1
|
Benovics M, Seidlová L, Papežík P, Seifertová M, Nejat F, Vetešník L, Voříšková K, Šimková A. Population genetic structure of Dactylogyrus vistulae, a gill parasite of cyprinoid fish in the Western Palearctic. Int J Parasitol 2025:S0020-7519(25)00072-4. [PMID: 40209887 DOI: 10.1016/j.ijpara.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Monogenean parasites with a broad host range and direct life cycle provide insight into population genetic structure and dispersal processes. Dactylogyrus vistulae infects over 50 cyprinoid fish species across the western Palearctic, making it an ideal model for assessing host and geographic influences on parasite population structure. Herein, we utilized 20 microsatellite loci and mitochondrial COI sequences to analyze the genetic variability and structure of D. vistulae populations, with a deeper focus on Czech river systems. Low allelic variance was observed across most populations, except in the Aoos River, Greece, where high genetic diversity suggests either a large population size or an ancestral refugium. Moderate variance was detected in the Middle East, though some Anatolian populations exhibited reduced diversity, likely due to recent colonization. Czech populations showed weak genetic structuring despite occupying distinct river basins, likely due to fish translocations. Mitochondrial COI analysis revealed up to 18.5% haplotype divergence, with the highest diversity in the Padano-Venetian, Caspian Sea, and Dalmatian districts. Dalmatian haplotypes formed a distinct haplogroup, though genetic similarities between Padano-Venetian and Dalmatian populations suggest historical connections or fish host introductions. These results support a south-to-north D. vistulae dispersal through the Balkans, associated with cyprinoid fish migration. This study highlights the roles of host dispersal, environmental factors, and human influence in shaping fish parasite population structure, emphasizing the need for further genomic and ecological research.
Collapse
Affiliation(s)
- M Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - L Seidlová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - P Papežík
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - M Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - F Nejat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - L Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences Květná 8, 603 65 Brno, Czech Republic.
| | - K Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - A Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
2
|
Vanhove MPM, Pariselle A, Kmentová N. Cichlidogyrus casuarinus. Trends Parasitol 2025:S1471-4922(25)00035-2. [PMID: 40011139 DOI: 10.1016/j.pt.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; IUCN SSC Parasite Specialist Group.
| | - Antoine Pariselle
- Institute of Evolutionary Science of Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France; Laboratory Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nikol Kmentová
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; IUCN SSC Parasite Specialist Group; Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
3
|
Vanhove MPM, Kmentová N, Faes C, Fernandes JMO, Hahn C, Hens N, Pariselle A, Koblmüller S. Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks. Cold Spring Harb Perspect Biol 2025; 17:a041450. [PMID: 38768969 PMCID: PMC11694742 DOI: 10.1101/cshperspect.a041450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Christel Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Institut de Ciències del Mar, Spanish National Research Council, 08003 Barcelona, Spain
| | - Christoph Hahn
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerpen, Belgium
| | - Antoine Pariselle
- Institute of Evolutionary Science of Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement, 34394 Montpellier, France
- Laboratory Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University in Rabat, 10000 Rabat, Morocco
| | | |
Collapse
|
4
|
Ebert MB, Narciso RB, Vieira Dias DHM, Osaki-Pereira MM, Jorge M, de León GPP, da Silva RJ. Parasites (Monogenea) of tilapias Oreochromis niloticus and Coptodon rendalli (Cichlidae) in a river spring in Brazil. Parasite 2024; 31:22. [PMID: 38602374 PMCID: PMC11008226 DOI: 10.1051/parasite/2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In the present study, we examined 30 individuals of introduced African cichlids, Oreochromis niloticus and Coptodon rendalli, collected in a river spring of the Pardo River, Paranapanema River basin, southeastern Brazil. Based on morphological and molecular analyses of the partial LSU rDNA gene, we identified four species of monogeneans, Cichlidogyrus tilapiae, C. thurstonae, C. mbirizei, and Scutogyrus longicornis on the gills of O. niloticus, whereas individuals of C. rendalli were infested only with C. papernastrema. This is the first record of C. mbirizei and C. papernastrema in tilapias from Brazil. The ecological consequences of the introduction of exotic species of tilapia such as O. niloticus and C. rendalli along with their monogenean parasites in a wild environment represented by a river spring are discussed. Our new molecular data on Cichlidogyrus and Scutogyrus contribute to the investigation of the phylogenetic interrelationships of these widely distributed genera of monogeneans since their species composition is still unsettled.
Collapse
Affiliation(s)
- Mariana Bertholdi Ebert
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Rodrigo Bravin Narciso
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Diego Henrique Mirandola Vieira Dias
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Melissa Miyuki Osaki-Pereira
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Maurício Jorge
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Gerardo Pérez-Ponce de León
- Escuela Nacional de Estudios Superiores, Unidad Mérida, Universidad Nacional Autónoma de México 97357 Ucú Yucatán Mexico
| | - Reinaldo José da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| |
Collapse
|
5
|
Benovics M, Rahmouni C, Řehulková E, Nejat F, Šimková A. Uncovering the monogenean species diversity of cyprinoid fish in Iraq using an integrative approach. Parasitology 2024; 151:220-246. [PMID: 38116665 PMCID: PMC10941050 DOI: 10.1017/s0031182023001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The freshwaters of Iraq harbour a high diversity of endemic and phylogenetically unique species. One of the most diversified fish groups in this region is cyprinoids, and although their distribution is relatively well known, their monogenean parasites have only rarely been investigated. Herein, we applied an integrative approach, combining morphology with molecular data, to assess the diversity and phylogeny of cyprinoid-associated monogenean parasites. A total of 33 monogenean species were collected and identified from 13 endemic cyprinoid species. The highest species diversity was recorded for Dactylogyrus (Dactylogyridae, 16 species) and Gyrodactylus (Gyrodactylidae, 12 species). Four species of Dactylogyrus and 12 species of Gyrodactylus were identified as new to science and described. Two other genera, Dogielius (Dactylogyridae) and Paradiplozoon (Diplozoidae), were represented only by 4 and 1 species, respectively. Phylogenetic analyses of the Dactylogyrus and Gyrodactylus species revealed that the local congeners do not form a monophyletic group and are phylogenetically closely related to species from other regions (i.e. Europe, North Africa and Eastern Asia). These findings support the assumption that the Middle East served as an important historical crossroads for the interchange of fauna between these 3 geographic regions.
Collapse
Affiliation(s)
- M. Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Zoology, Faculty of Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - C. Rahmouni
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - E. Řehulková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - F. Nejat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - A. Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Bachmann L, Beermann J, Brey T, de Boer HJ, Dannheim J, Edvardsen B, Ericson PGP, Holston KC, Johansson VA, Kloss P, Konijnenberg R, Osborn KJ, Pappalardo P, Pehlke H, Piepenburg D, Struck TH, Sundberg P, Markussen SS, Teschke K, Vanhove MPM. The role of systematics for understanding ecosystem functions: Proceedings of the Zoologica Scripta Symposium, Oslo, Norway, 25 August 2022. ZOOL SCR 2023. [DOI: 10.1111/zsc.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Benovics M, Vukić J, Šanda R, Nejat F, Charmpila EA, Buj I, Shumka S, Porcelloti S, Tarkan SA, Aksu S, Emiroğlu O, Šimková A. Monogeneans and chubs: Ancient host-parasite system under the looking glass. Mol Phylogenet Evol 2023; 179:107667. [PMID: 36400419 DOI: 10.1016/j.ympev.2022.107667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Host-parasite coevolution is one of the fundamentals of evolutionary biology. Due to the intertwined evolutionary history of two interacting species and reciprocal coadaptation processes of hosts and parasites, we can expect that studying parasites will shed more light onto the evolutionary processes of their hosts. Monogenea (ectoparasitic Platyhelminthes) and their cyprinoid fish hosts represent one of the best models for studying host-parasite evolutionary relationships using a cophylogenetic approach. These parasites have developed remarkably high host specificity, where each host species often serves as a potential host for its own host-specific monogenean species. Here, the cophylogenetic relationships in the Dactylogyrus-Squalius system was investigated, as Squalius is one of several cyprinoid genera with puzzling phylogeography and inhabits all four major peri-Mediterranean peninsulas. Of 29 endemic Squalius species examined for the presence of Dactylogyrus parasites, a total of 13 Dactylogyrus species were collected from the gills of 20 Squalius species across a wide range of distribution. Phylogenetic reconstruction revealed a polyphyletic origin for Dactylogyrus species parasitizing congeneric Squalius, with four major clades being recognized. On the basis of the delimitation of host specificity, strict specialists parasitizing single host species, geographic specialists parasitizing congeners in a limited geographical region, and true generalists parasitizing congeners in various geographical regions were recognized in Dactylogyrus species parasitizing Squalius. The phylogenetic reconstruction of Squalius hosts revealed two major clades, the first encompassing only peri-Mediterranean species and the second including species from other Euro-Asian regions. Distance-based cophylogenetic methods did not reveal a statistically significant global cophylogenetic structure in the studied system; however, several host-parasite links among Iberian endemic species contributed significantly to the overall structure. The widest host range and associated genetic variability were recorded for D. folkmanovae, parasitizing nine Squalius species, and D. vistulae, parasitizing 13 Squalius species. Two different dispersion mechanisms and morphological adaptations to Squalius hosts were clearly reflected in the contrasting cophylogenetic patterns for these two species with different levels of host specificity. While host-parasite cospeciation plays an important role in diversification within D. folkmanovae, diversification within D. vistulae is driven mainly by host switching.
Collapse
Affiliation(s)
- M Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - J Vukić
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2 128 44, Czech Republic.
| | - R Šanda
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2 128 44, Czech Republic; Department of Zoology, National Museum, Václavské Náměstí 68, Prague 1 110 00, Czech Republic.
| | - F Nejat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - E A Charmpila
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2 128 44, Czech Republic.
| | - I Buj
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 100 00 Zagreb, Croatia.
| | - S Shumka
- Department of Biotechnology and Food, Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Albania.
| | - S Porcelloti
- Associazione Ichthyos Italia, Via. A Cecchi 12, 52100 Arezzo, Italy.
| | - S A Tarkan
- Faculty of Fisheries, Muğla Sıtkı Koçman University, Menteşe 480 00, Muğla, Turkey; Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - S Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Büyükdere Meşelik Yerleşkesi, 26040 Eskişehir, Turkey.
| | - O Emiroğlu
- Vocational School of Health Services, Eskişehir Osmangazi University, Büyükdere Meşelik Yerleşkesi, 26040 Eskişehir, Turkey.
| | - A Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
8
|
|
9
|
Rahmouni C, Vanhove MPM, Šimková A, Van Steenberge M. Morphological and Genetic Divergence in a Gill Monogenean Parasitizing Distant Cichlid Lineages of Lake Tanganyika: Cichlidogyrus nshomboi (Monogenea: Dactylogyridae) from Representatives of Boulengerochromini and Perissodini. Evol Biol 2022. [DOI: 10.1007/s11692-022-09564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Cruz-Laufer AJ, Pariselle A, Jorissen MWP, Muterezi Bukinga F, Al Assadi A, Van Steenberge M, Koblmüller S, Sturmbauer C, Smeets K, Huyse T, Artois T, Vanhove MPM. Somewhere I belong: phylogeny and morphological evolution in a species-rich lineage of ectoparasitic flatworms infecting cichlid fishes. Cladistics 2022; 38:465-512. [PMID: 35488795 DOI: 10.1111/cla.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
A substantial portion of biodiversity has evolved through adaptive radiation. However, the effects of explosive speciation on species interactions remain poorly understood. Metazoan parasites infecting radiating host lineages could improve our knowledge because of their intimate host relationships. Yet limited molecular, phenotypic and ecological data discourage multivariate analyses of evolutionary patterns and encourage the use of discrete characters. Here, we assemble new molecular, morphological and host range data widely inferred from a species-rich lineage of parasites (Cichlidogyrus, Platyhelminthes: Monogenea) infecting cichlid fishes to address data scarcity. We infer a multimarker (28S/18S rDNA, ITS1, COI mtDNA) phylogeny of 58 of 137 species and characterize major lineages through synapomorphies inferred from mapping morphological characters. We predict the phylogenetic position of species without DNA data through shared character states, a morphological phylogenetic analysis, and a classification analysis with support vector machines. Based on these predictions and a cluster analysis, we assess the systematic informativeness of continuous characters, search for continuous equivalents for discrete characters, and suggest new characters for morphological traits not analysed to date. We also model the attachment/reproductive organ and host range evolution using the data for 136 of 137 described species and multivariate phylogenetic comparative methods (PCMs). We show that discrete characters not only can mask phylogenetic signals, but also are key for characterizing species groups. Regarding the attachment organ morphology, a divergent evolutionary regime for at least one lineage was detected and a limited morphological variation indicates host and environmental parameters affecting its evolution. However, moderate success in predicting phylogenetic positions, and a low systematic informativeness and high multicollinearity of morphological characters call for a revaluation of characters included in species characterizations.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Antoine Pariselle
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France.,Faculty of Sciences, Laboratory "Biodiversity, Ecology and Genome", Research Centre "Plant and Microbial Biotechnology, Biodiversity and Environment", Mohammed V University, Rabat, Morocco
| | - Michiel W P Jorissen
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Anwar Al Assadi
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, Stuttgart, 70569, Germany
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, B-1000, Belgium
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Tine Huyse
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| | - Tom Artois
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
11
|
Rahmouni C, Vanhove MP, Koblmüller S, Šimková A. Molecular phylogeny and speciation patterns in host-specific monogeneans (Cichlidogyrus, Dactylogyridae) parasitizing cichlid fishes (Cichliformes, Cichlidae) in lake tanganyika. Int J Parasitol 2022; 52:359-375. [DOI: 10.1016/j.ijpara.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
|
12
|
Benovics M, Gettová L, Šimková A. De novo developed microsatellite markers in gill parasites of the genus Dactylogyrus (Monogenea): Revealing the phylogeographic pattern of population structure in the generalist parasite Dactylogyrus vistulae. Ecol Evol 2021; 11:16585-16599. [PMID: 34938459 PMCID: PMC8668815 DOI: 10.1002/ece3.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Approaches using microsatellite markers are considered the gold standard for modern population genetic studies. However, although they have found application in research into various platyhelminth taxa, they remained substantially underutilized in the study of monogeneans. In the present study, a newly developed set of 24 microsatellite markers was used to investigate the genetic diversity of the generalist monogenean species Dactylogyrus vistulae. The analyzed parasite specimens were collected from 13 cyprinoid species from 11 sites in the Apennine and Balkan peninsulas. A total of 159 specimens were genotyped at each of the loci and the number of alleles per locus ranged from 2 to 16, with a mean number of 6.958 alleles per locus. Exceptionally high genetic diversity was observed among D. vistulae individuals in the southern Balkans (mean N A per locus = 3.917), suggesting that generalist D. vistulae expanded from the south to the north in the Balkans and later into central Europe. The initial clustering analysis divided all investigated specimens into three major clusters; however, the results of the subsequent analyses revealed the existence of various subpopulations, suggesting that the population structure of D. vistulae is associated with the diversification of their cyprinoid hosts. In addition, the partition of the parasite population was observed in regions of the sympatric occurrence of two host species, indicating that these hosts may represent a barrier for gene flow, even for generalist parasite species.
Collapse
Affiliation(s)
- Michal Benovics
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Gettová
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
13
|
Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. BIOLOGY 2021; 10:biology10080797. [PMID: 34440029 PMCID: PMC8389663 DOI: 10.3390/biology10080797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
Collapse
|
14
|
Hermans R, Vanhove MPM, Ditrich O, Tyml T, Gelnar M, Artois T, Kmentová N. Parasitic flatworms infecting thorny skate, Amblyraja radiata: Infection by the monogeneans Acanthocotyle verrilli and Rajonchocotyle emarginata in Svalbard. Parasitol Int 2020; 81:102261. [PMID: 33276144 DOI: 10.1016/j.parint.2020.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Parasite diversity above the Arctic circle remains understudied even for commercially valuable host taxa. Thorny skate, Amblyraja radiata, is a common bycatch species with a growing commercial value. Its natural range covers both sides of the North Atlantic including the Arctic zone. Svalbard is a Norwegian archipelago located on the northwest corner of the Barents Shelf which sustains a spectacular species diversity. So far, several monogenean species have been reported infecting thorny skate across the Atlantic Ocean. In the present study, we intend to fill in the knowledge gap on monogenean parasites infecting thorny skate in the northern part of its range and thus indirectly assess the connectivity between the thorny skate populations off the Svalbard coast and from previously studied locations. 46 monogenean individuals were recovered from 11 specimens of thorny skate. Following morphological and molecular assessment, two species of monogeneans, Acanthocotyle verrilli and Rajonchocotyle emarginata, were identified. The results serve as the northernmost record for both parasite genera and the first record of monogenean species off Svalbard. Detailed morphometric evaluation revealed a relatively high level of morphological variation in A. verrilli compared to its congeners. Phylogenetic reconstruction placed A. verrilli in a well-supported clade with A. imo. Our study also suggests high diagnostic significance of sclerotised structures in the identification of Rajonchocotyle. Even though the occurrence of two directly transmitted parasite species supports the previously suggested long-distance migration of A. radiata, future studies employing highly variable genetic markers are needed to assess the ongoing and historical migration patterns.
Collapse
Affiliation(s)
- Raquel Hermans
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oleg Ditrich
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tomáš Tyml
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tom Artois
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
15
|
Penso-Dolfin L, Man A, Mehta T, Haerty W, Di Palma F. Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes. BMC Evol Biol 2020; 20:69. [PMID: 32564776 PMCID: PMC7309985 DOI: 10.1186/s12862-020-01629-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND East African lake cichlids are one of the most impressive examples of an adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) in the evolution of adaptive traits across the three Great Lakes of East Africa. RESULTS Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in four cichlid species: Haplochromis burtoni, Metriaclima zebra, Neolamprologus brichardi and Pundamilia nyererei. We investigate the patterns of gain and loss evolution for each SV type, enabling the identification of lineage specific events. Both deletions and inversions show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. We also find that duplicated regions show enrichment for genes associated with "antigen processing and presentation" and other immune related categories. Our pipeline and results were further tested by PCR validation of selected deletions and inversions, which confirmed respectively 7 out of 10 and 6 out of 9 events. CONCLUSIONS Altogether, we provide the first comprehensive overview of rearrangement evolution in East African cichlids, and some important insights into their likely contribution to adaptation.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Angela Man
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Tarang Mehta
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| |
Collapse
|
16
|
Kmentová N, Bray RA, Koblmüller S, Artois T, De Keyzer ELR, Gelnar M, Vanhove MPM, Georgieva S. Uncharted digenean diversity in Lake Tanganyika: cryptogonimids (Digenea: Cryptogonimidae) infecting endemic lates perches (Actinopterygii: Latidae). Parasit Vectors 2020; 13:221. [PMID: 32357898 PMCID: PMC7195733 DOI: 10.1186/s13071-020-3913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lake Tanganyika is considered a biodiversity hotspot with exceptional species richness and level of endemism. Given the global importance of the lake in the field of evolutionary biology, the understudied status of its parasite fauna is surprising with a single digenean species reported to date. Although the most famous group within the lake's fish fauna are cichlids, the pelagic zone is occupied mainly by endemic species of clupeids (Actinopterygii: Clupeidae) and lates perches (Actinopterygii: Latidae, Lates Cuvier), which are an important commercial source for local fisheries. In this study, we focused on the lake's four lates perches and targeted their thus far unexplored endoparasitic digenean fauna. METHODS A total of 85 lates perches from four localities in Lake Tanganyika were examined. Cryptogonimid digeneans were studied by means of morphological and molecular characterisation. Partial sequences of the nuclear 28S rRNA gene and the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene were sequenced for a representative subset of the specimens recovered. Phylogenetic analyses were conducted at the family level under Bayesian inference. RESULTS Our integrative approach revealed the presence of six species within the family Cryptogonimidae Ward, 1917. Three out of the four species of Lates were found to be infected with at least one cryptogonimid species. Two out of the three reported genera are new to science. Low interspecific but high intraspecific phenotypic and genetic diversity was found among Neocladocystis spp. Phylogenetic inference based on partial 28S rDNA sequences revealed a sister group relationship for two of the newly erected genera and their close relatedness to the widely distributed genus Acanthostomum Looss, 1899. CONCLUSIONS The present study provides the first comprehensive characterisation of the digenean diversity in a fish family from Lake Tanganyika which will serve as a baseline for future explorations of the lake's digenean fauna. Our study highlights the importance of employing an integrative approach for revealing the diversity in this unique host-parasite system.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Rodney A. Bray
- Parasitic Worms Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Tom Artois
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Els Lea R. De Keyzer
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, Helsinki, 00014 Finland
| | - Simona Georgieva
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 46071, Valencia, Spain
| |
Collapse
|
17
|
Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int J Parasitol 2020; 50:471-486. [PMID: 32277985 DOI: 10.1016/j.ijpara.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Lake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites' lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north-south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.
Collapse
|
18
|
Geraerts M, Muterezi Bukinga F, Vanhove MPM, Pariselle A, Chocha Manda A, Vreven E, Huyse T, Artois T. Six new species of Cichlidogyrus Paperna, 1960 (Platyhelminthes: Monogenea) from the gills of cichlids (Teleostei: Cichliformes) from the Lomami River Basin (DRC: Middle Congo). Parasit Vectors 2020; 13:187. [PMID: 32272977 PMCID: PMC7147007 DOI: 10.1186/s13071-020-3927-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monogenea van Beneden, 1858 is a group of parasitic flatworms, commonly found infecting bony fish. Several genera, such as Cichlidogyrus Paperna, 1960, are reported to include potential pathogenic species that can negatively impact aquaculture fish stocks. They can switch from introduced to native fish and vice versa. In Africa (and all over the world), fish species belonging to Cichlidae are often kept in aquaculture and represent a major source of food. Thus, research on the biodiversity and occurrence of monogenean species on these fish is of importance for aquaculture and conservation. The present study is a survey of the diversity of species of Cichlidogyrus in the south of the Democratic Republic of the Congo (DRC) on three cichlid species: Orthochromis sp. 'Lomami', Serranochromis cf. macrocephalus, and Tilapia sparrmanii Smith, 1840. METHODS Specimens of Cichlidogyrus were isolated from the gills and mounted on glass slides with Hoyer's medium. The genital and haptoral hard parts were measured and drawn using interference contrast. RESULTS In total, six species of Cichlidogyrus were found, all new to science: C. bulbophallus n. sp. and C. pseudozambezensis n. sp. on S. cf. macrocephalus, C. flagellum n. sp. and C. lobus n. sp. on T. sparrmanii, C. ranula n. sp. on S. cf. macrocephalus and Orthochromis sp. 'Lomami', and C. maeander n. sp. found on Orthochromis sp. 'Lomami' and T. sparrmanii. The first four species are considered to be strict specialists, C. ranula n. sp. an intermediate generalist and C. maeander n. sp. a generalist. These parasite species show morphological similarities to species found in the Lower Guinea and Zambezi ichthyofaunal provinces, which might be explained by past river capture events between river systems of the Congo Province and both these regions. CONCLUSIONS Serranochromis cf. macrocephalus and Orthochromis sp. 'Lomami' can harbour respectively three and two species of Cichlidogyrus, all described in this study. Tilapia sparrmanii can harbour seven species, of which three are described in the present study. These results highlight the species diversity of this parasite genus in the Congo Basin.
Collapse
Affiliation(s)
- Mare Geraerts
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Antoine Pariselle
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, CIRAD, INRAP, Montpellier, France
- Laboratory Biodiversity, Ecology and Genome. Research Centre Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Auguste Chocha Manda
- Unité de recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Emmanuel Vreven
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
- Ichthyology Section, Zoology Department, Royal Museum of Central Africa, Tervuren, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum of Central Africa, Tervuren, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
19
|
Villar-Torres M, Repullés-Albelda A, Montero FE, Raga JA, Blasco-Costa I. Neither Diplectanum nor specific: a dramatic twist to the taxonomic framework of Diplectanum (Monogenea: Diplectanidae). Int J Parasitol 2019; 49:365-374. [PMID: 30776372 DOI: 10.1016/j.ijpara.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 11/15/2022]
Abstract
The taxonomy of the genus Diplectanum has been exclusively based on morphological features, with 28 nominal species parasitic on perciform fishes recognised. We used molecular data, to our knowledge for the first time, to evaluate the taxonomic framework of Diplectanum, infer the relationships amongst species attributed to this genus, re-assess the degree of host specificity and explore the population genetic structure of Diplectanum spp. parasitising Mediterranean sciaenids, which are potential target fish species for aquaculture diversification in the region. A minimum of 10 specimens of Diplectanum spp. were sequenced per host species (Argyrosomus regius, Sciaena umbra, Umbrina canariensis and Umbrina cirrosa) and locality (Burriana, Sant Carles de la Ràpita and Santa Pola (Spain)) together with five individuals of the type species Diplectanum aequans. Sequences of partial 28S rDNA and internal transcribed spacer region of Diplectanum spp. were analysed together with those from other Diplectanidae spp. in GenBank using Bayesian inference and maximum likelihood phylogenetic methods. Population genetic analyses were performed using cytochrome c oxidase subunit I gene sequences for a diplectanid species with a wide distribution across host species and localities. Results showed that Diplectanum was not monophyletic, nor were the specimens infecting sciaenids. Instead they formed two separate clades, 26.1-28.6% divergent for the internal transcribed spacer and 13.2-16.9% for the 28S region from D. aequans. Altogether, our results suggest that these specimens represent two distinct new genera from Diplectanum and five putative species with low host specificity. It is likely that morphological variability has led to the description of more species than were detected by molecular methods. In contrast to other monogeneans, Diplectaninae gen. spp. are chiefly generalists. Nonetheless, intraspecific genetic divergence in the internal transcribed spacer region of Diplectaninae gen. spp., and population genetic analyses of one presumed generalist species, Diplectaninae gen. sp. 1.2, showed significant variation between subpopulations living on different hosts. The intraspecific genetic structure by host also suggests different cross-infection potential amongst sciaenid species.
Collapse
Affiliation(s)
- Mar Villar-Torres
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22085, 46071 Valencia, Spain.
| | - Aigües Repullés-Albelda
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| | - Francisco Esteban Montero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| | - Juan Antonio Raga
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| | - Isabel Blasco-Costa
- Natural History Museum of Geneva, PO Box 6434, CH-1211 Geneva 6, Switzerland
| |
Collapse
|
20
|
Westfall AK, Miller MA, Murray CM, Falk BG, Guyer C, Romagosa CM. Host-specific phenotypic variation of a parasite co-introduced with invasive Burmese pythons. PLoS One 2019; 14:e0209252. [PMID: 30601869 PMCID: PMC6314578 DOI: 10.1371/journal.pone.0209252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
Invasive Burmese pythons (Python bivittatus Kuhl, 1820) have introduced a lung parasite, Raillietiella orientalis, (Hett, 1915) from the python's native range in Southeast Asia to its introduced range in Florida, where parasite spillover from pythons to two families and eight genera of native snakes has occurred. Because these novel host species present a diversity of ecological and morphological traits, and because these parasites attach to their hosts with hooks located on their cephalothorax, we predicted that R. orientalis would exhibit substantial, host-associated phenotypic plasticity in cephalothorax shape. Indeed, geometric morphometric analyses of 39 parasites from five host species revealed significant variation among host taxa in R. orientalis cephalothorax shape. We observed differences associated with host ecology, where parasites from semi-aquatic and aquatic snakes exhibited the greatest morphological similarity. Morphological analyses of R. orientalis recovered from invasive pythons, native pit vipers, and terrestrial snakes each revealed distinct shapes. Our results suggest R. orientalis can exhibit significant differences in morphology based upon host species infected, and this plasticity may facilitate infection with this non-native parasite in a wide array of novel squamate host species.
Collapse
Affiliation(s)
- Aundrea K. Westfall
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Melissa A. Miller
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Christopher M. Murray
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Bryan G. Falk
- US Geological Survey, Fort Collins, Colorado, United States of America
| | - Craig Guyer
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Christina M. Romagosa
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
21
|
Kmentová N, Van Steenberge M, Thys van den Audenaerde DFE, Nhiwatiwa T, Muterezi Bukinga F, Mulimbwa N’sibula T, Masilya Mulungula P, Gelnar M, Vanhove MPM. Co-introduction success of monogeneans infecting the fisheries target Limnothrissa miodon differs between two non-native areas: the potential of parasites as a tag for introduction pathway. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Meyer BS, Hablützel PI, Roose AK, Hofmann MJ, Salzburger W, Raeymaekers JAM. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. HYDROBIOLOGIA 2018; 832:215-233. [PMID: 30880832 PMCID: PMC6394741 DOI: 10.1007/s10750-018-3798-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Differences in habitat and diet between species are often associated with morphological differences. Habitat and trophic adaptation have therefore been proposed as important drivers of speciation and adaptive radiation. Importantly, habitat and diet shifts likely impose changes in exposure to different parasites and infection risk. As strong selective agents influencing survival and mate choice, parasites might play an important role in host diversification. We explore this possibility for the adaptive radiation of Lake Tanganyika (LT) cichlids. We first compare metazoan macroparasites infection levels between cichlid tribes. We then describe the cichlids' genetic diversity at the major histocompatibility complex (MHC), which plays a key role in vertebrate immunity. Finally, we evaluate to what extent trophic ecology and morphology explain variation in infection levels and MHC, accounting for phylogenetic relationships. We show that different cichlid tribes in LT feature partially non-overlapping parasite communities and partially non-overlapping MHC diversity. While morphology explained 15% of the variation in mean parasite abundance, trophic ecology accounted for 16% and 22% of the MHC variation at the nucleotide and at the amino acid level, respectively. Parasitism and immunogenetic adaptation may thus add additional dimensions to the LT cichlid radiation.
Collapse
Affiliation(s)
- Britta S. Meyer
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Evolutionary Ecology of Marine Fishes, Helmholtz Centre for Ocean Research Kiel, GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Present Address: Max Planck Institute for Evolutionary Biology, Max Planck Research Group Behavioural Genomics, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Pascal I. Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
- Present Address: Flanders Marine Institute, Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Anna K. Roose
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
| | - Melinda J. Hofmann
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Present Address: Museo de Zoología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Quito, Ecuador
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Joost A. M. Raeymaekers
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
- Present Address: Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|
23
|
Rahmouni C, Vanhove MPM, Šimková A. Seven new species of Cichlidogyrus Paperna, 1960 (Monogenea: Dactylogyridae) parasitizing the gills of Congolese cichlids from northern Lake Tanganyika. PeerJ 2018; 6:e5604. [PMID: 30370182 PMCID: PMC6202960 DOI: 10.7717/peerj.5604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
Seven new species of Cichlidogyrus Paperna, 1960 (Monogenea: Dactylogyridae) isolated from the gills of six cichlid host species belonging to four tribes and sampled from the Congolese coastline of Lake Tanganyika (LT) are described: Cichlidogyrus adkoningsi sp. nov. from Cyphotilapia frontosa (tribe Cyphotilapiini); C. koblmuelleri sp. nov. from Cardiopharynx schoutedeni (Ectodini); C. habluetzeli sp. nov. from C. schoutedeni and C. frontosa; C. antoineparisellei sp. nov. from Interochromis loocki (Tropheini); C. masilyai sp. nov. from Petrochromis orthognathus (Tropheini); C. salzburgeri sp. nov. from P. trewavasae, and C. sergemorandi sp. nov. from Tylochromis polylepis (Tylochromini). This study represents the first parasitological examination of cyphotilapiine cichlid hosts. Representatives of the Tanganyikan ectodine, tropheine, and tylochromine cichlids previously sampled from various localities in the lake yielded nine, twelve, and two described species of Cichlidogyrus, respectively. The study further includes a morphological characterization of the male copulatory organ of six undescribed species of Cichlidogyrus found on the gills of the tropheines I. loocki and P. orthognathus, and on those of Callochromis melanostigma and Xenotilapia flavipinnis (both Ectodini). Geographical variation in the monogenean fauna of I. loocki was observed. The most closely related cichlid species investigated in this study harboured Cichlidogyrus spp. exhibiting some similarities in their sclerotized structures. Thus, our paper provides additional evidence of the high species richness of Cichlidogyrus and the link with their hosts’s phylogenetic affinities in LT.
Collapse
Affiliation(s)
- Chahrazed Rahmouni
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium.,Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Universiteit Hasselt, Diepenbeek, Belgium
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
24
|
Koblmüller S, Zangl L, Börger C, Daill D, Vanhove MPM, Sturmbauer C, Sefc KM. Only true pelagics mix: comparative phylogeography of deepwater bathybatine cichlids from Lake Tanganyika. HYDROBIOLOGIA 2018; 832:93-103. [PMID: 30880831 PMCID: PMC6394743 DOI: 10.1007/s10750-018-3752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 05/15/2023]
Abstract
In the absence of dispersal barriers, species with great dispersal ability are expected to show little, if at all, phylogeographic structure. The East African Great Lakes and their diverse fish faunas provide opportunities to test this hypothesis in pelagic fishes, which are presumed to be highly mobile and unrestricted in their movement by physical barriers. Here, we address the link between panmixis and pelagic habitat use by comparing the phylogeographic structure among four deepwater cichlid species of the tribe Bathybatini from Lake Tanganyika. We show that the mitochondrial genealogies (based on the most variable part or the control region) of the four species are very shallow (0.8-4% intraspecific divergence across entire distribution ranges) and that all species experienced recent population growth. A lack of phylogeographic structure in the two eupelagic species, Bathybates fasciatus and B. leo, was consistent with expectations and with findings in other pelagic cichlid species. Contrary to expectations, a clear phylogeographic structure was detected in the two benthopelagic species, B. graueri and Hemibates stenosoma. Differences in genetic diversity between eupelagic and benthopelagic species may be due to differences in their dispersal propensity, mediated by their respective predatory niches, rather than precipitated by external barriers to dispersal.
Collapse
Affiliation(s)
- Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Května 8, 603 65 Brno, Czech Republic
| | - Lukas Zangl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christine Börger
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Daniel Daill
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Consultants in Aquatic Ecology and Engineering – blattfisch e.U., Gabelsbergerstraße 7, 4600 Wels, Austria
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 34 Brno, Czech Republic
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
25
|
Vanhove MPM, Briscoe AG, Jorissen MWP, Littlewood DTJ, Huyse T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genomics 2018; 19:520. [PMID: 29973152 PMCID: PMC6032552 DOI: 10.1186/s12864-018-4893-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014 Helsinki, Finland
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Andrew G. Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Michiel W. P. Jorissen
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - D. Tim J. Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|
26
|
Rahmouni C, Vanhove MPM, Šimková A. Underexplored diversity of gill monogeneans in cichlids from Lake Tanganyika: eight new species of Cichlidogyrus Paperna, 1960 (Monogenea: Dactylogyridae) from the northern basin of the lake, with remarks on the vagina and the heel of the male copulatory organ. Parasit Vectors 2017; 10:591. [PMID: 29197419 PMCID: PMC5712084 DOI: 10.1186/s13071-017-2460-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 10/09/2017] [Indexed: 11/17/2022] Open
Abstract
Background Lake Tanganyika harbours the most diverse cichlid assemblage of the Great African Lakes. Considering its cichlid flocks consist of approximately 250 endemic species, we can hypothesize a high species-richness in their often quite host-specific monogenean ectoparasites belonging to Cichlidogyrus Paperna, 1960. Yet, only 24 species were described from Tanganyikan hosts and some host tribes have never been investigated for monogeneans. This study presents the first parasitological examination of species of the tribes Cyprichromini (Cyprichromis microlepidotus (Poll, 1956)), Eretmodini (Eretmodus marksmithi Burgess, 2012 and Tanganicodus irsacae Poll, 1950) and Ectodini (Aulonocranus dewindti (Boulenger, 1899)). Specimens of the ectodine Ophthalmotilapia nasuta (Poll & Matthes, 1962) from which four Cichlidogyrus spp. have been previously described from more southern localities were also studied. Further, we discuss the haptor configuration in Tanganyikan Cichlidogyrus spp. and highlight the morphological diversity of the vagina, and that of the heel, a sclerotized part of the male copulatory organ, absent in some species of Cichlidogyrus. Methods Cichlidogyrus spp. were isolated from gills and fixed using GAP. Haptoral and genital hard parts were measured and drawn by means of a phase contrast microscopic examination. Results We describe eight new species: Cichlidogyrus milangelnari n. sp. on C. microlepidotus; C. jeanloujustinei n. sp. on E. marksmithi; C. evikae n. sp. on T. irsacae; C. aspiralis n. sp., C. glacicremoratus n. sp. and C. rectangulus n. sp. on O. nasuta; and C. pseudoaspiralis n. sp. and C. discophonum n. sp. on A. dewindti. Three haptoral morphotypes were recognized among the new species. Species of Cichlidogyrus from closely related hosts exhibited the same morphotypes. Geographical variation in Cichlidogyrus spp. fauna as observed in O. nasuta and three morphotypes were distinguished. Finally, we listed 111 Cichlidogyrus species, of which 27 and three Tanganyikan species lack sclerotized vagina and heel, respectively, just like 19 and seven species outside of the lake. Conclusions Haptoral and genital features in the Tanganyikan Cichlidogyrus fauna reflect the phylogenetic relationships of their cichlid hosts. It seems that several lineages of Cichlidogyrus spp. exist in Lake Tanganyika but further studies are necessary to confirm this hypothesis and answer questions related to Lake Tanganyika and its cichlids. Electronic supplementary material The online version of this article (10.1186/s13071-017-2460-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chahrazed Rahmouni
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.,Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.,Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590, Diepenbeek, Belgium
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
| |
Collapse
|
27
|
Diversity and host specificity of monogenean gill parasites (Platyhelminthes) of cichlid fishes in the Bangweulu-Mweru ecoregion. J Helminthol 2017; 92:417-437. [PMID: 28829000 DOI: 10.1017/s0022149x17000712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study represents the first exploration of the parasite fauna of cichlid fishes in the Mweru-Luapula subregion (Central Africa). Twelve species of cichlids and 14 species of Monogenea from three genera (Cichlidogyrus, Gyrodactylus and Scutogyrus) were collected. We present a first record of the gill parasite fauna of eight host species, Oreochromis mweruensis, Orthochromis sp. 'Mambilima', Sargochromis mellandi, Serranochromis angusticeps, S. stappersi, S. thumbergi and Tylochromis mylodon. The host range of ten parasite species was expanded. The study further includes the description of Cichlidogyrus consobrini sp. n. from S. mellandi and Orthochromis sp. 'Mambilima'. A new morphotype of C. halli is characterized, and three species - C. papernastrema, C. quaestio and C. zambezensis - are redescribed. Furthermore, the biodiversity and host specificity of these parasites is compared with that of cichlid parasites from Lake Kariba and Cameroon. Two species, including C. consobrini sp. n. and a new morphotype of C. halli, are putative endemics. The parasite fauna in Bangweulu-Mweru is highly similar in species composition to Lake Kariba, but in Bangweulu-Mweru the same parasite species are more host-specific, probably because of hydrogeographical differences between the two regions.
Collapse
|