely distributed across Asia, North America, Russia, and Mexico. Calliphora grahami is frequently found on corpses during the spring, autumn, and winter seasons. It is among the early colonizers of cadavers during the cold season, and sometimes, the only necrophagous blow fly on cadavers. Therefore, this species is of forensic significance, although very few studies have explored the application of its intrapuparial age for PMI estimation. This study aimed to examine the intrapuparial development of C. grahami and establish a method for estimating its intrapuparial age. Herein, the C. grahami puparia were studied under six different temperatures (13, 16, 19, 22, 25, and 28°C) for the intrapuparial age estimation, and a total of 5776 puparia were sampled. The morphological changes were divided into 11 stages based on the 1) development of legs and wings, 2) differentiation of the head, thorax, and abdomen, 3) growth and color of the bristles, and 4) color changes of the compound eyes. The corresponding time of each stage was determined. Moreover, the observation and classification of individual morphological features, including compound eyes, antennae, mouthparts, thorax, abdomen, legs, and wings was used to improve the precision of intrapuparial age estimation. The findings of this study provide important information on the use of C. grahami intrapuparia to estimate the minimum postmortem interval (PMImin).
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yiding Hou
- Criminal Police Branch, Suzhou Public Security Bureau, Renmin Road, Suzhou, China
| | - Man Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Wang Xu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yanan Zhang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Jiangfeng Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| |
Collapse
|
17
|
Old Brains in Alcohol: The Usability of Legacy Collection Material to Study the Spider Neuroarchitecture. DIVERSITY 2021. [DOI: 10.3390/d13110601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural history collections include rare and significant taxa that might otherwise be unavailable for comparative studies. However, curators must balance the needs of current and long-term research. Methods of data extraction that minimize the impact on specimens are therefore favored. Micro-CT has the potential to expose new character systems based on internal anatomy to taxonomic and phylogenetic analysis without dissection or thin sectioning for histology. However, commonly applied micro-CT protocols involve critical point drying, which permanently changes the specimen. Here, we apply a minimally destructive method of specimen preparation for micro-CT investigation of spider neuroanatomy suitable for application to legacy specimens in natural history collections. We used two groups of female spiders of the common species Araneus diadematus—freshly captured (n = 11) vs. legacy material between 70 and 90 years old (n = 10)—to qualitatively and quantitatively assess the viability of micro-CT scanning and the impact of aging on their neuroarchitecture. We statistically compared the volumes of the supraesophageal ganglion (syncerebrum) and used 2D geometric morphometrics to analyze variations in the gross shape of the brain. We found no significant differences in the brain shape or the brain volume relative to the cephalothorax size. Nonetheless, a significant difference was observed in the spider size. We considered such differences to be explained by environmental factors rather than preservation artifacts. Comparison between legacy and freshly collected specimens indicates that museum specimens do not degrade over time in a way that might bias the study results, as long as the basic preservation conditions are consistently maintained, and where lapses in preservation have occurred, these can be identified. This, together with the relatively low-impact nature of the micro-CT protocol applied here, could facilitate the use of old, rare, and valuable material from collections in studies of internal morphology.
Collapse
|
18
|
Martín-Vega D, Wicklein M, Simonsen TJ, Garbout A, Ahmed F, Hall MJ. Anatomical reconfiguration of the optic lobe during metamorphosis in the blow fly Calliphora vicina (Diptera: Calliphoridae) revealed by X-ray micro-computed tomography. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Schoborg TA. Whole Animal Imaging of Drosophila melanogaster using Microcomputed Tomography. J Vis Exp 2020. [PMID: 32955492 DOI: 10.3791/61515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biomedical imaging tools permit investigation of molecular mechanisms across spatial scales, from genes to organisms. Drosophila melanogaster, a well-characterized model organism, has benefited from the use of light and electron microscopy to understand gene function at the level of cells and tissues. The application of imaging platforms that allow for an understanding of gene function at the level of the entire intact organism would further enhance our knowledge of genetic mechanisms. Here a whole animal imaging method is presented that outlines the steps needed to visualize Drosophila at any developmental stage using microcomputed tomography (µ-CT). The advantages of µ-CT include commercially available instrumentation and minimal hands-on time to produce accurate 3D information at micron-level resolution without the need for tissue dissection or clearing methods. Paired with software that accelerate image analysis and 3D rendering, detailed morphometric analysis of any tissue or organ system can be performed to better understand mechanisms of development, physiology, and anatomy for both descriptive and hypothesis testing studies. By utilizing an imaging workflow that incorporates the use of electron microscopy, light microscopy, and µ-CT, a thorough evaluation of gene function can be performed, thus furthering the usefulness of this powerful model organism.
Collapse
|
21
|
Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Aristovich K, Perkins J, Shearing PR, Holder D. MicroCT optimisation for imaging fascicular anatomy in peripheral nerves. J Neurosci Methods 2020; 338:108652. [PMID: 32179090 PMCID: PMC7181190 DOI: 10.1016/j.jneumeth.2020.108652] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Due to the lack of understanding of the fascicular organisation, vagus nerve stimulation (VNS) leads to unwanted off-target effects. Micro-computed tomography (microCT) can be used to trace fascicles from periphery and image fascicular anatomy. NEW METHOD In this study, we present a simple and reproducible method for imaging fascicles in peripheral nerves with iodine staining and microCT for the determination of fascicular anatomy and organisation. RESULTS At the determined optimal pre-processing steps and scanning parameters, the microCT protocol allowed for segmentation and tracking of fascicles within the nerves. This was achieved after 24 hours and 120 hours of staining with Lugol's solution (1% total iodine) for rat sciatic and pig vagus nerves, respectively, and the following scanning parameters: 4 μm voxel size, 35 kVp energy, 114 μA current, 4 W power, 0.25 fps in 4 s exposure time, 3176 projections and a molybdenum target. COMPARISON WITH EXISTING METHOD(S) This optimised method for imaging fascicles provides high-resolution, three-dimensional images and full imaging penetration depth not obtainable with methods typically used such as histology, magnetic resonance imaging and optical coherence tomography whilst obviating time-consuming pre-processing methods, the amount of memory required, destruction of the samples and the cost associated with current microCT methods. CONCLUSION The optimised microCT protocol facilitates segmentation and tracking of the fascicles within the nerve. The resulting segmentation map of the functional anatomical organisation of the vagus nerve will enable selective VNS ultimately allowing for the avoidance of the off-target effects and improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Enrico Ravagli
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Kirill Aristovich
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Justin Perkins
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, United Kingdom
| | - Paul R Shearing
- Electrochemical Innovation Lab, Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David Holder
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
22
|
Schoborg TA, Smith SL, Smith LN, Morris HD, Rusan NM. Micro-computed tomography as a platform for exploring Drosophila development. Development 2019; 146:dev.176685. [PMID: 31722883 DOI: 10.1242/dev.176685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of a bnormal spindle (asp) and WD repeat domain 62 (W dr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.
Collapse
Affiliation(s)
- Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Douglas Morris
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Lesciotto KM, Motch Perrine SM, Kawasaki M, Stecko T, Ryan TM, Kawasaki K, Richtsmeier JT. Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice. Dev Dyn 2019; 249:573-585. [PMID: 31736206 DOI: 10.1002/dvdy.136] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the need for descriptive and increasingly mechanistic morphological analyses, contrast-enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro-level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA-enhanced microCT. RESULTS Our protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution. CONCLUSION These protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Mizuho Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Timothy Stecko
- Center for Quantitative Imaging, Pennsylvania State University, University Park, Pennsylvania
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
24
|
Hall MJR, Martín-Vega D. Visualization of insect metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190071. [PMID: 31438819 DOI: 10.1098/rstb.2019.0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metamorphosis and, in particular, holometaboly, the development of organisms through a series of discrete stages (egg, larva, pupa, adult) that hardly resemble one another but are finely adapted to specific roles in the life cycle of the organism, has fascinated and mystified humans throughout history. However, it can be difficult to visualize the dramatic changes that occur during holometaboly without destructive sampling, traditionally through histology. However, advances in imaging technologies developed mainly for medical sciences have been applied to studies of insect metamorphosis over the past couple of decades. These include micro-computed tomography, magnetic resonance imaging and optical coherence tomography. A major advantage of these techniques is that they are rapid and non-destructive, enabling virtual dissection of an organism in any plane by anyone who has access to the image files and the necessary software. They can also be applied in some cases to visualize metamorphosis in vivo, including the periods of most rapid and dramatic morphological change. This review focusses on visualizing the intra-puparial holometabolous metamorphosis of cyclorraphous flies (Diptera), including the primary model organism for all genetic investigations, Drosophila melanogaster, and the blow flies of medical, veterinary and forensic importance, but also discusses similar studies on other insect orders. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Martin J R Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Daniel Martín-Vega
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
25
|
Sakurai Y, Ikeda Y. Development of a contrast-enhanced micro computed tomography protocol for the oval squid (Sepioteuthis lessoniana) brain. Microsc Res Tech 2019; 82:1941-1952. [PMID: 31411804 DOI: 10.1002/jemt.23363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/28/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023]
Abstract
Coleoid cephalopods (squid, cuttlefish, and octopus) have a well-developed and complex central nervous system. Its absolute size is the largest among invertebrates, and the brain-to-body mass ratio is larger than that of fish and reptiles and equivalent to that of birds and mammals. Although a number of histological studies have been conducted on the brains of cephalopods, most of them used a light microscope or an electron microscope, which show the microstructure of the brain, but often cannot image the whole brain instantaneously. Of late, micro computed tomography (CT) has gained popularity for imaging animal brains because it allows for noninvasive three-dimensional (3D) reconstruction and preprocessing that are not cumbersome. To perform micro-CT on cephalopod brains, we first tested conditions suitable for preprocessing, paying special attention to staining conditions that would provide high contrast images. Four agents, iodine in 99.5% ethanol, iodine potassium iodide in water (IKI), phosphotungstic acid in 70% ethanol, and nonionic iodinated contrast agent in water, were tested at various concentrations and durations on brain of juvenile oval squid. To evaluate the quality of staining, we calculated the contrast ratio of the two-dimensional (2D) images and compared 3D segmentation of the best and worst 2D images. We concluded that 3% IKI staining for 7 days was the best combination to enhance the images contrast of the oval squid brain, in which each brain lobe was clearly detected and 3D segmentation of the whole brain was possible. The wider applicability of this preprocessing method for micro-CT of the brains of other cephalopods is discussed.
Collapse
Affiliation(s)
- Yuma Sakurai
- Department of Marine and Environmental Sciences, Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Yuzuru Ikeda
- Faculty of Science, Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
26
|
Chaturvedi D, Prabhakar S, Aggarwal A, Atreya KB, VijayRaghavan K. Adult Drosophila muscle morphometry through microCT reveals dynamics during ageing. Open Biol 2019; 9:190087. [PMID: 31238820 PMCID: PMC6597753 DOI: 10.1098/rsob.190087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Sunil Prabhakar
- 2 microCT and EM Facility, National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - Aman Aggarwal
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India.,3 Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India
| | - Krishan B Atreya
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| | - K VijayRaghavan
- 1 National Center for Biological Sciences, TIFR , GKVK Campus, Bellary Road, Bengaluru 560065 , India
| |
Collapse
|
27
|
Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech 2019; 82:812-848. [PMID: 30786098 DOI: 10.1002/jemt.23225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 12/25/2022]
Abstract
X-ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X-ray tomography is widely used for diagnostic purposes whose three-dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X-ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule-based and nanoparticle-based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.
Collapse
Affiliation(s)
- Mümin Mehmet Koç
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom.,Department of Physics, Kirklareli University, Kirklareli, Turkey
| | - Naim Aslan
- Department of Metallurgical and Materials Engineering, Munzur University, Tunceli, Turkey
| | - Alexander P Kao
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Asa H Barber
- School of Engineering, London South Bank University, London, United Kingdom
| |
Collapse
|
28
|
Gutiérrez Y, Ott D, Töpperwien M, Salditt T, Scherber C. X-ray computed tomography and its potential in ecological research: A review of studies and optimization of specimen preparation. Ecol Evol 2018; 8:7717-7732. [PMID: 30151184 PMCID: PMC6106166 DOI: 10.1002/ece3.4149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Imaging techniques are a cornerstone of contemporary biology. Over the last decades, advances in microscale imaging techniques have allowed fascinating new insights into cell and tissue morphology and internal anatomy of organisms across kingdoms. However, most studies so far provided snapshots of given reference taxa, describing organs and tissues under "idealized" conditions. Surprisingly, there is an almost complete lack of studies investigating how an organism's internal morphology changes in response to environmental drivers. Consequently, ecology as a scientific discipline has so far almost neglected the possibilities arising from modern microscale imaging techniques. Here, we provide an overview of recent developments of X-ray computed tomography as an affordable, simple method of high spatial resolution, allowing insights into three-dimensional anatomy both in vivo and ex vivo. We review ecological studies using this technique to investigate the three-dimensional internal structure of organisms. In addition, we provide practical comparisons between different preparation techniques for maximum contrast and tissue differentiation. In particular, we consider the novel modality of phase contrast by self-interference of the X-ray wave behind an object (i.e., phase contrast by free space propagation). Using the cricket Acheta domesticus (L.) as model organism, we found that the combination of FAE fixative and iodine staining provided the best results across different tissues. The drying technique also affected contrast and prevented artifacts in specific cases. Overall, we found that for the interests of ecological studies, X-ray computed tomography is useful when the tissue or structure of interest has sufficient contrast that allows for an automatic or semiautomatic segmentation. In particular, we show that reconstruction schemes which exploit phase contrast can yield enhanced image quality. Combined with suitable specimen preparation and automated analysis, X-ray CT can therefore become a promising quantitative 3D imaging technique to study organisms' responses to environmental drivers, in both ecology and evolution.
Collapse
Affiliation(s)
| | - David Ott
- Institute of Landscape EcologyUniversity of MünsterMünsterGermany
| | | | - Tim Salditt
- Institute for X‐Ray PhysicsUniversity of GöttingenGöttingenGermany
| | | |
Collapse
|
29
|
Wang Y, Gu ZY, Xia SX, Wang JF, Zhang YN, Tao LY. Estimating the age of Lucilia illustris during the intrapuparial period using two approaches: Morphological changes and differential gene expression. Forensic Sci Int 2018; 287:1-11. [DOI: 10.1016/j.forsciint.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/26/2023]
|
30
|
Jahn H, Oliveira IDES, Gross V, Martin C, Hipp A, Mayer G, Hammel JU. Evaluation of contrasting techniques for X-ray imaging of velvet worms (Onychophora). J Microsc 2018; 270:343-358. [PMID: 29469207 DOI: 10.1111/jmi.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
Non-invasive imaging techniques like X-ray computed tomography have become very popular in zoology, as they allow for simultaneous imaging of the internal and external morphology of organisms. Nevertheless, the effect of different staining approaches required for this method on samples lacking mineralized tissues, such as soft-bodied invertebrates, remains understudied. Herein, we used synchrotron radiation-based X-ray micro-computed tomography to compare the effects of commonly used contrasting approaches on onychophorans - soft-bodied invertebrates important for studying animal evolution. Representatives of Euperipatoides rowelli were stained with osmium tetroxide (vapour or solution), ruthenium red, phosphotungstic acid, or iodine. Unstained specimens were imaged using both standard attenuation-based and differential phase-contrast setups to simulate analyses with museum material. Our comparative qualitative analyses of several tissue types demonstrate that osmium tetroxide provides the best overall tissue contrast in onychophorans, whereas the remaining staining agents rather favour the visualisation of specific tissues and/or structures. Quantitative analyses using signal-to-noise ratio measurements show that the level of image noise may vary according to the staining agent and scanning medium selected. Furthermore, box-and-whisker plots revealed substantial overlap in grey values among structures in all datasets, suggesting that a combination of semiautomatic and manual segmentation of structures is required for comprehensive 3D reconstructions of Onychophora, irrespective of the approach selected. Our results show that X-ray micro-computed tomography is a promising technique for studying onychophorans and, despite the benefits and disadvantages of different staining agents for specific tissues/structures, this method retrieves informative data that may eventually help address evolutionary questions long associated with Onychophora.
Collapse
Affiliation(s)
- Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Ivo DE Sena Oliveira
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.,Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vladimir Gross
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Alexander Hipp
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.,Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
31
|
Peterson T, Müller GB. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation. PLoS One 2018; 13:e0189985. [PMID: 29320528 PMCID: PMC5761836 DOI: 10.1371/journal.pone.0189985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/06/2017] [Indexed: 01/31/2023] Open
Abstract
Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution.
Collapse
Affiliation(s)
- Tim Peterson
- Department of Theoretical Biology, University of Vienna, Wien, Austria
- * E-mail:
| | - Gerd B. Müller
- Department of Theoretical Biology, University of Vienna, Wien, Austria
- The KLI Institute, Klosterneuburg, Austria
| |
Collapse
|
32
|
Martín-Vega D, Simonsen TJ, Wicklein M, Hall MJR. Age estimation during the blow fly intra-puparial period: a qualitative and quantitative approach using micro-computed tomography. Int J Legal Med 2017; 131:1429-1448. [PMID: 28474172 PMCID: PMC5556140 DOI: 10.1007/s00414-017-1598-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Minimum post-mortem interval (minPMI) estimates often rely on the use of developmental data from blow flies (Diptera: Calliphoridae), which are generally the first colonisers of cadavers and, therefore, exemplar forensic indicators. Developmental data of the intra-puparial period are of particular importance, as it can account for more than half of the developmental duration of the blow fly life cycle. During this period, the insect undergoes metamorphosis inside the opaque, barrel-shaped puparium, formed by the hardening and darkening of the third instar larval cuticle, which shows virtually no external changes until adult emergence. Regrettably, estimates based on the intra-puparial period are severely limited due to the lack of reliable, non-destructive ageing methods and are frequently based solely on qualitative developmental markers. In this study, we use non-destructive micro-computed tomography (micro-CT) for (i) performing qualitative and quantitative analyses of the morphological changes taking place during the intra-puparial period of two forensically relevant blow fly species, Calliphora vicina and Lucilia sericata, and (ii) developing a novel and reliable method for estimating insect age in forensic practice. We show that micro-CT provides age-diagnostic qualitative characters for most 10% time intervals of the total intra-puparial period, which can be used over a range of temperatures and with a resolution comparable to more invasive and time-consuming traditional imaging techniques. Moreover, micro-CT can be used to yield a quantitative measure of the development of selected organ systems to be used in combination with qualitative markers. Our results confirm micro-CT as an emerging, powerful tool in medico-legal investigations.
Collapse
Affiliation(s)
- Daniel Martín-Vega
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | | | - Martina Wicklein
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Martin J R Hall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|