1
|
Zhang L, Lin Y, Hu L, Wang Y, Hu C, Shangguan X, Tang S, Chen J, Hu P, Chen ZS, Ke ZF, Chen Z. Transient intracellular expression of PD-L1 and VEGFR2 bispecific nanobody in cancer cells inspires long-term T cell activation and infiltration to combat tumor and inhibit cancer metastasis. Mol Cancer 2025; 24:119. [PMID: 40253320 PMCID: PMC12008900 DOI: 10.1186/s12943-025-02253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND PD-L1, an immune checkpoint inhibitor, and VEGFR2, essential for cancer metastasis, play pivotal roles in tumorigenesis. However, their miniature bispecific intracellular nanobodies for combining check-point blockade and anti-metastasis anticancer therapy remain underexplored. METHODS The intrabodies were developed using gene cloning technology. Specificity of the intrabodies was testified using Western blot, co-immunoprecipitation (co-IP) analysis, antibody competitive binding assay, flow cytometry analysis, etc. Checkpoint blockade was demonstrated using antibody-antigen competitive binding assay. Cancer cell migration was determined using scratch assay. Combined anti-cancer therapeutic efficacy of FAP1V2 was determined in vivo of mice models. The PD-1hi immune cells, TCR βhi and CD25hi T-cells were analyzed by flow cytometry, and cancer cell metastasis was performed using immune-fluorescence analysis on lung and liver tissues. Transcriptome analysis was performed to explore signaling pathways associated with the enhanced anticancer efficiency. RESULTS Bispecific intrabody FAP1V2 fused with antibody VH regions, was successfully developed and verified with its ability to target and block human and mouse PD-L1 and VEGFR2, inhibiting cancer cell binding to PD-1 and reducing their migratory capacity. Compared to the other treatment, two-rounds of transient FAP1V2 expression in LLC cells in experimental mice models achieved remarkable tumor inhibition, which brought about complete immune inhibition on growth of secondary-round of LLC tumor in 1/6 of the tested mice, inspired long-term activation of TCR βhi T cells and increased their infiltration to tumors, inhibited the emergence of PD-1hi immune cells, indicating prevented T cell depletion. The elevated CD25 expression also supported the success in enhancing immune response reported by elevated T cell activity in spleen. Transcriptome analysis identified critical intracellular pathways regulated by the concurrent blockade of PD-L1 and VEGFR2. CONCLUSION PD-L1 and VEGFR2- bispecific VH intracellular nanobody was highly biocompatible and showed the potential for combined anti-cancer therapy through long-term immune activation mediated by PD-L1/PD-1 checkpoint blockade and anti-metastasis mediated by VEGFR2 blockade.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunfeng Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Shangguan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuzhi Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Ping Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin MD, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Flores-Bringas P, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single-cell resolution. Cell Rep 2025; 44:115091. [PMID: 39709602 PMCID: PMC11781962 DOI: 10.1016/j.celrep.2024.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type. Several cell subtypes were region specific, including a subtype of vascular smooth muscle cells enriched in the large vasculature. We observed tissue-enriched cellular communication networks, including heightened Nppa-Npr1/2/3 signaling in the sinoatrial node. The existence of tissue-restricted cell types suggests regional regulation of cardiovascular physiology. Our detailed transcriptional characterization of each cell type offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amelia W Hall
- Gene Regulation Observatory, The Broad Institute, Cambridge, MA 02142, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Mark D Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Kayla J Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Mark E Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Patrick T Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Xu X, Zhu P, Wang H, Chen K, Liu L, Du L, Jiang L, Hu Y, Zhou X, Zhang B, Pu X, Hu X, Xu Q, Zhang L, Li W. CD34 + PI16 + fibroblast progenitors aggravate neointimal lesions of allograft arteries via CCL11/CCR3-PI3K/AKT pathway. Theranostics 2025; 15:2523-2543. [PMID: 39990233 PMCID: PMC11840720 DOI: 10.7150/thno.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/01/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Transplant-accelerated arteriosclerosis is a common complication that limits the long-term survival of organ transplant recipients. While previous studies have indicated the involvement of CD34+ stem/progenitor cells (SPCs) in this process, their heterogeneity and potential adverse effects remains incompletely understood. Methods: To investigate the role of CD34+ SPCs in transplant arteriosclerosis, we used various genetically modified mouse models, including BALB/c, C57BL/6J, CD34-CreERT2, Rosa26-tdTomato, Rosa26-iDTR, CD34-Dre, PI16-CreERT2, and CAG-LSL-RSR-tdTomato-2A-DTR mice. Single-cell RNA sequencing (scRNA-seq), chemokine antibody microarrays, ELISA assays, and immunohistochemistry were employed to identify fibroblast progenitors and their interactions with smooth muscle cells. Furthermore, in vivo and in vitro experiments targeting the CCL11/CCR3-PI3K/AKT signaling pathway were conducted to assess its role in the pathogenesis of transplant arteriosclerosis. Results: Single-cell RNA-seq and genetic lineage tracing revealed a subpopulation of fibroblast progenitors, characterized by high CD34 and PI16 expression, which differentiated into a distinct chemotactic fibroblast subset. Proteomic and scRNA analysis revealed that this CD34+ PI16- subgroup released CCL11 (Eotaxin-1), which promoted intimal hyperplasia through the paracrine activation of smooth muscle cells. Binding of CCL11 to its receptor CCR3 activated the PI3K/AKT signaling pathway in smooth muscle cells, driving their proliferation and migration. In vivo, overexpression of CCL11 promoted neointimal hyperplasia, while neutralizing CCL11 or inhibiting CCR3 alleviated neointimal formation. Conclusions: These findings identified CD34+ PI16+ fibroblast progenitors that differentiate into specific chemotactic fibroblasts, releasing chemokines pivotal for neointima formation, suggesting a therapeutic strategy targeting their chemotactic activity.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Wang
- School of Engineering and Materials Science, Queen Mary University of London, United Kingdom
| | - Kai Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuhao Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bohuan Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyuan Pu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weidong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Gasek NS, Yan P, Zhu J, Purushothaman KR, Kim T, Wang L, Wang B, Flynn WF, Sun M, Guo C, Huggins B, Sharafieh R, Zhou Y, Parizek V, Tchkonia T, Kirkland JL, Wyles SP, Xu M. Clearance of p21 highly expressing senescent cells accelerates cutaneous wound healing. NATURE AGING 2025; 5:21-27. [PMID: 39537987 DOI: 10.1038/s43587-024-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
While senescent cells have detrimental roles in several contexts, they are highly heterogeneous. p16 highly expressing senescent cells have been reported to exert beneficial functions in wound healing. Here we use Xenium spatial transcriptomics to identify a distinct p21 highly expressing senescent population induced on wounding, with a pro-inflammatory profile. We find that clearing p21 highly expressing cells expedites wound closure and is partially mediated by NF-κB inhibition, thus enhancing our understanding of the multifaceted functions of senescence in tissue remodeling.
Collapse
Affiliation(s)
- Nathan S Gasek
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Pengyi Yan
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Junyu Zhu
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | | | - Taewan Kim
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Lichao Wang
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Binsheng Wang
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mingda Sun
- UConn Center on Aging, UConn Health, Farmington, CT, USA
| | - Chun Guo
- UConn Center on Aging, UConn Health, Farmington, CT, USA
| | - Billy Huggins
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | | | - Yueying Zhou
- UConn Center on Aging, UConn Health, Farmington, CT, USA
- Xiangya Stomatological Hospital, Central South University, Changsha, China
| | | | - Tamar Tchkonia
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James L Kirkland
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Barnett SN, Cujba AM, Yang L, Maceiras AR, Li S, Kedlian VR, Pett JP, Polanski K, Miranda AMA, Xu C, Cranley J, Kanemaru K, Lee M, Mach L, Perera S, Tudor C, Joseph PD, Pritchard S, Toscano-Rivalta R, Tuong ZK, Bolt L, Petryszak R, Prete M, Cakir B, Huseynov A, Sarropoulos I, Chowdhury RA, Elmentaite R, Madissoon E, Oliver AJ, Campos L, Brazovskaja A, Gomes T, Treutlein B, Kim CN, Nowakowski TJ, Meyer KB, Randi AM, Noseda M, Teichmann SA. An organotypic atlas of human vascular cells. Nat Med 2024; 30:3468-3481. [PMID: 39566559 PMCID: PMC11645277 DOI: 10.1038/s41591-024-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
The human vascular system, comprising endothelial cells (ECs) and mural cells, covers a vast surface area in the body, providing a critical interface between blood and tissue environments. Functional differences exist across specific vascular beds, but their molecular determinants across tissues remain largely unknown. In this study, we integrated single-cell transcriptomics data from 19 human organs and tissues and defined 42 vascular cell states from approximately 67,000 cells (62 donors), including angiotypic transitional signatures along the arterial endothelial axis from large to small caliber vessels. We also characterized organotypic populations, including splenic littoral and blood-brain barrier ECs, thus clarifying the molecular profiles of these important cell states. Interrogating endothelial-mural cell molecular crosstalk revealed angiotypic and organotypic communication pathways related to Notch, Wnt, retinoic acid, prostaglandin and cell adhesion signaling. Transcription factor network analysis revealed differential regulation of downstream target genes in tissue-specific modules, such as those of FOXF1 across multiple lung vascular subpopulations. Additionally, we make mechanistic inferences of vascular drug targets within different vascular beds. This open-access resource enhances our understanding of angiodiversity and organotypic molecular signatures in human vascular cells, and has therapeutic implications for vascular diseases across tissues.
Collapse
Affiliation(s)
- Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ana Raquel Maceiras
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shuang Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | - Zewen K Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ioannis Sarropoulos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lia Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
7
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
8
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 PMCID: PMC11787906 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Courtney K. Walker
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology; Queen Square, London, WC1N 3BG, UK
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School; Charlestown, Massachusetts, 02129, USA
| | - David M. Holtzman
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Khoshbakht S, Zomorodi Anbaji F, Darzi M, Esmaeili R. The endogenous association among MMP2/miR-1248/Circ_0087558/miR-643/ MAP2K6 axis can contribute to brain metastasis in basal-like subtype of breast cancer. Heliyon 2024; 10:e33195. [PMID: 39027611 PMCID: PMC11255566 DOI: 10.1016/j.heliyon.2024.e33195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Brain metastasis in basal-like breast cancer poses a significant challenge in cancer management due to its aggressive nature and limited treatment options. This study conducted a comprehensive analysis to explore the potential role of circular RNAs (circRNAs) as members of endogenous networks in developing breast cancer brain metastasis. Here, we utilized RNA sequencing data from primary breast cancer and brain metastasis tissue with basal-like subtype (n = 11). After quality controlling and preprocessing of fastq files, gene expression of mRNA and circRNAs were extracted from matched samples and normalized. Then, we employed the weighted gene co-expression network analysis approach to identify brain metastasis-associated circRNA modules ( S p e a r m a n Correlation > 0.5 , P - value < 0.05 ). Moreover, we found five protein-coding genes of PHLDA1, SLC12A2, MMP2, RGP1, and MAP2K6, significantly upregulated in brain metastatic tissues compared to primary breast cancer ( FDR < 0.05 ). These genes were enriched in the "GnRH signaling pathway" and "Fluid shear stress and atherosclerosis" pathways ( FDR < 0.05 ). Next, to explore the potential interactions between circRNAs and protein-coding genes, we reconstructed a competing endogenous RNA (ceRNA) network using mutual miRNAs between the circRNA module and upregulated mRNAs. Notably, we could detect two axes of circ_0087558/miR-604/MMP2 and MMP2/miR-1248/Circ_0087558/miR-643/MAP2K6 in ceRNA network. In conclusion, the identified circRNA-miRNA-mRNA axes might be therapeutic targets or diagnostic biomarkers for this challenging subtype of breast cancer. However, due to the small number of samples, further experimental validations are essential.
Collapse
Affiliation(s)
- Samane Khoshbakht
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Fatemeh Zomorodi Anbaji
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Cell &Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Darzi
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| |
Collapse
|
10
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
11
|
Selvarajan I, Kiema M, Huang RT, Li J, Zhu J, Pölönen P, Örd T, Õunap K, Godiwala M, Golebiewski AK, Ravindran A, Mäklin K, Toropainen A, Stolze LK, Arce M, Magnusson PU, White S, Romanoski CE, Heinäniemi M, Laakkonen JP, Fang Y, Kaikkonen MU. Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro. Arterioscler Thromb Vasc Biol 2024; 44:1330-1345. [PMID: 38602103 PMCID: PMC11111333 DOI: 10.1161/atvbaha.123.318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Collapse
Affiliation(s)
- Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miika Kiema
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ru-Ting Huang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jin Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayu Zhu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mehvash Godiwala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna Kathryn Golebiewski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Aarthi Ravindran
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kiira Mäklin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stephen White
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Chen Q, Jiang LY, Cao C, Liu FY, Li DR, Wu PF, Jiang KR. Peptidase inhibitor 16 promotes proliferation of pancreatic ductal adenocarcinoma cells through OASL signaling. Mol Carcinog 2024; 63:938-950. [PMID: 38353288 DOI: 10.1002/mc.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis and a 5-year survival rate of less than 11%. As a member of the CAP superfamily of proteins, the role of peptidase inhibitor 16 (Pi16) in tumor progression is still unclear. Immunohistochemistry and quantitative RT-PCR methods were used to detect the expression levels of Pi16 protein and mRNA in PDAC patients. CRISPR/Cas9 technology was used to knock out the expression of Pi16 in PDAC cell lines. In vivo and in vitro experiments were used to verify the effect of Pi16 on PDAC proliferation ability. By RNA sequencing, we found that oligoadenylate synthetase L (OASL) can serve as a potential downstream target of Pi16. The expression of Pi16 was higher in PDAC tissues than in matched adjacent tissues. High expression of Pi16 was associated with PDAC progression and poor prognosis. Overexpression of Pi16 could promote the proliferation of PDAC cells in vitro and in vivo. Bioinformatics analysis and coimmunoprecipitation assays showed that Pi16 could bind to OASL. Moreover, the functional recovery test confirmed that Pi16 could promote the proliferation of PDAC via OASL. Our present study demonstrates that Pi16 might participate in the occurrence and development of PDAC by regulating cell proliferation by binding to OASL, indicating that Pi16 might be a promising novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu-Yang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Cao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng-Yuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Rui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wang F, Gu X, Lin S, Wu Q, Sun Y, Zhang Q, Luo A, Feng X, Wang L, Xu L, Sun W, Tan W. Peptidase inhibitor 16 promotes inflammatory arthritis by suppressing Foxp3 expression via regulating K48-linked ubiquitin degradation Bmi-1 in regulatory T cells. Clin Immunol 2024; 259:109883. [PMID: 38147957 DOI: 10.1016/j.clim.2023.109883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Abnormalities of regulatory T cells (Tregs) has been suggested in rheumatoid arthritis (RA), and Forkhead box P3 (Foxp3) is the key transcriptional factor of Tregs expression. However, the underlying molecular mechanism remains unclear. Here, we demonstrated peptidase inhibitor 16 (PI16) was significantly increased in the peripheral blood, synovial fluid, and synovial tissue from RA patients. PI16 transgenic mice (PI16Tg) aggravated arthritis severity partly through suppressing Foxp3 expression. Mechanistically, PI16 could interact with and stabilize Bmi-1 in Tregs via inhibiting K48-linked polyubiquitin of Bmi-1, which promotes the enrichment of repressive histone mark in Foxp3 promoter. Furthermore, Bmi-1 specific inhibitor PTC209 could restore Foxp3 expression and alleviate arthritis progression in PI16Tg mice, accompanied by increased recruitment of active histone mark in the promoter of Tregs. Our results suggest that PI16-Bmi-1 axis plays an important role in RA and other autoimmune diseases by suppressing Foxp3 expression in Tregs via Bmi-1-mediated histone modification.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Gu
- Department of Cardiology, the Affiliated Hospital of Jiangnan University, Wuxi 214125, China
| | - Shiyu Lin
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Wu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuankai Sun
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Aishu Luo
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, China
| | - Lei Wang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingxiao Xu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wenfeng Tan
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
14
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Salazar-Martín AG, Kalluri AS, Villanueva MA, Hughes TK, Wadsworth MH, Dao TT, Balcells M, Nezami FR, Shalek AK, Edelman ER. Single-Cell RNA Sequencing Reveals That Adaptation of Human Aortic Endothelial Cells to Antiproliferative Therapies Is Modulated by Flow-Induced Shear Stress. Arterioscler Thromb Vasc Biol 2023; 43:2265-2281. [PMID: 37732484 PMCID: PMC10659257 DOI: 10.1161/atvbaha.123.319283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are capable of quickly responding in a coordinated manner to a wide array of stresses to maintain vascular homeostasis. Loss of EC cellular adaptation may be a potential marker for cardiovascular disease and a predictor of poor response to endovascular pharmacological interventions such as drug-eluting stents. Here, we report single-cell transcriptional profiling of ECs exposed to multiple stimulus classes to evaluate EC adaptation. METHODS Human aortic ECs were costimulated with both pathophysiological flows mimicking shear stress levels found in the human aorta (laminar and turbulent, ranging from 2.5 to 30 dynes/cm2) and clinically relevant antiproliferative drugs, namely paclitaxel and rapamycin. EC state in response to these stimuli was defined using single-cell RNA sequencing. RESULTS We identified differentially expressed genes and inferred the TF (transcription factor) landscape modulated by flow shear stress using single-cell RNA sequencing. These flow-sensitive markers differentiated previously identified spatially distinct subpopulations of ECs in the murine aorta. Moreover, distinct transcriptional modules defined flow- and drug-responsive EC adaptation singly and in combination. Flow shear stress was the dominant driver of EC state, altering their response to pharmacological therapies. CONCLUSIONS We showed that flow shear stress modulates the cellular capacity of ECs to respond to paclitaxel and rapamycin administration, suggesting that while responding to different flow patterns, ECs experience an impairment in their transcriptional adaptation to other stimuli.
Collapse
Affiliation(s)
- Antonio G. Salazar-Martín
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
| | - Aditya S. Kalluri
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Martin A. Villanueva
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Departments of Biology (M.A.V.), Massachusetts Institute of Technology, Cambridge
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Tyler T. Dao
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Biological Engineering (T.T.D.), Massachusetts Institute of Technology, Cambridge
| | - Mercedes Balcells
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Farhad R. Nezami
- Division of Cardiac Surgery (F.R.N.), Brigham and Women’s Hospital, Boston, MA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Chemistry (A.K.S.), Massachusetts Institute of Technology, Cambridge
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Division of Cardiovascular Medicine, Department of Medicine (E.R.E.), Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
16
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin M, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567085. [PMID: 38014050 PMCID: PMC10680727 DOI: 10.1101/2023.11.14.567085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Despite the critical role of the cardiovascular system, our understanding of its cellular and transcriptional diversity remains limited. We therefore sought to characterize the cellular composition, phenotypes, molecular pathways, and communication networks between cell types at the tissue and sub-tissue level across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We obtained high quality tissue samples under controlled conditions that reveal a level of cellular detail so far inaccessible in human studies. Methods and Results We performed single nucleus RNA-sequencing in 78 samples in 10 distinct regions including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins (PV), which produced an aggregate map of 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, including a number of rare cell types such as PV cardiomyocytes and non-myelinating Schwann cells (NMSCs), and unique groups of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts (FBs), which gave rise to a detailed cell type distribution across tissues. We demonstrated differences in the cellular composition across different cardiac regions and tissue-specific differences in transcription for each cell type, highlighting the molecular diversity and complex tissue architecture of the cardiovascular system. Specifically, we observed great transcriptional heterogeneities among ECs and FBs. Importantly, several cell subtypes had a unique regional localization such as a subtype of VSMCs enriched in the large vasculature. We found the cellular makeup of PV tissue is closer to heart tissue than to the large arteries. We further explored the ligand-receptor repertoire across cell clusters and tissues, and observed tissue-enriched cellular communication networks, including heightened Nppa - Npr1/2/3 signaling in the sinoatrial node. Conclusions Through a large single nucleus sequencing effort encompassing over 500,000 nuclei, we broadened our understanding of cellular transcription in the healthy cardiovascular system. The existence of tissue-restricted cellular phenotypes suggests regional regulation of cardiovascular physiology. The overall conservation in gene expression and molecular pathways across rat and human cell types, together with our detailed transcriptional characterization of each cell type, offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Stephen J. Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amelia W. Hall
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Mark Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Kayla J. Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 02215
| | - Mark E. Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | | | - Patrick T. Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA 02114
| |
Collapse
|
17
|
Hillberg AK, Smith MK, Lausen BS, Suwansa-ard S, Johnston R, Mitu SA, MacDonald LE, Zhao M, Motti CA, Wang T, Elizur A, Nakashima K, Satoh N, Cummins SF. Crown-of-thorns starfish spines secrete defence proteins. PeerJ 2023; 11:e15689. [PMID: 37637177 PMCID: PMC10448888 DOI: 10.7717/peerj.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
Background The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.
Collapse
Affiliation(s)
- Adam K. Hillberg
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Meaghan K. Smith
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Blake S. Lausen
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Ryan Johnston
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Shahida A. Mitu
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Leah E. MacDonald
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Min Zhao
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
18
|
Satta S, Beal R, Smith R, Luo X, Ferris GR, Langford-Smith A, Teasdale J, Ajime TT, Serré J, Hazell G, Newby GS, Johnson JL, Kurinna S, Humphries MJ, Gayan-Ramirez G, Libby P, Degens H, Yu B, Johnson T, Alexander Y, Jia H, Newby AC, White SJ. A Nrf2-OSGIN1&2-HSP70 axis mediates cigarette smoke-induced endothelial detachment: implications for plaque erosion. Cardiovasc Res 2023; 119:1869-1882. [PMID: 36804807 PMCID: PMC10405570 DOI: 10.1093/cvr/cvad022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/20/2023] Open
Abstract
AIMS Endothelial erosion of plaques is responsible for ∼30% of acute coronary syndromes (ACS). Smoking is a risk factor for plaque erosion, which most frequently occurs on the upstream surface of plaques where the endothelium experiences elevated shear stress. We sought to recreate these conditions in vitro to identify potential pathological mechanisms that might be of relevance to plaque erosion. METHODS AND RESULTS Culturing human coronary artery endothelial cells (HCAECs) under elevated flow (shear stress of 7.5 Pa) and chronically exposing them to cigarette smoke extract (CSE) and tumour necrosis factor-alpha (TNFα) recapitulated a defect in HCAEC adhesion, which corresponded with augmented Nrf2-regulated gene expression. Pharmacological activation or adenoviral overexpression of Nrf2 triggered endothelial detachment, identifying Nrf2 as a mediator of endothelial detachment. Growth/Differentiation Factor-15 (GDF15) expression was elevated in this model, with protein expression elevated in the plasma of patients experiencing plaque erosion compared with plaque rupture. The expression of two Nrf2-regulated genes, OSGIN1 and OSGIN2, was increased by CSE and TNFα under elevated flow and was also elevated in the aortas of mice exposed to cigarette smoke in vivo. Knockdown of OSGIN1&2 inhibited Nrf2-induced cell detachment. Overexpression of OSGIN1&2 induced endothelial detachment and resulted in cell cycle arrest, induction of senescence, loss of focal adhesions and actin stress fibres, and disturbed proteostasis mediated in part by HSP70, restoration of which reduced HCAEC detachment. In ACS patients who smoked, blood concentrations of HSP70 were elevated in plaque erosion compared with plaque rupture. CONCLUSION We identified a novel Nrf2-OSGIN1&2-HSP70 axis that regulates endothelial adhesion, elevated GDF15 and HSP70 as biomarkers for plaque erosion in patients who smoke, and two therapeutic targets that offer the potential for reducing the risk of plaque erosion.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert Beal
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Rhys Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Glenn R Ferris
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Alex Langford-Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Jack Teasdale
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Georgina Hazell
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Graciela Sala Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Jason L Johnson
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Svitlana Kurinna
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Peter Libby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto g. 6, LT-44221 Kaunas, Lithuania
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Thomas Johnson
- Department of Cardiology, Bristol Heart Institute, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Andrew C Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
19
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Garrity R, Arora N, Haque MA, Weis D, Trinh RT, Neerukonda SV, Kumari S, Cortez I, Ubogu EE, Mahalingam R, Tavares-Ferreira D, Price TJ, Kavelaars A, Heijnen CJ, Shepherd AJ. Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206 + myeloid cells. Brain Behav Immun 2023; 112:220-234. [PMID: 37315702 PMCID: PMC10527931 DOI: 10.1016/j.bbi.2023.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.
Collapse
Affiliation(s)
- Rachelle Garrity
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neha Arora
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Md Areeful Haque
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Drew Weis
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ronnie T Trinh
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanjay V Neerukonda
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ibdanelo Cortez
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
21
|
De Martin A, Stanossek Y, Lütge M, Cadosch N, Onder L, Cheng HW, Brandstadter JD, Maillard I, Stoeckli SJ, Pikor NB, Ludewig B. PI16 + reticular cells in human palatine tonsils govern T cell activity in distinct subepithelial niches. Nat Immunol 2023:10.1038/s41590-023-01502-4. [PMID: 37202490 DOI: 10.1038/s41590-023-01502-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/03/2023] [Indexed: 05/20/2023]
Abstract
Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
22
|
Wang L, Du A, Lu Y, Zhao Y, Qiu M, Su Z, Shu H, Shen H, Sun W, Kong X. Peptidase Inhibitor 16 Attenuates Left Ventricular Injury and Remodeling After Myocardial Infarction by Inhibiting the HDAC1-Wnt3a-β-Catenin Signaling Axis. J Am Heart Assoc 2023; 12:e028866. [PMID: 37158154 DOI: 10.1161/jaha.122.028866] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. PI16 (peptidase inhibitor 16), as a secreted protein, is highly expressed in heart diseases such as heart failure. However, the functional role of PI16 in MI is unknown. This study aimed to investigate the role of PI16 after MI and its underlying mechanisms. Methods and Results PI16 levels after MI were measured by enzyme-linked immunosorbent assay and immunofluorescence staining, which showed that PI16 was upregulated in the plasma of patients with acute MI and in the infarct zone of murine hearts. PI16 gain- and loss-of-function experiments were used to investigate the potential role of PI16 after MI. In vitro, PI16 overexpression inhibited oxygen-glucose deprivation-induced apoptosis in neonatal rat cardiomyocytes, whereas knockdown of PI16 exacerbated neonatal rat cardiomyocyte apoptosis. In vivo, left anterior descending coronary artery ligation was performed on PI16 transgenic mice, PI16 knockout mice, and their littermates. PI16 transgenic mice showed decreased cardiomyocyte apoptosis at 24 hours after MI and improved left ventricular remodeling at 28 days after MI. Conversely, PI16 knockout mice showed aggravated infract size and remodeling. Mechanistically, PI16 downregulated Wnt3a (wingless-type MMTV integration site family, member 3a)/β-catenin pathways, and the antiapoptotic role of PI16 was reversed by recombinant Wnt3a in oxygen-glucose deprivation-induced neonatal rat cardiomyocytes. PI16 also inhibited HDAC1 (class I histone deacetylase) expression, and overexpression HDAC1 abolished the inhibition of apoptosis and Wnt signaling of PI16. Conclusions In summary, PI16 protects against cardiomyocyte apoptosis and left ventricular remodeling after MI through the HDAC1-Wnt3a-β-catenin axis.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Anning Du
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yan Lu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Yunxi Zhao
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Ming Qiu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- School of Medicine Southeast University Nanjing Jiangsu China
| | - Zhenyang Su
- School of Medicine Southeast University Nanjing Jiangsu China
| | - Huanyu Shu
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Hui Shen
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Wei Sun
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Xiangqing Kong
- Department of Cardiology The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Cardiovascular Research Center The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University Suzhou China
| |
Collapse
|
23
|
Li M, Wang D, Liu Z, Huang Y, Zhang Q, Pan C, Lin Y, Sun L, Zheng Y. Assessing the effects of aging on the renal endothelial cell landscape using single-cell RNA sequencing. Front Genet 2023; 14:1175716. [PMID: 37214419 PMCID: PMC10196692 DOI: 10.3389/fgene.2023.1175716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Thies JL, Willicott K, Craig ML, Greene MR, DuGay CN, Caldwell GA, Caldwell KA. Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans. Cells 2023; 12:1170. [PMID: 37190079 PMCID: PMC10136629 DOI: 10.3390/cells12081170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress is a contributing factor to Parkinson's disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae (S. ven), enhanced oxidative stress and mitochondrial dysfunction in Caenorhabditis elegans, leading to dopaminergic (DA) neurodegeneration. Here, S. ven metabolite exposure in C. elegans was followed by RNA-Seq analysis. Half of the differentially identified genes (DEGs) were associated with the transcription factor DAF-16 (FOXO), which is a key node in regulating stress response. Our DEGs were enriched for Phase I (CYP) and Phase II (UGT) detoxification genes and non-CYP Phase I enzymes associated with oxidative metabolism, including the downregulated xanthine dehydrogenase gene, xdh-1. The XDH-1 enzyme exhibits reversible interconversion to xanthine oxidase (XO) in response to calcium. S. ven metabolite exposure enhanced XO activity in C. elegans. The chelation of calcium diminishes the conversion of XDH-1 to XO and results in neuroprotection from S. ven exposure, whereas CaCl2 supplementation enhanced neurodegeneration. These results suggest a defense mechanism that delimits the pool of XDH-1 available for interconversion to XO, and associated ROS production, in response to metabolite exposure.
Collapse
Affiliation(s)
- Jennifer L. Thies
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Maici L. Craig
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Madeline R. Greene
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cassandra N. DuGay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Odeh A, Dungan GD, Hoppensteadt D, Siddiqui F, Kantarcioglu B, Darki A, Fareed J, Syed MA. Interrelationship Between Inflammatory Biomarkers and Collagen Remodeling Proteins in Atrial Fibrillation. Clin Appl Thromb Hemost 2023; 29:10760296231165055. [PMID: 36941787 PMCID: PMC10034319 DOI: 10.1177/10760296231165055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Atrial Fibrillation (AF) is the most prevalent cardiac arrhythmia worldwide. Inflammation and structural remodeling of the left atrium are thought to be involved in the pathogenesis of AF. This study explores collagen remodeling and inflammatory biomarkers in AF patients compared to healthy controls to discern their role in AF. MATERIALS AND METHODS Plasma samples were collected from AF patients undergoing first AF ablation (n = 72) and compared with commercially available human plasma samples from healthy subjects (n = 62). The collagen remodeling biomarkers and inflammatory biomarkers in the AF patients and control population were quantified using sandwich ELISA kits. GraphPad prism was used to perform statistical analyses. RESULTS There was a statistically significant elevation in all the collagen remodeling biomarkers and inflammatory biomarkers in the AF patients compared to healthy controls. Spearman correlation analysis demonstrated significant correlations between inflammatory and collagen remodeling biomarkers, and among the collagen biomarkers. Of note, CRP was found to be correlated with TIMP-1, ICTP and PIIINP. IL6 and TIMP-1 were also found to be intercorrelated. Furthermore, correlations were noted among the different collagen remodeling peptides, and between TNFα and IL6, two of the inflammatory markers explored in this study. CONCLUSIONS The elevation of the inflammatory biomarkers and collagen remodeling proteins in AF patients is suggestive of inflammation and increased collagen turnover. The association between inflammatory biomarkers and collagen remodeling proteins may contribute to their regulation and role in the remodeling process.
Collapse
Affiliation(s)
- Ameer Odeh
- Stritch School of Medicine, 2456Loyola University Chicago, Maywood, IL, USA
| | - Gabriel D Dungan
- Stritch School of Medicine, 2456Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology, 25815Loyola University Medical Center, Maywood, IL, USA
- Program in Health Sciences, UCAM- 16728Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Bulent Kantarcioglu
- Department of Pathology, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Amir Darki
- Department of Medicine, Division of Cardiology, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Mushabbar A Syed
- Department of Medicine, Division of Cardiology, 25815Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
26
|
RNA-Seq of Dermal Fibroblasts from Patients with Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders Supports Their Categorization as a Single Entity with Involvement of Extracellular Matrix Degrading and Proinflammatory Pathomechanisms. Cells 2022; 11:cells11244040. [PMID: 36552803 PMCID: PMC9777098 DOI: 10.3390/cells11244040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD) are clinically overlapping connective tissue disorders of unknown etiology and without any validated diagnostic biomarker and specific therapies. Herein, we in-depth characterized the cellular phenotype and gene expression profile of hEDS and HSD dermal fibroblasts by immunofluorescence, amplicon-based RNA-seq, and qPCR. We demonstrated that both cell types show a common cellular trait, i.e., generalized extracellular matrix (ECM) disarray, myofibroblast differentiation, and dysregulated gene expression. Functional enrichment and pathway analyses clustered gene expression changes in different biological networks that are likely relevant for the disease pathophysiology. Specifically, the complex gene expression dysregulation (mainly involving growth factors, structural ECM components, ECM-modifying enzymes, cytoskeletal proteins, and different signal transducers), is expected to perturb many ECM-related processes including cell adhesion, migration, proliferation, and differentiation. Based on these findings, we propose a disease model in which an unbalanced ECM remodeling triggers a vicious cycle with a synergistic contribution of ECM degradation products and proinflammatory mediators leading to a functional impairment of different connective tissues reflecting the multisystemic presentation of hEDS/HSD patients. Our results offer many promising clues for translational research aimed to define molecular bases, diagnostic biomarkers, and specific therapies for these challenging connective tissue disorders.
Collapse
|
27
|
Americus B, Hams N, Klompen AML, Alama-Bermejo G, Lotan T, Bartholomew JL, Atkinson SD. The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection. PeerJ 2022; 9:e12606. [PMID: 35003924 PMCID: PMC8684318 DOI: 10.7717/peerj.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Nicole Hams
- Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America
| | - Anna M L Klompen
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
28
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
29
|
A Potential miRNA-mRNA Network for Dementia and Hernia Crosstalk. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4324068. [PMID: 34341761 PMCID: PMC8325595 DOI: 10.1155/2021/4324068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Background It has been reported that there may be a potential link between hernia and dementia. However, the exact mechanisms of their association have not been established. This study is aimed at constructing miRNA-mRNA networks to elucidate on the potential link between dementia and hernia. Methods Gene expression profiles for dementia, herniation, and skeletal muscle were downloaded from the GEO database after which differentially expressed mRNAs and miRNAs were obtained. In addition, fascia tissue samples were obtained during surgery. A total of 41 patients were recruited in this study, and expression levels of candidate genes were examined using quantitative RT-PCR. Luciferase reporter gene assays were used to identify potential miRNA-mRNA regulatory pathways. Results Differentially expressed mRNAs and miRNAs were screened. A potential miRNA-mRNA network revealing the crosstalk mechanism between herniation and dementia was identified. Single cell analysis revealed that PI16 was highly enriched in adipose tissues, skeletal muscles, and in the skin. GSEA enrichment analysis showed that PI16 is involved in adipose metabolism, muscle functions, and energy metabolism. In clinical samples, PI16 was found to be upregulated in hernia, while miR-4451 was found to be downregulated. The luciferase reporter gene assay revealed that downregulation of circulating miR-4451 may be responsible for the upregulated PI16 expression in hernia sacs. Conclusions We constructed an miRNA-mRNA network that shows the potential association between dementia and hernia. We also found that miR-4451 regulates the PI16 expression, which may be a key target and biomarker for hernia pathogenesis and dementia crosstalk.
Collapse
|
30
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
31
|
Suvarna K, Biswas D, Pai MGJ, Acharjee A, Bankar R, Palanivel V, Salkar A, Verma A, Mukherjee A, Choudhury M, Ghantasala S, Ghosh S, Singh A, Banerjee A, Badaya A, Bihani S, Loya G, Mantri K, Burli A, Roy J, Srivastava A, Agrawal S, Shrivastav O, Shastri J, Srivastava S. Proteomics and Machine Learning Approaches Reveal a Set of Prognostic Markers for COVID-19 Severity With Drug Repurposing Potential. Front Physiol 2021; 12:652799. [PMID: 33995121 PMCID: PMC8120435 DOI: 10.3389/fphys.2021.652799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The pestilential pathogen SARS-CoV-2 has led to a seemingly ceaseless pandemic of COVID-19. The healthcare sector is under a tremendous burden, thus necessitating the prognosis of COVID-19 severity. This in-depth study of plasma proteome alteration provides insights into the host physiological response towards the infection and also reveals the potential prognostic markers of the disease. Using label-free quantitative proteomics, we performed deep plasma proteome analysis in a cohort of 71 patients (20 COVID-19 negative, 18 COVID-19 non-severe, and 33 severe) to understand the disease dynamics. Of the 1200 proteins detected in the patient plasma, 38 proteins were identified to be differentially expressed between non-severe and severe groups. The altered plasma proteome revealed significant dysregulation in the pathways related to peptidase activity, regulated exocytosis, blood coagulation, complement activation, leukocyte activation involved in immune response, and response to glucocorticoid biological processes in severe cases of SARS-CoV-2 infection. Furthermore, we employed supervised machine learning (ML) approaches using a linear support vector machine model to identify the classifiers of patients with non-severe and severe COVID-19. The model used a selected panel of 20 proteins and classified the samples based on the severity with a classification accuracy of 0.84. Putative biomarkers such as angiotensinogen and SERPING1 and ML-derived classifiers including the apolipoprotein B, SERPINA3, and fibrinogen gamma chain were validated by targeted mass spectrometry-based multiple reaction monitoring (MRM) assays. We also employed an in silico screening approach against the identified target proteins for the therapeutic management of COVID-19. We shortlisted two FDA-approved drugs, namely, selinexor and ponatinib, which showed the potential of being repurposed for COVID-19 therapeutics. Overall, this is the first most comprehensive plasma proteome investigation of COVID-19 patients from the Indian population, and provides a set of potential biomarkers for the disease severity progression and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Medha Gayathri J. Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Renuka Bankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Viswanthram Palanivel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Susmita Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Avinash Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Apoorva Badaya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Gaurish Loya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishi Mantri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ananya Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyotirmoy Roy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Alisha Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Genetics, University of Delhi, New Delhi, India
| | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | - Om Shrivastav
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
32
|
McElroy M, Kim Y, Niccoli G, Vergallo R, Langford-Smith A, Crea F, Gijsen F, Johnson T, Keshmiri A, White SJ. Identification of the haemodynamic environment permissive for plaque erosion. Sci Rep 2021; 11:7253. [PMID: 33790317 PMCID: PMC8012657 DOI: 10.1038/s41598-021-86501-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
Endothelial erosion of atherosclerotic plaques is the underlying cause of approximately 30% of acute coronary syndromes (ACS). As the vascular endothelium is profoundly affected by the haemodynamic environment to which it is exposed, we employed computational fluid dynamic (CFD) analysis of the luminal geometry from 17 patients with optical coherence tomography (OCT)-defined plaque erosion, to determine the flow environment permissive for plaque erosion. Our results demonstrate that 15 of the 17 cases analysed occurred on stenotic plaques with median 31% diameter stenosis (interquartile range 28–52%), where all but one of the adherent thrombi located proximal to, or within the region of maximum stenosis. Consequently, all flow metrics related to elevated flow were significantly increased (time averaged wall shear stress, maximum wall shear stress, time averaged wall shear stress gradient) with a reduction in relative residence time, compared to a non-diseased reference segment. We also identified two cases that did not exhibit an elevation of flow, but occurred in a region exposed to elevated oscillatory flow. Our study demonstrates that the majority of OCT-defined erosions occur where the endothelium is exposed to elevated flow, a haemodynamic environment known to evoke a distinctive phenotypic response in endothelial cells.
Collapse
Affiliation(s)
- Michael McElroy
- Department of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK
| | - Yongcheol Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine and Cardiovascular Center, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Giampaolo Niccoli
- Division of Cardiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Vergallo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Universita' Cattolica del Sacro Cuore, Rome, Italy
| | | | - Filippo Crea
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Frank Gijsen
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Biomechanical Engineering, TUDelft, Delft, The Netherlands
| | - Thomas Johnson
- Department of Cardiology, Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin St., Bristol, BS2 8HW, UK
| | - Amir Keshmiri
- Department of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M13 9PL, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
33
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
34
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
35
|
Bourgeois R, Girard A, Perrot N, Guertin J, Mitchell PL, Couture C, Gotti C, Bourassa S, Poggio P, Mass E, Capoulade R, Scipione CA, Després AA, Couture P, Droit A, Pibarot P, Boffa MB, Thériault S, Koschinsky ML, Mathieu P, Arsenault BJ. A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization. CJC Open 2020; 3:450-459. [PMID: 34027348 PMCID: PMC8129481 DOI: 10.1016/j.cjco.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Lipoprotein(a) (Lp[a]), which consists of a low-density lipoprotein (LDL) bound to apolipoprotein(a), is one of the strongest genetic risk factors for atherosclerotic cardiovascular diseases. Few studies have performed hypothesis-free direct comparisons of the Lp(a) and the LDL proteomes. Our objectives were to compare the Lp(a) and the LDL proteomic profiles and to evaluate the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile. Methods We performed a label-free analysis of the Lp(a) and LDL proteomic profiles of healthy volunteers in a discovery (n = 6) and a replication (n = 9) phase. We performed inverse variance weighted Mendelian randomization to document the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile of participants of the INTERVAL study. Results We identified 15 proteins that were more abundant on Lp(a) compared with LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1, and ttr). We found no proteins that were more abundant on LDL compared with Lp(a). After correction for multiple testing, lifelong exposure to elevated LDL cholesterol levels was associated with the variation of 18 plasma proteins whereas Lp(a) did not appear to influence the plasma proteome. Conclusions Results of this study highlight marked differences in the proteome of Lp(a) and LDL as well as in the effect of lifelong exposure to elevated LDL cholesterol or Lp(a) on the plasma proteomic profile.
Collapse
Affiliation(s)
- Raphaëlle Bourgeois
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Nicolas Perrot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Jakie Guertin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada
| | - Christian Couture
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada
| | - Clarisse Gotti
- Proteomics platform of the CHU de Québec, Quebec, Canada
| | | | | | - Elvira Mass
- University of Bonn, Developmental Biology of the Immune System, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Romain Capoulade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Corey A Scipione
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Audrey-Anne Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Patrick Couture
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche du CHU de Québec, Quebec, Canada
| | - Arnaud Droit
- Proteomics platform of the CHU de Québec, Quebec, Canada.,Centre de recherche du CHU de Québec, Quebec, Canada
| | - Philippe Pibarot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
36
|
Satta N, Weppe R, Pagano S, Frias M, Juillard C, Vuilleumier N. Auto-antibodies against apolipoprotein A-1 block cancer cells proliferation and induce apoptosis. Oncotarget 2020; 11:4266-4280. [PMID: 33245719 PMCID: PMC7679029 DOI: 10.18632/oncotarget.27814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
Auto-antibodies against apoA-1 (anti-apoA-1 IgGs) have been identified as important actors of atherosclerosis development through pro-inflammatory and pro-atherogenic properties and to also induce apoptosis in tumoral neuronal and lymphocyte derived cell lines through unknown mechanisms. The purpose of this study was to explore the cellular pathways involved in tumoral cell survival modulated by anti-apoA-1 antibodies. We observed that anti-apoA-1 antibodies induce growth arrest (in G2/M phase) and cell apoptosis through caspase 3 activation, accompanied by a selective p53 phosphorylation on serine 15. RNA sequencing indicated that anti-apoA-1 IgGs affect the expression of more than 950 genes belonging to five major groups of genes and respectively involved in i) cell proliferation inhibition, ii) p53 stabilisation and regulation, iii) apoptosis regulation, iv) inflammation regulation, and v) oxidative stress. In conclusion, anti-apoA-1 antibodies seem to have a role in blocking tumoral cell proliferation and survival, by activating a major tumor suppressor protein and by modulating the inflammatory and oxidative stress response. Further investigations are needed to explore a possible anti-cancer therapeutic approach of these antibodies in very specific and circumscribed conditions.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Rémy Weppe
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Miguel Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
37
|
Wang H, Wang DH, Yang X, Sun Y, Yang CS. Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis 2020; 42:557-569. [PMID: 33196831 DOI: 10.1093/carcin/bgaa122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis increases the risk of colorectal cancer; however, the mechanism of the association between colitis and cancer remains largely unknown. To identify colitis-associated cancer promoting factors, we investigated gene expression changes caused by dextran sulfate sodium (DSS)-induced colitis in mice. By analyzing gene expression profiles, we found that IL11 was upregulated in DSS-induced colitis tissue and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP)/DSS-induced colon tumours in mice as well as in human colorectal cancer. By characterizing the activation/phosphorylation of STAT3 (pSTAT3), we found that pSTAT3 was induced transiently in colitis, but maintained at higher levels from hyper-proliferative dysplastic lesions to tumours. Using the IL11 receptor (IL11Rα1) knockout mice, we found that pSTAT3 in the newly regenerated crypt epithelial cells in colitis is abolished in IL11Rα1+/- and -/- mice, suggesting that colitis-induced IL11 activates STAT3 in colon crypt epithelial cells. Moreover, colitis-promoted colon carcinogenesis was significantly reduced in IL11Rα1+/- and -/- mice. To determine the roles of the IL11 in colitis, we found that the inhibition of IL11 signalling by recombinant IL11 antagonist mutein during colitis was sufficient to attenuate colitis-promoted carcinogenesis. Together, our results demonstrated that colitis-induced IL11 plays critical roles in creating cancer promoting microenvironment to facilitate the development of colon cancer from dormant premalignant cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David H Wang
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuhai Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
38
|
Hughes TK, Wadsworth MH, Gierahn TM, Do T, Weiss D, Andrade PR, Ma F, de Andrade Silva BJ, Shao S, Tsoi LC, Ordovas-Montanes J, Gudjonsson JE, Modlin RL, Love JC, Shalek AK. Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. Immunity 2020; 53:878-894.e7. [PMID: 33053333 PMCID: PMC7562821 DOI: 10.1016/j.immuni.2020.09.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 05/21/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
High-throughput single-cell RNA-sequencing (scRNA-seq) methodologies enable characterization of complex biological samples by increasing the number of cells that can be profiled contemporaneously. Nevertheless, these approaches recover less information per cell than low-throughput strategies. To accurately report the expression of key phenotypic features of cells, scRNA-seq platforms are needed that are both high fidelity and high throughput. To address this need, we created Seq-Well S3 ("Second-Strand Synthesis"), a massively parallel scRNA-seq protocol that uses a randomly primed second-strand synthesis to recover complementary DNA (cDNA) molecules that were successfully reverse transcribed but to which a second oligonucleotide handle, necessary for subsequent whole transcriptome amplification, was not appended due to inefficient template switching. Seq-Well S3 increased the efficiency of transcript capture and gene detection compared with that of previous iterations by up to 10- and 5-fold, respectively. We used Seq-Well S3 to chart the transcriptional landscape of five human inflammatory skin diseases, thus providing a resource for the further study of human skin inflammation.
Collapse
Affiliation(s)
- Travis K Hughes
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - Todd M Gierahn
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Tran Do
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Weiss
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Priscila R Andrade
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Feiyang Ma
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno J de Andrade Silva
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shuai Shao
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Robert L Modlin
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - J Christopher Love
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, Massachusetts, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
39
|
Tu C, Tao F, Qin Y, Wu M, Cheng J, Xie M, Shen B, Ren J, Xu X, Huang D, Chen H. Serum proteins differentially expressed in early- and late-onset preeclampsia assessed using iTRAQ proteomics and bioinformatics analyses. PeerJ 2020; 8:e9753. [PMID: 32953262 PMCID: PMC7473043 DOI: 10.7717/peerj.9753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preeclampsia remains a serious disorder that puts at risk the lives of perinatal mothers and infants worldwide. This study assessed potential pathogenic mechanisms underlying preeclampsia by investigating differentially expressed proteins (DEPs) in the serum of patients with early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) compared with healthy pregnant women. METHODS Blood samples were collected from four women with EOPE, four women with LOPE, and eight women with normal pregnancies, with four women providing control samples for each preeclampsia group. Serum proteins were identified by isobaric tags for relative and absolute quantitation combined with liquid chromatography-tandem mass spectrometry. Serum proteins with differences in their levels compared with control groups of at least 1.2 fold-changes and that were also statistically significantly different between the groups at P < 0.05 were further analyzed. Bioinformatics analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses, were used to determine the key proteins and signaling pathways associated with the development of PE and to determine those DEPs that differed between women with EOPE and those with LOPE. Key protein identified by mass spectrometry was verified by enzyme linked immunosorbent assay (ELISA). RESULTS Compared with serum samples from healthy pregnant women, those from women with EOPE displayed 70 proteins that were differentially expressed with significance. Among them, 51 proteins were significantly upregulated and 19 proteins were significantly downregulated. In serum samples from women with LOPE, 24 DEPs were identified , with 10 proteins significantly upregulated and 14 proteins significantly downregulated compared with healthy pregnant women. Bioinformatics analyses indicated that DEPs in both the EOPE and LOPE groups were associated with abnormalities in the activation of the coagulation cascade and complement system as well as with lipid metabolism. In addition, 19 DEPs in the EOPE group were closely related to placental development or invasion of tumor cells. Downregulationof pregnancy-specific beta-1-glycoprotein 9 (PSG9) in the LOPE group was confirmed by ELISA. CONCLUSION The pathogenesis of EOPE and LOPE appeared to be associated with coagulation cascade activation, lipid metabolism, and complement activation. However, the pathogenesis of EOPE also involved processes associated with greater placental injury. This study provided several new proteins in the serum which may be valuable for clinical diagnosis of EOPE and LOPE, and offered potential mechanisms underpinning the development of these disorders.
Collapse
Affiliation(s)
- Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Feng Tao
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ji Cheng
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Min Xie
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Junjiao Ren
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Dayan Huang
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
40
|
Shie MY, Lee JJ, Ho CC, Yen SY, Ng HY, Chen YW. Effects of Gelatin Methacrylate Bio-ink Concentration on Mechano-Physical Properties and Human Dermal Fibroblast Behavior. Polymers (Basel) 2020; 12:E1930. [PMID: 32859028 PMCID: PMC7565187 DOI: 10.3390/polym12091930] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Gelatin-methacryloyl (GelMa) is a very versatile biomaterial widely used in various biomedical applications. The addition of methacryloyl makes it possible to have hydrogels with varying mechanical properties due to its photocuring characteristics. In addition, gelatin is obtained and derived from natural material; thus, it retains various cell-friendly motifs, such as arginine-glycine-aspartic acid, which then provides implanted cells with a friendly environment for proliferation and differentiation. In this study, we fabricated human dermal fibroblast cell (hDF)-laden photocurable GelMa hydrogels with varying physical properties (5%, 10%, and 15%) and assessed them for cellular responses and behavior, including cell spreading, proliferation, and the degree of extracellular matrix remodeling. Under similar photocuring conditions, lower concentrations of GelMa hydrogels had lower mechanical properties than higher concentrations. Furthermore, other properties, such as swelling and degradation, were compared in this study. In addition, our findings revealed that there were increased remodeling and proliferation markers in the 5% GelMa group, which had lower mechanical properties. However, it was important to note that cellular viabilities were not affected by the stiffness of the hydrogels. With this result in mind, we attempted to fabricate 5-15% GelMa scaffolds (20 × 20 × 3 mm3) to assess their feasibility for use in skin regeneration applications. The results showed that both 10% and 15% GelMa scaffolds could be fabricated easily at room temperature by adjusting several parameters, such as printing speed and extrusion pressure. However, since the sol-gel temperature of 5% GelMa was noted to be lower than its counterparts, 5% GelMa scaffolds had to be printed at low temperatures. In conclusion, GelMa once again was shown to be an ideal biomaterial for various tissue engineering applications due to its versatile mechanical and biological properties. This study showed the feasibility of GelMa in skin tissue engineering and its potential as an alternative for skin transplants.
Collapse
Affiliation(s)
- Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan;
| | - Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 40447, Taiwan; (J.-J.L.); (H.Y.N.)
- Department of Plastic and Reconstruction Surgery, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan;
- 3D Printing Medical Research Institute, Asia University, Taichung City 41354, Taiwan
| | - Ssu-Yin Yen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan;
| | - Hooi Yee Ng
- School of Medicine, China Medical University, Taichung City 40447, Taiwan; (J.-J.L.); (H.Y.N.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan;
| | - Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 40447, Taiwan
| |
Collapse
|
41
|
Rohlenova K, Goveia J, García-Caballero M, Subramanian A, Kalucka J, Treps L, Falkenberg KD, de Rooij LPMH, Zheng Y, Lin L, Sokol L, Teuwen LA, Geldhof V, Taverna F, Pircher A, Conradi LC, Khan S, Stegen S, Panovska D, De Smet F, Staal FJT, Mclaughlin RJ, Vinckier S, Van Bergen T, Ectors N, De Haes P, Wang J, Bolund L, Schoonjans L, Karakach TK, Yang H, Carmeliet G, Liu Y, Thienpont B, Dewerchin M, Eelen G, Li X, Luo Y, Carmeliet P. Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. Cell Metab 2020; 31:862-877.e14. [PMID: 32268117 DOI: 10.1016/j.cmet.2020.03.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.
Collapse
Affiliation(s)
- Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Antwerp 2610, Belgium; Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Shawez Khan
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven 3000, Belgium
| | - Dena Panovska
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frank J T Staal
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Rene J Mclaughlin
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | | | - Nadine Ectors
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
| | - Tobias K Karakach
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven 3000, Belgium
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
42
|
Abstract
Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, Pi16 -/- mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.
Collapse
|
43
|
Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q. Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arterioscler Thromb Vasc Biol 2019; 39:1055-1071. [PMID: 30943771 PMCID: PMC6553510 DOI: 10.1161/atvbaha.119.312399] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Objective- Vascular adventitia encompasses progenitors and is getting recognized as the major site of inflammation in early stage of atherosclerosis. However, the cellular atlas of the heterogeneous adventitial cells, the intercellular communication, the cellular response of adventitia to hyperlipidemia, and its contribution to atherosclerosis have been elusive. Approach and Results- Single-cell RNA sequencing was applied to wt (wild type) and ApoE (apolipoprotein E)-deficient aortic adventitia from 12-week-old C57BL/6J mice fed on normal laboratory diet with early stage of atherosclerosis. Unbiased clustering analysis revealed that the landscape of adventitial cells encompassed adventitial mesenchyme cells, immune cells (macrophages, T cells, and B cells), and some types of rare cells, for example, neuron, lymphatic endothelial cells, and innate lymphoid cells. Seurat clustering analysis singled out 6 nonimmune clusters with distinct transcriptomic profiles, in which there predominantly were stem/progenitor cell-like and proinflammatory population (Mesen II). In ApoE-deficient adventitia, resident macrophages were activated and related to increased myeloid cell infiltration in the adventitia. Cell communication analysis further elucidated enhanced interaction between a mesenchyme cluster and inflammatory macrophages in ApoE-deficient adventitia. In vitro transwell assay confirmed the proinflammatory role of SCA1+ (stem cell antigen 1 positive) Mesen II population with increased CCL2 (chemokine [C-C motif] ligand 2) secretion and thus increased capacity to attract immune cells in ApoE-deficient adventitia. Conclusions- Cell atlas defined by single-cell RNA sequencing depicted the heterogeneous cellular landscape of the adventitia and uncovered several types of cell populations. Furthermore, resident cell interaction with immune cells appears crucial at the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yuan-Qing Tan
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Si-Jin Zhang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Zi-Chao Lv
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Xiao-Jian Wang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (Y.-Q.T., S.-J.Z., Z.-C.L., X.-J.W., Z.-C.J.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (W.G., Z.N., J.D., Z.Z., Y.H., Q.X.)
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, China (T.C., Q.X.)
| |
Collapse
|
44
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
45
|
Bardell D, Milner PI, Goljanek-Whysall K, Peffers MJ. Differences in plasma and peritoneal fluid proteomes identifies potential biomarkers associated with survival following strangulating small intestinal disease. Equine Vet J 2019; 51:727-732. [PMID: 30854696 DOI: 10.1111/evj.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Strangulating small intestinal disease (SSID) carries a poor prognosis for survival in comparison to other types of colic, particularly if resection is required. Identification of markers which aid early diagnosis may prevent the need for resection, assist with more accurate prognostication and/or support the decision on whether surgical intervention is likely to be successful, would be of significant welfare benefit. OBJECTIVES To apply an unbiased methodology to investigate the plasma and peritoneal fluid proteomes in horses diagnosed with SSID requiring resection, to identify novel biomarkers which may be of diagnostic or prognostic value. STUDY DESIGN Prospective clinical study. METHODS Plasma and peritoneal fluid from horses presented with acute abdominal signs consistent with SSID was collected at initial clinical examination. Samples from eight horses diagnosed with SSID at surgery in which resection of affected bowel was performed and four control horses subjected to euthanasia for orthopaedic conditions were submitted for liquid chromatography tandem mass spectrometry. Protein expression profiles were determined using label-free quantification. Data were analysed using analysis of variance to identify differentially expressed proteins between control and all SSID horses and SSID horses which survived to hospital discharge and those which did not. Significance was assumed at P≤0.05. RESULTS A greater number of proteins were identified in peritoneal fluid than plasma of both SSID cases and controls, with 123 peritoneal fluid and 13 plasma proteins significantly differentially expressed (DE) between cases and controls (P<0.05, ≥2 fold change). Twelve peritoneal fluid proteins (P<0.036) and four plasma proteins (P<0.05) were significantly DE between SSID horses which survived and those which did not. MAIN LIMITATIONS A low number of samples were analysed, there was variation in duration and severity of SSID and only short-term outcome was considered. CONCLUSIONS Changes in peritoneal fluid proteome may provide a sensitive indicator of small intestinal strangulation and provide biomarkers relevant to prognosis.
Collapse
Affiliation(s)
- D Bardell
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - P I Milner
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - K Goljanek-Whysall
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - M J Peffers
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Robinson JL, Feizi A, Uhlén M, Nielsen J. A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Rep 2019; 26:2622-2635.e5. [PMID: 30840886 PMCID: PMC6441842 DOI: 10.1016/j.celrep.2019.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The collection of proteins secreted from a cell-the secretome-is of particular interest in cancer pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction without exploring the associated functions. We therefore conducted a pan-cancer analysis of secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating the secretion of proteins promoting invasion and proliferation. These results provide a more systematic understanding of the cancer secretome, facilitating its use in diagnostics and its targeting for therapeutic development.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
47
|
Zamanian Azodi M, Rezaei Tavirani M, Rostami-Nejad M, Rezaei-Tavirani M. Comparative Bioinformatics Characteristic of Bladder Cancer Stage 2 from Stage 4 Expression Profile: A Network-Based Study. Galen Med J 2018; 7:e1279. [PMID: 34466446 PMCID: PMC8343782 DOI: 10.22086/gmj.v0i0.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) has remained as one of the most challenging issues in medicine. The aim of this study was to investigate the differential network analysis of stages 2 and 4 of BC to better understand the molecular pathology of these states. MATERIALS AND METHODS We chose gene expression data of GSE52519 from Gene Expression Omnibus (GEO) database analyzed by the GEO2R online tool. Cytoscape version 3.6.1 and its algorithms are the methods applied for the network construction and investigation of differentially expressed genes (DEG) in these states. RESULT Our result revealed that the analysis DEGs provides useful information about a common molecular feature of stages 2 and 4 of BC. CONCLUSION Consequently, the network finding revealed that more investigation about stage 2 is required to achieve an effective therapeutic protocol to block the transition from stage 2 to stage 4.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Kornej J, Büttner P, Hammer E, Engelmann B, Dinov B, Sommer P, Husser D, Hindricks G, Völker U, Bollmann A. Circulating proteomic patterns in AF related left atrial remodeling indicate involvement of coagulation and complement cascade. PLoS One 2018; 13:e0198461. [PMID: 30496173 PMCID: PMC6264811 DOI: 10.1371/journal.pone.0198461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Left atrial (LA) electro-anatomical remodeling and diameter increase in atrial fibrillation (AF) indicates disease progression and is associated with poor therapeutic success. Furthermore, AF leads to a hypercoagulable state, which in turn promotes the development of a substrate for AF and disease progression in the experimental setting. The aim of this study was to identify pathways associated with LA remodeling in AF patients using untargeted proteomics approach. METHODS Peripheral blood samples of 48 patients (62±10 years, 63% males, 59% persistent AF) undergoing AF catheter ablation were collected before ablation. 23 patients with left atrial low voltage areas (LVA), defined as <0.5 mV, and 25 patients without LVA were matched for age, gender and CHA2DS2-VASc score. Untargeted proteome analysis was performed using LC-ESI-Tandem mass spectrometry in a label free intensity based workflow. Significantly different abundant proteins were identified and used for pathway analysis and protein-protein interaction analysis. RESULTS Analysis covered 280 non-redundant circulating plasma proteins. The presence of LVA correlated with 30 differentially abundant proteins of coagulation and complement cascade (q<0.05). CONCLUSIONS This pilot proteomic study identified plasma protein candidates associated with electro-anatomical remodeling in AF and pointed towards an imbalance in coagulation and complement pathway, tissue remodeling and inflammation.
Collapse
Affiliation(s)
- Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
49
|
Lupsa N, Érsek B, Horváth A, Bencsik A, Lajkó E, Silló P, Oszvald Á, Wiener Z, Reményi P, Mikala G, Masszi T, Buzás EI, Pós Z. Skin-homing CD8 + T cells preferentially express GPI-anchored peptidase inhibitor 16, an inhibitor of cathepsin K. Eur J Immunol 2018; 48:1944-1957. [PMID: 30365157 DOI: 10.1002/eji.201847552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
This study sought to identify novel CD8+ T cell homing markers by studying acute graft versus host disease (aGvHD), typically involving increased T cell homing to the skin and gut. FACS-sorted skin-homing (CD8β+ /CLA+ ), gut-homing (CD8β+ /integrinβ7+ ), and reference (CD8β+ /CLA- /integrinβ7- ) T cells were compared in patients affected by cutaneous and/or gastrointestinal aGVHD. Microarray analysis, qPCR, and flow cytometry revealed increased expression of peptidase inhibitor 16 (PI16) in skin-homing CD8+ T cells. Robust association of PI16 with skin homing was confirmed in all types of aGvHD and in healthy controls, too. PI16 was not observed on CLA+ leukocytes other than T cells. Induction of PI16 expression on skin-homing T cells occurred independently of vitamin D3. Among skin-homing T cells, PI16 expression was most pronounced in memory-like CD45RO+ /CD127+ /CD25+ /CD69- /granzyme B- cells. PI16 was confined to the plasma membrane, was GPI-anchored, and was lost upon restimulation of memory CD8+ T cells. Loss of PI16 occurred by downregulation of PI16 transcription, and not by Phospholipase C (PLC)- or Angiotensin-converting enzyme (ACE)-mediated shedding, or by protein recycling. Inhibitor screening and pull-down experiments confirmed that PI16 inhibits cathepsin K, but may not bind to other skin proteases. These data link PI16 to skin-homing CD8+ T cells, and raise the possibility that PI16 may regulate cutaneous cathepsin K.
Collapse
Affiliation(s)
- Nikolett Lupsa
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,Hungarian Academy of Sciences, Semmelweis University Immunoproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,Office for Research Groups Attached to Universities and Other Institutions, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andor Horváth
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Bencsik
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Péter Reményi
- Department of Hematology and Stem Cell Transplantation, St. Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Gábor Mikala
- Department of Hematology and Stem Cell Transplantation, St. Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Tamás Masszi
- Department of Hematology and Stem Cell Transplantation, St. Istvan and Saint Laszlo Hospital, Budapest, Hungary.,3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,Hungarian Academy of Sciences, Semmelweis University Immunoproteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
50
|
Thomson CA, van de Pavert SA, Stakenborg M, Labeeuw E, Matteoli G, Mowat AM, Nibbs RJB. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. THE JOURNAL OF IMMUNOLOGY 2018; 201:215-229. [PMID: 29760193 DOI: 10.4049/jimmunol.1700967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Atypical chemokine receptors (ACKRs) are expressed by discrete populations of stromal cells at specific anatomical locations where they control leukocyte migration by scavenging or transporting chemokines. ACKR4 is an atypical receptor for CCL19, CCL21, and CCL25. In skin, ACKR4 plays indispensable roles in regulating CCR7-dependent APC migration, and there is a paucity of migratory APCs in the skin-draining lymph nodes of Ackr4-deficient mice under steady-state and inflammatory conditions. This is caused by loss of ACKR4-mediated CCL19/21 scavenging by keratinocytes and lymphatic endothelial cells. In contrast, we show in this study that Ackr4 deficiency does not affect dendritic cell abundance in the small intestine and mesenteric lymph nodes, at steady state or after R848-induced mobilization. Moreover, Ackr4 expression is largely restricted to mesenchymal cells in the intestine, where it identifies a previously uncharacterized population of fibroblasts residing exclusively in the submucosa. Compared with related Ackr4- mesenchymal cells, these Ackr4+ fibroblasts have elevated expression of genes encoding endothelial cell regulators and lie in close proximity to submucosal blood and lymphatic vessels. We also provide evidence that Ackr4+ fibroblasts form physical interactions with lymphatic endothelial cells, and engage in molecular interactions with these cells via the VEGFD/VEGFR3 and CCL21/ACKR4 pathways. Thus, intestinal submucosal fibroblasts in mice are a distinct population of intestinal mesenchymal cells that can be identified by their expression of Ackr4 and have transcriptional and anatomical properties that strongly suggest roles in endothelial cell regulation.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, 13288 Marseille Cedex 9, France; and
| | - Michelle Stakenborg
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Evelien Labeeuw
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Allan McI Mowat
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Robert J B Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| |
Collapse
|