1
|
Bredt BH, Tripet F, Müller P. Revealing complex mosquito behaviour: a review of current automated video tracking systems suitable for tracking mosquitoes in the field. Parasit Vectors 2025; 18:66. [PMID: 39985064 PMCID: PMC11846416 DOI: 10.1186/s13071-025-06666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
Mosquito-borne pathogens continue to cause tremendous suffering, morbidity and mortality. For many of these diseases, vector control remains the most effective approach. The development and deployment of effective and efficient mosquito control products and strategies require a profound understanding of mosquito behaviour. To study complex mosquito behaviour, automated video tracking of mosquito flight paths has proven to be a comprehensive approach, and several video tracking approaches have emerged in recent years, making the choice for a suitable system challenging. Here, we conducted a literature review by searching PubMed and Google Scholar, and we identified 66 publications focusing on mosquito video tracking, which made use of eight different systems. We then compared and scored those video tracking systems by assessing their performance in the laboratory as well as their potential suitability for tracking mosquito behaviour in a field setting. While all eight systems have produced valuable information on mosquito behaviour, for tracking mosquitoes in the field, 'Braid', 'EthoVision XT' and 'Trackit3D' appear to be the most suitable systems as they need small disk capacity and are well adaptable to different settings. However, the optimal choice will ultimately depend on the specifications required to answer a given research question, the financial resources available and user preferences.
Collapse
Affiliation(s)
- Beatrice H Bredt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Uhrhan MJ, Bomphrey RJ, Lin HT. Flow sensing on dragonfly wings. Ann N Y Acad Sci 2024; 1536:107-121. [PMID: 38837424 DOI: 10.1111/nyas.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
One feature of animal wings is their embedded mechanosensory system that can support flight control. Insect wings are particularly interesting as they are highly deformable yet the actuation is limited to the wing base. It is established that strain sensors on insect wings can directly mediate reflexive control; however, little is known about airflow sensing by insect wings. What information can flow sensors capture and how can flow sensing benefit flight control? Here, we use the dragonfly (Sympetrum striolatum) as a model to explore the function of wing sensory bristles in the context of flight control. Combining our detailed anatomical reconstructions of both the sensor microstructures and wing architecture, we used computational fluid dynamics simulations to ask the following questions. (1) Are there strategic locations on wings that sample flow for estimating aerodynamically relevant parameters such as the local effective angle of attack? (2) Is the sensory bristle distribution on dragonfly wings optimal for flow sensing? (3) What is the aerodynamic effect of microstructures found near the sensory bristles on dragonfly wings? We discuss the benefits of flow sensing for flexible wings and how the evolved sensor placement affects information encoding.
Collapse
Affiliation(s)
- Myriam J Uhrhan
- Department of Bioengineering, Imperial College London, London, UK
| | - Richard J Bomphrey
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Huai-Ti Lin
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Tolassy V, Cazalé-Debat L, Houot B, Reynaud R, Heydel JM, Ferveur JF, Everaerts C. Drosophila Free-Flight Odor Tracking is Altered in a Sex-Specific Manner By Preimaginal Sensory Exposure. J Chem Ecol 2023; 49:179-194. [PMID: 36881326 DOI: 10.1007/s10886-023-01416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
In insects such as Drosophila melanogaster, flight guidance is based on converging sensory information provided by several modalities, including chemoperception. Drosophila flies are particularly attracted by complex odors constituting volatile molecules from yeast, pheromones and microbe-metabolized food. Based on a recent study revealing that adult male courtship behavior can be affected by early preimaginal exposure to maternally transmitted egg factors, we wondered whether a similar exposure could affect free-flight odor tracking in flies of both sexes. Our main experiment consisted of testing flies differently conditioned during preimaginal development in a wind tunnel. Each fly was presented with a dual choice of food labeled by groups of each sex of D. melanogaster or D. simulans flies. The combined effect of food with the cis-vaccenyl acetate pheromone (cVA), which is involved in aggregation behavior, was also measured. Moreover, we used the headspace method to determine the "odorant" identity of the different labeled foods tested. We also measured the antennal electrophysiological response to cVA in females and males resulting from the different preimaginal conditioning procedures. Our data indicate that flies differentially modulated their flight response (take off, flight duration, food landing and preference) according to sex, conditioning and food choice. Our headspace analysis revealed that many food-derived volatile molecules diverged between sexes and species. Antennal responses to cVA showed clear sex-specific variation for conditioned flies but not for control flies. In summary, our study indicates that preimaginal conditioning can affect Drosophila free flight behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Vincent Tolassy
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,School of Biosciences, University of Birmingham, Edgbaston Park Road, B15 2TT, Birmingham, UK
| | - Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,Institut Gustave Roussel, 114, rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Rémy Reynaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
4
|
Zhang G, Cao S, Guo T, Wang H, Qi X, Ren X, Niu C. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth. INSECT SCIENCE 2022; 29:1240-1250. [PMID: 35146929 DOI: 10.1111/1744-7917.13014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Insects employ various types of gustatory receptors (GRs) to identify nutrient-rich food and avoid toxic substances. The larval gustatory system is the critical checkpoint for food acceptance or rejection. As a specialist herbivore, the larvae of Bactrocera minax feed only on unripe citrus fruits. However, how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown. In this study, we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae. Furthermore, we found that silencing BminGR59f by RNA interference (RNAi) affected the growth of 2nd instar B. minax larvae. Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging, and the combination of these two flavones increased the body weight of larvae. In summary, we identified a novel gustatory perception pattern in B. minax for detecting hesperidin and naringin, which boosted the growth of B. minax larvae. These results shed light on how specialist herbivores detect and adapt to host metabolites in adverse environments depending on larval GRs.
Collapse
Affiliation(s)
- Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Guo
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Fabian J, Siwanowicz I, Uhrhan M, Maeda M, Bomphrey RJ, Lin HT. Systematic characterization of wing mechanosensors that monitor airflow and wing deformations. iScience 2022; 25:104150. [PMID: 35465360 PMCID: PMC9018384 DOI: 10.1016/j.isci.2022.104150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Animal wings deform during flight in ways that can enhance lift, facilitate flight control, and mitigate damage. Monitoring the structural and aerodynamic state of the wing is challenging because deformations are passive, and the flow fields are unsteady; it requires distributed mechanosensors that respond to local airflow and strain on the wing. Without a complete map of the sensor arrays, it is impossible to model control strategies underpinned by them. Here, we present the first systematic characterization of mechanosensors on the dragonfly’s wings: morphology, distribution, and wiring. By combining a cross-species survey of sensor distribution with quantitative neuroanatomy and a high-fidelity finite element analysis, we show that the mechanosensors are well placed to perceive features of the wing dynamics relevant to flight. This work describes the wing sensory apparatus in its entirety and advances our understanding of the sensorimotor loop that facilitates exquisite flight control in animals with highly deformable wings. Dragonfly wings are innervated by an extensive collection of sensory neurons Mechanosensors are spread across the whole span of the wing with consistent patterns The axons of wing sensory neurons are scaled to compensate for transmission latencies Anatomically accurate models reveal wing strain fields that inform sensor distribution
Collapse
Affiliation(s)
- Joseph Fabian
- Imperial College London, London, SW7 2AZ, UK.,The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | | - Huai-Ti Lin
- Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
6
|
McCulloch GA, Guhlin J, Dutoit L, Harrop TWR, Dearden PK, Waters JM. Genomic signatures of parallel alpine adaptation in recently evolved flightless insects. Mol Ecol 2021; 30:6677-6686. [PMID: 34592029 DOI: 10.1111/mec.16204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Natural selection along elevational gradients has potential to drive predictable adaptations across distinct lineages, but the extent of such repeated evolution remains poorly studied for many widespread alpine taxa. We present parallel genomic analyses of two recently evolved flightless alpine insect lineages to test for molecular signatures of repeated alpine adaptation. Specifically, we compare low-elevation vs. alpine stonefly ecotypes from parallel stream populations in which flightless upland ecotypes have been independently derived. We map 67,922 polymorphic genetic markers, generated across 176 Zelandoperla fenestrata specimens from two independent alpine stream populations in New Zealand's Rock and Pillar Range, to a newly developed plecopteran reference genome. Genome-wide scans revealed 31 regions with outlier single nucleotide polymorphisms (SNPs) differentiating lowland vs. alpine ecotypes in Lug Creek, and 37 regions with outliers differentiating ecotypes in Six Mile Creek. Of these regions, 13% (8/60) yielded outlier SNPs across both within-stream ecotype comparisons, implying comparable genomic shifts contribute to this repeated alpine adaptation. Candidate genes closely linked to repeated outlier regions include several with documented roles in insect wing-development (e.g., dishevelled), suggesting that they may contribute to repeated alpine wing reduction. Additional candidate genes have been shown to influence insect fecundity (e.g., ovo) and lifespan (e.g., Mrp4), implying that they might contribute to life history differentiation between upland and lowland ecotypes. Additional outlier genes have potential roles in the evolution of reproductive isolation among ecotypes (hedgehog and Desaturase 1). These results demonstrate how replicated outlier tests across independent lineages can potentially contribute to the discovery of genes underpinning repeated adaptation.
Collapse
Affiliation(s)
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
7
|
Qin D, Zhang P, Zhou Y, Liu B, Xiao C, Chen W, Zhang Z. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21646. [PMID: 31742777 DOI: 10.1002/arch.21646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
To clarify the types, number, and distribution of sensilla on the head of the fifth instar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae and identify the main sensilla of azadirachtin acting on larvae, scanning electron microscopy was used to study the morphology of the head and sensilla on the mouthparts. The four sensilla-sensillum basiconicum, sensillum chaeticum, sensillum styloconicum, and sensillum trichodeum-on the head of the fifth instar larvae were treated with 0, 0.1, 0.5, 1, 2, and 4 mg/kg azadirachtin by a microdrop method. The larvae showed an obvious antifeeding effect with azadirachtin. And higher the concentration of azadirachtin, the more obvious the phenomenon of antifeeding activity. The sensillum styloconicum and the sensillum trichodeum were the main sensilla for azadirachtin. When 1 mg/kg azadirachtin was used to treat sensillum styloconicum and sensillum basiconicum, the fifth instar larvae of S. litura showed obvious antifeedant activity and the cumulative feed intake for 24 hr was no more than 30% of the leaf area. Quantitative reverse-transcription polymerase chain reaction verified the expression patterns of some Grs, indicating that Grst43a was upregulated by 1.3- and 3.9-fold, Gor24 was upregulated by 2.5- and 3.3-fold, Gr5a was downregulated by 0.6-fold and upregulated by 2.0-fold, and Gr28a was downregulated by 0.8-fold and upregulated by 3.6-fold upon treatment with 0.5 mg/kg and 1 mg/kg azadirachtin in 24 hr. Gr genes participated in the identification of bitterness and we speculated that Gr genes may indirectly lead to the occurrence of antifeeding behavior.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - You Zhou
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benju Liu
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Chunxia Xiao
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Weibin Chen
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
9
|
Houot B, Cazalé-Debat L, Fraichard S, Everaerts C, Saxena N, Sane SP, Ferveur JF. Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Mol Biol Evol 2019; 35:3-15. [PMID: 28961885 DOI: 10.1093/molbev/msx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The flying ability of insects has coevolved with the development of organs necessary to take-off from the ground, generate, and modulate lift during flight in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free flight odor tracking in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-, inter-, and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of Drosophila pheromonal communication. We manipulated desat1 regulation and found that both neural and nonneural tissues affect distinct flight features. Together, our data suggest that desat1 is one of the genes involved in the evolution of free-flight odor tracking behaviors in Drosophila.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nitesh Saxena
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Sanjay P Sane
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila. iScience 2019; 13:113-124. [PMID: 30826726 PMCID: PMC6402261 DOI: 10.1016/j.isci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Odorants of behaviorally relevant objects (e.g., food sources) intermingle with those from other sources. Therefore to determine whether an odor source is good or bad—without actually visiting it—animals first need to segregate the odorants from different sources. To do so, animals could use temporal stimulus cues, because odorants from one source exhibit correlated fluctuations, whereas odorants from different sources are less correlated. However, the behaviorally relevant timescales of temporal stimulus cues for odor source segregation remain unclear. Using behavioral experiments with free-flying flies, we show that (1) odorant onset asynchrony increases flies' attraction to a mixture of two odorants with opposing innate or learned valence and (2) attraction does not increase when the attractive odorant arrives first. These data suggest that flies can use stimulus onset asynchrony for odor source segregation and imply temporally precise neural mechanisms for encoding odors and for segregating them into distinct objects. Flies can detect whether two mixed odorants arrive synchronously or asynchronously This temporal sensitivity occurs for odorants with innate and learned valences Flies' behavior suggests use of odor onset asynchrony for odor source segregation
Collapse
|
11
|
Markow TA. Host use and host shifts in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:139-145. [PMID: 31109667 DOI: 10.1016/j.cois.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 05/28/2023]
Abstract
Over a thousand Drosophila species have radiated onto a wide range of feeding and breeding sites. These radiations involve adaptations for locating, accepting, and growing in hosts with highly differing characteristics. In a number of species, owing to the availability of sequenced genomes, particular steps in host specialization and genes that control them, are being identified. Many cases of specialization involve the ability to detoxify some component of the host. Examples include Drosophila sechellia and the octanoic acid in Morinda citrifolia, alpha-amanitin in mycophagous drosophilids, and the alkaloids in cactophilic species. Owing to the known ecologies of many species for which genomes exist, the Drosophila model system provides an unprecedented opportunity to simultaneously examine the genes underlying HOST LOCATION, HOST ACCEPTANCE and HOST USE, the types of selection acting upon them and any coevolutionary interactions among the genes underlying these steps.
Collapse
Affiliation(s)
- Therese Ann Markow
- National Laboratory for the Genomics of Biodiversity, CINVESTAV, Irapuato, Mexico; Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Sanou A, Traoré F, Ba MN, Dabiré-Binso CL, Pittendrigh BR, Sanon A. Effects of Volatiles from Clavigralla tomentosicollis Stål. (Hemiptera: Coreidae) Adults on the Host Location Behavior of the Egg Parasitoid Gryon fulviventre (Crawford) (Hymenoptera: Scelionidae). INTERNATIONAL JOURNAL OF INSECT SCIENCE 2019; 11:1179543318825250. [PMID: 30728729 PMCID: PMC6351711 DOI: 10.1177/1179543318825250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The egg parasitoid Gryon fulviventre is a potential biological control agent of Clavigralla tomentosicollis, a coreid pod-sucking pest of Vigna unguiculata. The host location behavior of naive parasitoid females was studied using a four-armed olfactometer. Two strains of G. fulviventre parasitoids from Burkina Faso and Benin were exposed to odors provided by healthy and infested pods as well as C. tomentosicollis females and males. The time spent in each odor zone was recorded to determine the preference of parasitoid females. Results show that odors from healthy pods, infested pods, and pest females did not attract the parasitoid. However, a significantly attractive response of both strains of G. fulviventre was recorded in the presence of volatiles from males of C. tomentosicollis. Moreover, experiments testing G. fulviventre females' behavior when simultaneously exposed to volatiles from cowpea pods (healthy and infested) and increasing numbers of C. tomentosicollis males revealed a significantly higher attraction of parasitoid females of both strains by volatiles from ten males of C. tomentosicollis. The results suggest that the males of the insect pest emit a pheromone used as kairomone by parasitoids to locate their host. The conditions determining this attractiveness at field level and its impact on host-searching efficiency are discussed.
Collapse
Affiliation(s)
- Apolline Sanou
- Laboratoire Central d’Entomologie Agricole de Kamboinsé, Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, UFR/SVT, Université Ouaga I Pr Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Fousséni Traoré
- Laboratoire Central d’Entomologie Agricole de Kamboinsé, Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | - Malick Niango Ba
- Laboratoire Central d’Entomologie Agricole de Kamboinsé, Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
- West and Central Africa Research Program.International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - Clémentine L Dabiré-Binso
- Laboratoire Central d’Entomologie Agricole de Kamboinsé, Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | | | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, UFR/SVT, Université Ouaga I Pr Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
13
|
Chen YCD, Park SJ, Ja WW, Dahanukar A. Using Pox-Neuro ( Poxn) Mutants in Drosophila Gustation Research: A Double-Edged Sword. Front Cell Neurosci 2018; 12:382. [PMID: 30405359 PMCID: PMC6207628 DOI: 10.3389/fncel.2018.00382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
In Drosophila, Pox-neuro (Poxn) is a member of the Paired box (Pax) gene family that encodes transcription factors with characteristic paired DNA-binding domains. During embryonic development, Poxn is expressed in sensory organ precursor (SOP) cells of poly-innervated external sensory (p-es) organs and is important for specifying p-es organ identity (chemosensory) as opposed to mono-innervated external sensory (m-es) organs (mechanosensory). In Poxn mutants, there is a transformation of chemosensory bristles into mechanosensory bristles. As a result, these mutants have often been considered to be entirely taste-blind, and researchers have used them in this capacity to investigate physiological and behavioral functions that act in a taste-independent manner. However, recent studies show that only external taste bristles are transformed in Poxn mutants whereas all internal pharyngeal taste neurons remain intact, raising concerns about interpretations of experimental results using Poxn mutants as taste-blind flies. In this review, we summarize the value of Poxn mutants in advancing our knowledge of taste-enriched genes and feeding behaviors, and encourage revisiting some of the conclusions about taste-independent nutrient-sensing mechanisms derived from these mutants. Lastly, we highlight that Poxn mutant flies remain a valuable tool for probing the function of the relatively understudied pharyngeal taste neurons in sensing meal properties and regulating feeding behaviors.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Scarlet Jinhong Park
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Shigaki S, Fikri MR, Hernandez Reyes C, Sakurai T, Ando N, Kurabayashi D, Kanzaki R, Sezutsu H. Animal-in-the-loop system to investigate adaptive behavior. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1511473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- S. Shigaki
- Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - M. R. Fikri
- Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | - T. Sakurai
- The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - N. Ando
- The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - R. Kanzaki
- The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - H. Sezutsu
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Grillet M, Ferveur JF, Everaerts C. Behavioural elements and sensory cues involved in sexual isolation between Drosophila melanogaster strains. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172060. [PMID: 29892393 PMCID: PMC5990781 DOI: 10.1098/rsos.172060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Sensory cues exchanged during courtship are crucial for mate choice: if they show intraspecific divergence, this may cause or reinforce sexual isolation between strains, ultimately leading to speciation. There is a strong asymmetric sexual isolation between Drosophila melanogaster females from Zimbabwe (Z) and males from all other populations (M). While M and Z flies of both sexes show different cuticular pheromones, this variation is only partly responsible for the intraspecific isolation effect. Male acoustic signals are also partly involved in sexual isolation. We examined strain-specific courtship behaviour sequences to determine which body parts and sensory appendages may be involved in sexual isolation. Using two strains representative of the Z- and M-types, we manipulated sensory cues and the social context; we then measured the consequence of these manipulations on courtship and copulation. Our data suggest that Z females mated best with males whose sensory characteristics matched those of Z males in both quantity and quality. M females were less choosy and much less influenced by the sensory and social contexts. Differences in emission and reception of sensory signals seen between Z and M flies may lead to the concerted evolution of multiple sensory channel, thereby shaping a population-specific mate recognition system.
Collapse
Affiliation(s)
| | | | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|