1
|
Reza HA, Santangelo C, Iwasawa K, Reza AA, Sekiya S, Glaser K, Bondoc A, Merola J, Takebe T. Multi-zonal liver organoids from human pluripotent stem cells. Nature 2025:10.1038/s41586-025-08850-1. [PMID: 40240593 DOI: 10.1038/s41586-025-08850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2025] [Indexed: 04/18/2025]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and are critical to understanding metabolic homeostasis and injury in the liver1. Although several bioactive molecules, including ascorbate and bilirubin, have been described as having a role in directing zonal fates, zonal liver architecture has not yet been replicated in vitro2,3. Here, to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid by co-culturing ascorbate- and bilirubin-enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with the urea cycle, glutathione synthesis and glutamate synthesis. Single-nucleus RNA-sequencing analysis of these zonally patterned organoids identifies a hepatoblast differentiation trajectory that dictates periportal, interzonal and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate- or bilirubin-dependent binding of EP300 to TET1 or HIF1α. Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonaemia and hyperbilirubinaemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sachiko Sekiya
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Department of Genome Biology, Graduate School of Medicine, The University of Osaka, Suita, Japan.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
2
|
Heo D, Kim AA, Neumann B, Doze VN, Xu YKT, Mironova YA, Slosberg J, Goff LA, Franklin RJM, Bergles DE. Transcriptional profiles of mouse oligodendrocyte precursor cells across the lifespan. NATURE AGING 2025; 5:675-690. [PMID: 40164771 DOI: 10.1038/s43587-025-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Oligodendrocyte progenitor cells (OPCs) are highly dynamic, widely distributed glial cells of the central nervous system responsible for generating myelinating oligodendrocytes throughout life. However, the rates of OPC proliferation and differentiation decline dramatically with aging, which may impair homeostasis, remyelination and adaptive myelination during learning. To determine how aging influences OPCs, we generated a transgenic mouse line (Matn4-mEGFP) and performed single-cell RNA sequencing, providing enhanced resolution of transcriptional changes during key transitions from quiescence to proliferation and differentiation across the lifespan. We found that aging induces distinct transcriptomic changes in OPCs in different states, including enhanced activation of HIF-1α and WNT pathways. Pharmacological inhibition of these pathways in aged OPCs was sufficient to increase their ability to differentiate in vitro. Ultimately, Matn4-mEGFP mouse line and the sequencing dataset of cortical OPCs across ages will help to define the molecular changes guiding OPC behavior in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anya A Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Björn Neumann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Valerie N Doze
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Kang T Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Yevgeniya A Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
5
|
Sun J, Jin X, Li Y. OTUD7B inhibited hepatic injury from NAFLD by inhibiting K48-linked ubiquitination and degradation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167555. [PMID: 39520879 DOI: 10.1016/j.bbadis.2024.167555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the prevalent liver disease. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme and its role in NAFLD remains unclear. In high-fat diet (HFD)-induced NAFLD mouse model and palmitic acid (PA)-treated HepG2 cells, OTUD7B expression was decreased. Adenoviral overexpression of OTUD7B in mice resulted in reduced body weight and liver injury, with decreased serum aminotransferase (ALT) and aspartate aminotransferase (AST) levels. OTUD7B overexpression attenuated hepatic lipid deposition (serum TG, TC, LDL-C, HDLC, and FFA levels), which might be through the suppression of lipogenesis and β-oxidation-related genes. The contents of hepatic inflammatory factors (TNF-α, IL-6, and IL-1β) were decreased following OTUD7B overexpression in NAFLD mice. A mechanism study indicated that the protective effect of OTUD7B overexpression might be associated with β-catenin signal activation. OTUD7B overexpression promoted PA-induced β-catenin activity in TopFlash assay, and increased total β-catenin and c-myc levels in cells. The increase in β-catenin levels was contributed to the stabilization via inhibiting K48-linked ubiquitination and proteasomal degradation by OTUD7B. NR4A2 role in NASH has been proved. NR4A2 ChIP-seq and RNA-seq data excluded transcriptional regulation of NR4A2 to OTUD7B, and it was experimentally evidenced that NR4A2 bound to OTUD7B promoter region and positively transcriptionally regulate OTUD7B expression. In summary, OTUD7B overexpression ameliorated hepatic inflammation and steatosis in NAFLD. The possible mechanism of OTUD7B might be through the inhibition of β-catenin degradation by removing K48-linked ubiquitination, which might be regulated by NR4A2.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuli Jin
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiling Li
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Trujano-Camacho S, Cantú-de León D, Pérez-Yepez E, Contreras-Romero C, Coronel-Hernandez J, Millan-Catalan O, Rodríguez-Dorantes M, López-Camarillo C, Gutiérrez-Ruiz C, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells 2024; 13:1484. [PMID: 39273054 PMCID: PMC11394386 DOI: 10.3390/cells13171484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The mechanisms underlying the sustained activation of the PI3K/AKT and Wnt/β-catenin pathways mediated by HOTAIR in cervical cancer (CC) have not been extensively described. To address this knowledge gap in the literature, we explored the interactions between these pathways by driving HOTAIR expression levels in HeLa cells. Our findings reveal that HOTAIR is a key regulator in sustaining the activation of both signaling pathways. Specifically, altering HOTAIR expression-either by knockdown or overexpression-significantly influenced the transcriptional activity of the PI3K/AKT and Wnt/β-catenin pathways. Additionally, we discovered that HIF1α directly induces HOTAIR transcription, which in turn leads to the epigenetic silencing of the PTEN promoter via DNMT1. This process leads to the sustained activation of both pathways, highlighting a novel regulatory axis involving HOTAIR and HIF1α in cervical cancer. Our results suggest a new model in which HOTAIR sustains reciprocal activation of the PI3K/AKT and Wnt/β-catenin pathways through the HOTAIR/HIF1α axis, thereby contributing to the oncogenic phenotype of cervical cancer.
Collapse
Affiliation(s)
- Samuel Trujano-Camacho
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - David Cantú-de León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Carlos Contreras-Romero
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Jossimar Coronel-Hernandez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
| | | | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico;
| | - Concepción Gutiérrez-Ruiz
- Laboratory of Experimental Medicine, Translational Medicine Unit, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico;
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (D.C.-d.L.); (E.P.-Y.); (C.C.-R.); (J.C.-H.); (O.M.-C.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| |
Collapse
|
7
|
Al Reza H, Santangelo C, Al Reza A, Iwasawa K, Sachiko S, Glaser K, Bondoc A, Merola J, Takebe T. Self-Assembled Generation of Multi-zonal Liver Organoids from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610426. [PMID: 39257824 PMCID: PMC11384014 DOI: 10.1101/2024.08.30.610426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Distinct hepatocyte subpopulations are spatially segregated along the portal-central axis and critical to understanding metabolic homeostasis and liver injury. While several bioactive molecules have been described to play a role in directing zonal fates, including ascorbate and bilirubin, in vitro replication of zonal liver architecture has not been achieved to date. In order to evaluate hepatic zonal polarity, we developed a self-assembling zone-specific liver organoid culture by co-culturing ascorbate and bilirubin enriched hepatic progenitors derived from human induced pluripotent stem cells. We found that preconditioned hepatocyte-like cells exhibited zone-specific functions associated with urea cycle, glutathione synthesis and glutamate synthesis. Single nucleus RNA sequencing analysis of these zonally patterned organoids identifies hepatoblast differentiation trajectory that mimics periportal-, interzonal-, and pericentral human hepatocytes. Epigenetic and transcriptomic analysis showed that zonal identity is orchestrated by ascorbate or bilirubin dependent binding of histone acetyltransferase p300 (EP300) to methylcytosine dioxygenase TET1 or hypoxia-inducible factor 1-alpha (HIF1α). Transplantation of the self-assembled zonally patterned human organoids improved survival of immunodeficient rats who underwent bile duct ligation by ameliorating the hyperammonemia and hyperbilirubinemia. Overall, this multi-zonal organoid system serves as an in vitro human model to better recapitulate hepatic architecture relevant to liver development and disease.
Collapse
Affiliation(s)
- Hasan Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Connie Santangelo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Abid Al Reza
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Kentaro Iwasawa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Sachiko Sachiko
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Jonathan Merola
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan
| |
Collapse
|
8
|
Varlamova EG. Molecular Mechanisms of the Therapeutic Effect of Selenium Nanoparticles in Hepatocellular Carcinoma. Cells 2024; 13:1102. [PMID: 38994955 PMCID: PMC11240755 DOI: 10.3390/cells13131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
This review describes and summarizes, for the first time, the molecular mechanisms of the cytotoxic effect of selenium nanoparticles of various origins on hepatocellular carcinoma cells. The text provides information from recent years indicating the regulation of various signaling pathways and endoplasmic reticulum stress by selenium nanoparticles; the pathways of cell death of liver cancer cells as a result of exposure to selenium nanoparticles are considered. Particular attention is paid to the participation of selenoproteins and selenium-containing thioredoxin reductases and glutathione peroxidases in these processes. Previously, there were no reviews that fully reflected the cytotoxic effects of selenium nanoparticles specifically in hepatocellular carcinoma, despite the fact that many reviews and experimental articles have been devoted to the causes of this disease and the molecular mechanisms of regulation of cytotoxic effects by other agents. The relevance of this review is primarily explained by the fact that despite the development of various drugs and approaches for the treatment and prevention of hepatocellular carcinoma, this disease is still the fourth leading cause of death in the world. For this reason, a complete understanding of the latest trends in the treatment of oncology of various etiologies, especially hepatocellular carcinoma, is extremely important.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
9
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
11
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
14
|
Zhang J, Ye F, Ye A, He B. Lysyl oxidase inhibits BMP9-induced osteoblastic differentiation through reducing Wnt/β-catenin via HIF-1a repression in 3T3-L1 cells. J Orthop Surg Res 2023; 18:911. [PMID: 38031108 PMCID: PMC10688138 DOI: 10.1186/s13018-023-04251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a promising growth factor in bone tissue engineering, while the detailed molecular mechanism underlying BMP9-oriented osteogenesis remains unclear. In this study, we investigated the effect of lysyl oxidase (Lox) on the BMP9 osteogenic potential via in vivo and in vitro experiments, as well as the underlying mechanism. METHODS PCR assay, western blot analysis, histochemical staining, and immunofluorescence assay were used to quantify the osteogenic markers level, as well as the possible mechanism. The mouse ectopic osteogenesis assay was used to assess the impact of Lox on BMP9-induced bone formation. RESULTS Our findings suggested that Lox was obviously upregulated by BMP9 in 3T3-L1 cells. BMP9-induced Runx2, OPN, and mineralization were all enhanced by Lox inhibition or knockdown, while Lox overexpression reduced their expression. Additionally, the BMP9-induced adipogenic makers were repressed by Lox inhibition. Inhibition of Lox resulted in an increase in c-Myc mRNA and β-catenin protein levels. However, the increase in BMP9-induced osteoblastic biomarkers caused by Lox inhibition was obviously reduced when β-catenin knockdown. BMP9 upregulated HIF-1α expression, which was further enhanced by Lox inhibition or knockdown, but reversed by Lox overexpression. Lox knockdown or HIF-1α overexpression increased BMP9-induced bone formation, although the enhancement caused by Lox knockdown was largely diminished when HIF-1α was knocked down. Lox inhibition increased β-catenin levels and decreased SOST levels, which were almost reversed by HIF-1α knockdown. CONCLUSION Lox may reduce the BMP9 osteoblastic potential by inhibiting Wnt/β-catenin signaling via repressing the expression HIF-1α partially.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - FangLin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - AiHua Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - BaiCheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
16
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
17
|
Leung RWH, Lee TKW. Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14215468. [PMID: 36358885 PMCID: PMC9656505 DOI: 10.3390/cancers14215468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Aberrant Wnt/β-catenin signaling has been reported to play crucial role in pathogenesis of hepatocellular carcinoma (HCC). In this review, we focus on the regulatory role of Wnt/β-catenin signaling in cancer stemness and metabolic reprogramming, which are two emerging hallmarks of cancer. Understanding the role of Wnt/β-catenin signaling in regulation of the above processes reveals novel therapeutic strategy against this deadly disease. Abstract Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide due to its high rates of tumor recurrence and metastasis. Aberrant Wnt/β-catenin signaling has been shown to play a significant role in HCC development, progression and clinical impact on tumor behavior. Accumulating evidence has revealed the critical involvement of Wnt/β-catenin signaling in driving cancer stemness and metabolic reprogramming, which are regarded as emerging cancer hallmarks. In this review, we summarize the regulatory mechanism of Wnt/β-catenin signaling and its role in HCC. Furthermore, we provide an update on the regulatory roles of Wnt/β-catenin signaling in metabolic reprogramming, cancer stemness and drug resistance in HCC. We also provide an update on preclinical and clinical studies targeting Wnt/β-catenin signaling alone or in combination with current therapies for effective cancer therapy. This review provides insights into the current opportunities and challenges of targeting this signaling pathway in HCC.
Collapse
Affiliation(s)
- Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-3400-8799; Fax: +852-2364-9932
| |
Collapse
|
18
|
Risato G, Celeghin R, Brañas Casas R, Dinarello A, Zuppardo A, Vettori A, Pilichou K, Thiene G, Basso C, Argenton F, Visentin S, Cosmi E, Tiso N, Beffagna G. Hyperactivation of Wnt/β-catenin and Jak/Stat3 pathways in human and zebrafish foetal growth restriction models: Implications for pharmacological rescue. Front Cell Dev Biol 2022; 10:943127. [PMID: 36051436 PMCID: PMC9424487 DOI: 10.3389/fcell.2022.943127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Foetal Growth Restriction (FGR), previously known as Intrauterine Growth Restriction (IUGR), is an obstetrical condition due to placental insufficiency, affecting yearly about 30 million newborns worldwide. In this work, we aimed to identify and pharmacologically target signalling pathways specifically involved in the FGR condition, focusing on FGR-related cardiovascular phenotypes. The transcriptional profile of human umbilical cords from FGR and control cases was compared with the response to hypoxia of zebrafish (Danio rerio) transgenic lines reporting in vivo the activity of twelve signalling pathways involved in embryonic development. Wnt/β-catenin and Jak/Stat3 were found as key pathways significantly dysregulated in both human and zebrafish samples. This information was used in a chemical-genetic analysis to test drugs targeting Wnt/β-catenin and Jak/Stat3 pathways to rescue a set of FGR phenotypes, including growth restriction and cardiovascular modifications. Treatments with the Wnt/β-catenin agonist SB216763 successfully rescued body dimensions, cardiac shape, and vessel organization in zebrafish FGR models. Our data support the Wnt/β-catenin pathway as a key FGR marker and a promising target for pharmacological intervention in the FGR condition.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Rudy Celeghin
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | | | | | - Andrea Vettori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Erich Cosmi
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgia Beffagna
- Department of Biology, University of Padova, Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Tang K, Toyozumi T, Murakami K, Sakata H, Kano M, Endo S, Matsumoto Y, Suito H, Takahashi M, Sekino N, Otsuka R, Kinoshita K, Hirasawa S, Hu J, Uesato M, Hayano K, Matsubara H. HIF-1α stimulates the progression of oesophageal squamous cell carcinoma by activating the Wnt/β-catenin signalling pathway. Br J Cancer 2022; 127:474-487. [PMID: 35484214 PMCID: PMC9345968 DOI: 10.1038/s41416-022-01825-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to clarify the significance of the crosstalk between hypoxia-inducible factor-1α (HIF-1α) and the Wnt/β-catenin pathway in oesophageal squamous cell carcinoma (ESCC). METHODS The oncogenic role of HIF-1α in ESCC was investigated using in vitro and in vivo assays. The clinicopathological significance of HIF-1α, β-catenin and TCF4/TCF7L2 in ESCC were evaluated using quantitative real-time PCR and immunohistochemistry. RESULTS The expression level of HIF-1α, β-catenin, and TCF4/TCF7L2 in T.Tn and TE1 cell lines were elevated under hypoxia in vitro. HIF-1α knockdown suppressed proliferation, migration/invasion and epithelial-mesenchymal transition (EMT) progression, induced G0/G1 cell cycle arrest, promoted apoptosis and inhibited 5-fluorouracil chemoresistance in vitro. In vivo assays showed that HIF-1α is essential in maintaining tumour growth, angiogenesis, and 5-fluorouracil chemoresistance. Mechanically, we identified the complex between HIF-1α and β-catenin, HIF-1α can directly bind to the promoter region of TCF4/TCF7L2. The mRNA level of HIF-1α, β-catenin and TCF4/TCF7L2 were increased in ESCC tumour tissues compared to the corresponding non-tumour tissues. High levels of HIF-1α and TCF4/TCF7L2 expression were correlated with aggressive phenotypes and poor prognosis in ESCC patients. CONCLUSIONS HIF-1α serves as an oncogenic transcriptional factor in ESCC, probably by directly targeting TCF4/TCF7L2 and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Kang Tang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jie Hu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
20
|
Luan M, Si H. Novel hypoxia features with appealing implications in discriminating the prognosis, immune escape and drug responses of 947 hepatocellular carcinoma patients. Transl Cancer Res 2022; 11:2097-2121. [PMID: 35966318 PMCID: PMC9372209 DOI: 10.21037/tcr-22-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hypoxia has a profound impact on the development and progression of hepatocellular carcinoma (HCC). This study aimed to explore and elucidate how hypoxia affect prognosis, immune escape and drug responses in HCC. METHODS HCC-specific hypoxia signatures were identified based on the intersect of differentially expressed genes (DEGs) of GSE41666 and GSE15366. The hypoxia score was calculated using the gene set variation analysis (GSVA) function and validated on GSE18494. We collected five cohorts [The Cancer Genome Atlas (TCGA), GSE14520, GSE39791, GSE36376, GSE57957] for further analysis. First, we analyzed the effect of the hypoxia score on prognosis. Next, we systematically analyzed the potential hypoxia-related immune escape mechanisms and the effect of hypoxia upon immunotherapy. Then, we predicted and screened potential sensitive drugs for HCC patients with high hypoxia levels using machine learning and docking. RESULTS We constructed a novel HCC-specific hypoxia score and undertook further analysis in five cohorts (TCGA, GSE14520, GSE39791, GSE36376, GSE57957). We observed that patients with high hypoxia scores exhibited worse overall survival (OS) in TCGA and GSE14520. We also constructed a hypoxia-related nomogram that had good performance in predicting HCC patients' prognosis. Furthermore, patients with lower hypoxia scores had a lower risk of immune escape and thus may benefit from immunotherapy. Finally, we predicted and screened VLX600 as the candidate drug for HCC patients with high hypoxia scores. We further explored and elucidated why VLX600 was more sensitive in HCC patients with high hypoxia than with low hypoxia HCC patients using weighted gene co-expression network analysis (WGCNA). CONCLUSIONS This study provides further evidence of the link between hypoxia and prognosis and immune escape in HCC patients. Moreover, our research screened VLX600 as a potential drug for HCC patients with high hypoxia levels and elucidated the potential mechanism.
Collapse
Affiliation(s)
| | - Hongzong Si
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile State Key Laboratory, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Hypoxia-driven metabolic heterogeneity and immune evasive behaviour of gastrointestinal cancers: Elements of a recipe for disaster. Cytokine 2022; 156:155917. [PMID: 35660715 DOI: 10.1016/j.cyto.2022.155917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal (GI) cancers refer to a group of malignancies associated with the GI tract (GIT). Like other solid tumors, hypoxic regions consistently feature inside the GI tumor microenvironment (TME) and contribute towards metabolic reprogramming of tumor-resident cells by modulating hypoxia-induced factors. We highlight here how the metabolic crosstalk between cancer cells and immune cells generate immunosuppressive environment inside hypoxic tumors. Given the fluctuating nature of tumor hypoxia, the metabolic fluxes between immune cells and cancer cells change dynamically. These changes alter cellular phenotypes and functions, resulting in the acceleration of cancer progression. These evolved properties of hypoxic tumors make metabolism-targeting monotherapy approaches or immunotherapy-measures unsuccessful. The current review highlights the advantages of combined immunometabolic treatment strategies to target hypoxic GI cancers and also identifies research areas to develop better combinational therapeutics for future.
Collapse
|
22
|
Kim Y, Kim DY, Zhang H, Bae CR, Seong D, Kim Y, Song J, Kim YM, Kwon YG. DIX domain containing 1 (DIXDC1) modulates VEGFR2 level in vasculatures to regulate embryonic and postnatal retina angiogenesis. BMC Biol 2022; 20:41. [PMID: 35144597 PMCID: PMC8830128 DOI: 10.1186/s12915-022-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background In sprouting angiogenesis, VEGFR2 level is regulated via a fine-tuned process involving various signaling pathways. Other than VEGF/VEGFR2 signaling pathway, Wnt/ β-catenin signaling is also important in vascular development. However, the crosstalk between these two signaling pathways is still unknown to date. In this study, we aimed to investigate the role of DIX domain containing 1 (DIXDC1) in vasculature, facilitating the crosstalk between VEGF/VEGFR2 and Wnt/ β-catenin signaling pathways. Results In mice, DIXDC1 deficiency delayed angiogenesis at the embryonic stage and suppressed neovascularization at the neonatal stage. DIXDC1 knockdown inhibited VEGF-induced angiogenesis in endothelial cells in vitro by downregulating VEGFR2 expression. DIXDC1 bound Dishevelled Segment Polarity Protein 2 (Dvl2) and polymerized Dvl2 stabilizing VEGFR2 protein via its direct interaction. The complex formation and stability of VEGFR2 was potentiated by Wnt signaling. Moreover, hypoxia elevated DIXDC1 expression and likely modulated both canonical Wnt/β-catenin signaling and VEGFR2 stability in vasculatures. Pathological angiogenesis in DIXDC1 knockout mice was decreased significantly in oxygen-induced retinopathy (OIR) and in wound healing models. These results suggest that DIXDC1 is an important factor in developmental and pathological angiogenesis. Conclusion We have identified DIXDC1 as an important factor in early vascular development. These results suggest that DIXDC1 represents a novel regulator of sprouting angiogenesis that links Wnt signaling and VEGFR2 stability and may have a potential role in pathological neovascularization. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01240-3.
Collapse
Affiliation(s)
- Yeaji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Present address: Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Haiying Zhang
- R&D Department, Curacle Co. Ltd, Seongnam-si, Republic of Korea
| | - Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Orikasa S, Kawashima N, Tazawa K, Hashimoto K, Sunada-Nara K, Noda S, Fujii M, Akiyama T, Okiji T. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 2022; 12:682. [PMID: 35027586 PMCID: PMC8758693 DOI: 10.1038/s41598-021-04453-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Accelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.
Collapse
Affiliation(s)
- Shion Orikasa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mayuko Fujii
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
24
|
Abbas EAER, Barakat AB, Hassany M, Youssef SS. The role of BCL9 genetic variation as a biomarker for hepatitis C-related hepatocellular carcinoma in Egyptian patients. J Genet Eng Biotechnol 2022; 20:4. [PMID: 34978646 PMCID: PMC8724383 DOI: 10.1186/s43141-021-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is considered one of the most common cancers related to mortality around the world, and susceptibility is related with genetic, lifestyle, and environmental factors. Copy number variation of the Bcell CLL/lymphoma 9 (BCL9) gene is a type of structural variation which can influence gene expression and can be related with specific phenotypes and diseases and has a role in hepatocarcinogenesis. Our aims were to assess the copy number variation (CNV) in the BCL9 gene and explore its role in HCV-related HCC Egyptian patients. A total of 50 HCV-related HCC patients were enrolled in the study (including 25 early HCC and 25 late HCC cases); the copy number of the BCL9 gene was detected using quantitative polymerase reaction. RESULTS There was a highly statistically significant difference between the two groups (early and late HCC patients) in gender, bilharziasis, performance status, child score class, child grade, focal lesion size, portal vein, and ascites. CNV was detected and represented by the gain in the BCL9 gene in 14% of patients, and all of them were males. Also, it was noticed that the ratio of gain in BCL9 copy number in late individuals was about 1.5 times than that in early HCC individuals. Moreover, our results showed that the distribution of performance status > 1, average and enlarged liver, focal lesion size, thrombosed portal vein, and AFP was higher in patients with BCL9 copy number gain. CONCLUSION We detected about 14% gain in BCL9 copy number in Egyptian HCC patients. But the variation in copy number of the BCL9 gene did not affect HCC development in our patients' cohort.
Collapse
Affiliation(s)
- Eman Abd El Razek Abbas
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Cairo 12622 Egypt
| | | | - Mohamed Hassany
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Samar Samir Youssef
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Cairo 12622 Egypt
| |
Collapse
|
25
|
Htun MW, Shibata Y, Soe K, Koji T. Nuclear Expression of Pygo2 Correlates with Poorly Differentiated State Involving c-Myc, PCNA and Bcl9 in Myanmar Hepatocellular Carcinoma. Acta Histochem Cytochem 2021; 54:195-206. [PMID: 35023882 PMCID: PMC8727843 DOI: 10.1267/ahc.21-00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
In Myanmar, hepatocellular carcinoma (HCC) is commonly seen in young adult and associated with poor prognosis, while the molecular mechanisms that characterize HCC in Myanmar are unknown. As co-activation of Wnt/β-catenin signaling and c-Myc (Myc) are reported to associate with malignancy of HCC, we immunohistochemically investigated the expression of Pygo2 and Bcl9, the co-activators of the Wnt/β-catenin signaling, Myc and PCNA in 60 cases of Myanmar HCC. Pygo2 expression was confirmed by in situ hybridization. The signal intensity was measured by image analyzer and then statistically analyzed. As a result, the expression of Pygo2 was significantly higher in HCC compared to normal liver tissue and the nuclear signal was the most intense in poorly differentiated HCC. Cytoplasmic Bcl9 was expressed in the normal liver tissue but decreased in HCC with the progression of histopathological grade. Myc was significantly higher in poorly differentiated HCC, whereas PCNA labeling index increased with the progression of histopathological grade. Nuclear Pygo2 showed strong correlation with nuclear Myc (P < 0.01) and PCNA (P < 0.001), and inversely correlated with cytoplasmic Bcl9 (P < 0.01). Our results suggested Wnt/β-catenin and Myc signaling is commonly activated in Myanmar HCC and that the correlative upregulation of nuclear Pygo2 and Myc characterizes the malignant features of HCC in Myanmar.
Collapse
Affiliation(s)
- Myo Win Htun
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | | | - Takehiko Koji
- Office for Research Initiative and Development, Nagasaki University
| |
Collapse
|
26
|
Arinze NV, Yin W, Lotfollahzadeh S, Napoleon MA, Richards S, Walker JA, Belghasem M, Ravid JD, Hassan Kamel M, Whelan SA, Lee N, Siracuse JJ, Anderson S, Farber A, Sherr D, Francis J, Hamburg NM, Rahimi N, Chitalia VC. Tryptophan metabolites suppress Wnt pathway and promote adverse limb events in CKD patients. J Clin Invest 2021; 132:142260. [PMID: 34752422 PMCID: PMC8718145 DOI: 10.1172/jci142260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress β-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated β-catenin in a manner dependent on serine 33 in its degron motif and through the aryl hydrocarbon receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute–specific mouse models showed diminished β-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized postischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma’s AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers the tryptophan metabolite/AHR/β-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.
Collapse
Affiliation(s)
- Nkiruka V Arinze
- Department of Surgery, Boston University School of Medicine, Boston, United States of America
| | - Wenqing Yin
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Saran Lotfollahzadeh
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Marc Arthur Napoleon
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Sean Richards
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Joshua A Walker
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, United States of America
| | - Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Mohamed Hassan Kamel
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Stephen A Whelan
- Department of Chemistry, Boston University, Boston, United States of America
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, United States of America
| | - Jeffrey J Siracuse
- Department of Surgery, Boston University School of Medicine, Boston, United States of America
| | - Stephan Anderson
- Department of Radiology, Boston University School of Medicine, Boston, United States of America
| | - Alik Farber
- Department of Surgery, Boston University School of Medicine, Boston, United States of America
| | - David Sherr
- Boston University, Boston, United States of America
| | - Jean Francis
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| | - Naomi M Hamburg
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, United States of America
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, United States of America
| | - Vipul C Chitalia
- Department of Medicine, Boston University School of Medicine, Boston, United States of America
| |
Collapse
|
27
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
28
|
Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, Saxena M, Valenta T, Hausmann G, Cantù C, Basler K, Christofori G. The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene 2021; 40:6195-6209. [PMID: 34545187 PMCID: PMC8553620 DOI: 10.1038/s41388-021-02016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Canonical Wnt/β-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of β-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with β-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of β-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the β-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFβ treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the “just-right” hypothesis of Wnt-driven tumor progression.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - David Buechel
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lorenzo Bazzani
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
29
|
Merikhian P, Eisavand MR, Farahmand L. Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int 2021; 21:419. [PMID: 34376211 PMCID: PMC8353874 DOI: 10.1186/s12935-021-02107-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not as prevalent as hormone receptor or HER2-positive breast cancers and all receptor tests come back negative. More importantly, the heterogeneity and complexity of the TNBC on the molecular and clinical levels have limited the successful development of novel therapeutic strategies and led to intrinsic or developed resistance to chemotherapies and new therapeutic agents. Studies have demonstrated deregulation of Wnt/β-catenin signaling in tumorigenesis which plays decisive roles at the low survival rate of patients and facilitates resistance to currently existing therapies. This review summarizes mechanisms of Wnt/β-catenin signaling for resistance development in TNBC, the complex interaction between Wnt/β-catenin signaling, and the transactivated receptor tyrosine kinase (RTK) signaling pathways, lymphocytic infiltration, epithelial-mesenchymal transition (EMT), and induction of metastasis. Such associations and how these pathways interact in the development and progression of cancer have led to the careful analysis and development of new and effective combination therapies without generating significant toxicity and resistance.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Mohammad Reza Eisavand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Leila Farahmand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran.
| |
Collapse
|
30
|
Daly LA, Brownridge PJ, Batie M, Rocha S, Sée V, Eyers CE. Oxygen-dependent changes in binding partners and post-translational modifications regulate the abundance and activity of HIF-1α/2α. Sci Signal 2021; 14:eabf6685. [PMID: 34285132 DOI: 10.1126/scisignal.abf6685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular adaptation to low-oxygen environments is mediated in part by the hypoxia-inducible factors (HIFs). Like other transcription factors, the stability and transcriptional activity of HIFs-and consequently, the hypoxic response-are regulated by post-translational modifications (PTMs) and changes in protein-protein interactions. Our current understanding of PTM-mediated regulation of HIFs is primarily based on in vitro protein fragment-based studies typically validated in fragment-expressing cells treated with hypoxia-mimicking compounds. Here, we used immunoprecipitation-based mass spectrometry to characterize the PTMs and binding partners for full-length HIF-1α and HIF-2α under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions. Hypoxia substantially altered the complexity and composition of the HIFα protein interaction networks, particularly for HIF-2α, with the hypoxic networks of both isoforms being enriched for mitochondrial proteins. Moreover, both HIFα isoforms were heavily covalently modified. We identified ~40 PTM sites composed of 13 different types of modification on both HIFα isoforms, including multiple cysteine modifications and an unusual phosphocysteine. More than 80% of the PTMs identified were not previously known and about half exhibited oxygen dependency. We further characterized an evolutionarily conserved phosphorylation of Ser31 in HIF-1α as a regulator of its transcriptional function, and we propose functional roles for Thr406, Thr528, and Ser581 in HIF-2α. These data will help to delineate the different physiological roles of these closely related isoforms in fine-tuning the hypoxic response.
Collapse
Affiliation(s)
- Leonard A Daly
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philip J Brownridge
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael Batie
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Violaine Sée
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Cell Imaging, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
31
|
Ma Z, Wang LZ, Cheng JT, Lam WST, Ma X, Xiang X, Wong ALA, Goh BC, Gong Q, Sethi G, Wang L. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid Redox Signal 2021; 34:1484-1497. [PMID: 33198508 DOI: 10.1089/ars.2019.7935] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hypoxia is emerging as a crucial regulator of the tumor microenvironment; it governs the metastatic potential of multiple primary cancers. It is also potentially involved in the regulation of tumorigenesis, tumor metabolism, and proangiogenic activity. Recent Advances: A wealth of clinical data across a wide range of cancer types has revealed strong correlations between hypoxia or the overexpression of hypoxia-inducible transcription factors and the rates of distant metastases and poor prognoses. Hypoxia-inducible factor (HIF)-1α, one of the key regulatory molecules of the HIF-1 signaling pathways, is involved in multiple crucial steps in the metastatic cascade. Critical Issues: Here, we present recent findings on the roles of the HIF-1 complex in tumor metastasis and highlight the potential of HIF-1α as a target for abrogating tumor metastasis. Moreover, we systematically describe the regulatory role of HIF-1 at each step of the metastatic cascade. Finally, we present the most recent advances in potential pharmacological interventions and the development of specific HIF-1 inhibitors for blocking tumor metastasis. Future Directions: Well-designed clinical trials are urgently needed to validate the anti-metastatic activity of HIF-1 inhibitors discovered in preclinical models. Antioxid. Redox Signal. 34, 1484-1497.
Collapse
Affiliation(s)
- Zhaowu Ma
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Louis Zizhao Wang
- SingHealth Internal Medicine Residency Programme, Singapore General Hospital, Singapore, Singapore
| | - Jun-Ting Cheng
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Walter Sze Tung Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Quan Gong
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Schofield CL, Rodrigo-Navarro A, Dalby MJ, Van Agtmael T, Salmeron-Sanchez M. Biochemical‐ and Biophysical‐Induced Barriergenesis in the Blood–Brain Barrier: A Review of Barriergenic Factors for Use in In Vitro Models. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
| | | |
Collapse
|
33
|
Abstract
Wnt/β-catenin signaling is crucial both in normal embryonic development and throughout the life of an organism. Moreover, aberrant Wnt signaling has been associated with various diseases, especially cancer and fibrosis. Recent research suggests that direct targeting of the β-catenin/BCL9 protein-protein interaction (PPI) is a promising strategy to block the Wnt pathway. Progress in understanding the cocrystalline complex and mechanism of action of the β-catenin/BCL9 interaction facilitates the discovery process of its inhibitors, but only a few inhibitors have been reported. In this review, the discovery and development of β-catenin/BCL9 PPI inhibitors in the areas of drug design, structure-activity relationships and biological and biochemical properties are summarized. In addition, perspectives for the future development of β-catenin/BCL9 PPI inhibitors are explored.
Collapse
|
34
|
Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021; 21:208. [PMID: 33849569 PMCID: PMC8045321 DOI: 10.1186/s12935-021-01924-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Zhang W, Zhang Y, Zhou W, Qian F, Hu M, Chen Y, Lu J, Lou Y, Han B. PlGF knockdown attenuates hypoxia-induced stimulation of cell proliferation and glycolysis of lung adenocarcinoma through inhibiting Wnt/β-catenin pathway. Cancer Cell Int 2021; 21:18. [PMID: 33407494 PMCID: PMC7788771 DOI: 10.1186/s12935-020-01714-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Angiogenic placental growth factor (PlGF) plays a role in hypoxia-induced angiogenesis. Here, we aimed to investigate the biological roles of PlGF in cell proliferation and glycolysis of lung adenocarcinoma (LUAD) and the underlying molecular mechanisms. Methods PlGF was knocked down in H358 and H1975 cells by lentiviruses, which were then cultured under hypoxia (90% N2, 5%CO2 and 5%O2) for 24 h. PlGF was overexpressed in PC9 cells treated with XAV939, inhibitor of Wnt/β-catenin signaling pathway. PlGF-silencing H1975 cells were implanted into mice, and tumor xenografts were harvested and analyzed. Results Hypoxia treatment led to up-regulation of PlGF, C-myc, lactate dehydrogenase A (LDHA), and β-catenin, promotion of cell proliferation and glycolysis in H358 and H1975 cells, which were obviously reversed by knocking down PlGF. In tumors, PlGF knockdown significantly prohibited cell proliferation and glycolysis, and decreased expression of C-myc, LDHA, and β-catenin. PlGF overexpression markedly strengthened cell proliferation, which was inhibited by β-catenin knockdown. Consistently, XAV939, inhibitor of Wnt/β-catenin pathway, also inhibited PlGF-induced cell proliferation, glycolysis, and β-catenin expression in PC9 cells. Conclusion PlGF knockdown inhibited the stimulatory effect of hypoxia on cell proliferation and glycolysis of LUAD through deactivating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Wensheng Zhou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Fangfei Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Minjuan Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Ya Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
36
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021; 20:7. [PMID: 33397409 PMCID: PMC7784348 DOI: 10.1186/s12943-020-01288-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil “microenvironment” for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. Main body In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. Conclusion Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.
Collapse
Affiliation(s)
- Xiaoxu Wei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiduo Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Zhang Q, Yin Y, Zhao H, Shi Y, Zhang W, Yang Z, Liu T, Huang Y, Yu Z. P4HA1 regulates human colorectal cancer cells through HIF1α-mediated Wnt signaling. Oncol Lett 2020; 21:145. [PMID: 33552264 PMCID: PMC7798045 DOI: 10.3892/ol.2020.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy that is associated with high levels of mortality. CRCs are often associated with an aberrant wingless-type mouse mammary tumor virus integration site family (Wnt) signaling pathway known to be responsible for tumorigenesis and cancer progression. Other factors that contribute to CRC pathology include hypoxia, extracellular matrix and cellular microenvironment. In the present study, modulation of Wnt, a common molecular progenitor for CRC-associated pathology was evaluated. CRC tissues and specific cell lines were found to exhibit increased expression levels of prolyl 4-hydroxylase subunit α1 (P4HA1). P4HA1 expression was found to stabilize hypoxia inducible factor-1α (HIF1α). The silencing of P4HA1 resulted in decreased cell proliferation, cell cycle arrest in the G1 phase, decreased tumorsphere formation, decreased tumorsphere volume, increased susceptibility to 5-fluorouracil and increased caspase-3 activity. However, P4HA1 silencing resulted in the activation and thus proteasomal degradation of β-catenin, indicative of the abrogation of Wnt signaling pathway. Wnt is a critical signaling pathway and is activated in most CRCs. HIF1α is a poor prognostic marker in CRC. The present study provided preliminary evidence that HIF1α and the Wnt signaling pathway in CRC are modulated through P4HA1. P4HA1 may serve not just as a biomarker for CRC prognosis but may also be targeted for potential therapeutic intervention.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yue Yin
- Department of Scientific Research, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Hongye Zhao
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yan Shi
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Zhengpeng Yang
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Tingting Liu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yonghong Huang
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhanjiang Yu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
38
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
39
|
Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, Fisher PB, Mi QS, Moreno E, Gogna R. Cell Competition Boosts Clonal Evolution and Hypoxic Selection in Cancer. Trends Cell Biol 2020; 30:967-978. [PMID: 33160818 DOI: 10.1016/j.tcb.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The comparison of fitness between cells leads to the elimination of less competent cells in the presence of more competent neighbors via cell competition (CC). This phenomenon has been linked with several cancer-related genes and thus may play an important role in cancer. Various processes are involved in the regulation of tumor initiation and growth, including tumor hypoxia, clonal stem cell selection, and immune cell response, all of which have been recently shown to have a potential connection with the mechanisms involved in CC. This review aims to unravel the relation between these processes and competitive cell interactions and how this affects disease progression.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Michail Yekelchyk
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
40
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
41
|
Zheng JJ, Que QY, Xu HT, Luo DS, Sun Z, Ni JS, Que HF, Ma J, Wu D, Shi H. Hypoxia Activates SOX5/Wnt/β-Catenin Signaling by Suppressing MiR-338-3p in Gastric Cancer. Technol Cancer Res Treat 2020; 19:1533033820905825. [PMID: 32216582 PMCID: PMC7119234 DOI: 10.1177/1533033820905825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are known to be important in a variety of cancer types. The specific expression and roles of miR-338-3p in the context of gastric cancer, however, remains largely unknown. In this study, we found that miR-338-3p was expressed significantly lower in established/primary human gastric cancer cells than that in human gastric epithelial cells; miR-338-3p is also decreased in human gastric cancer tissues and was positively associated with the worse prognosis of patients with gastric cancer. Enforced expression of miR-338-3p could inhibit cell growth, survival, and proliferation, while inducing cell apoptosis. In addition, miR-338-3p negatively regulated SOX5 expression through directly binding to the 3′-untranslated region of SOX5, and an inverse correlation was found between miR-338-3p and SOX5 messenger RNA expression in gastric cancer tissues. Furthermore, miR-338-3p-induced inactivation of Wnt/β-catenin signaling was greatly abrogated by SOX5 upregulation. Finally, we found that hypoxic conditions were linked with reduced miR-338-3p expression in the context of gastric cancer. In conclusion, miR-338-3p acts as a tumor suppressor in gastric cancer, possibly by directly targeting SOX5 and blocking Wnt/β-catenin signaling. These findings might provide novel therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Jing-Jing Zheng
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Qiao-Yan Que
- Breast Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Hong-Tao Xu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - de-Sheng Luo
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Zheng Sun
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hai-Feng Que
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Ji Ma
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Dan Wu
- Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Hua Shi
- Gastroenterology Department, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| |
Collapse
|
42
|
Oridonin inhibits hypoxia-induced epithelial-mesenchymal transition and cell migration by the hypoxia-inducible factor-1α/matrix metallopeptidase-9 signal pathway in gallbladder cancer. Anticancer Drugs 2020; 30:925-932. [PMID: 31517732 DOI: 10.1097/cad.0000000000000797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia has crucial roles in cancer development and progression. Our previous study indicated that cell migration was increased in a hypoxic microenvironment in GBC-SD gallbladder cancer (GBC) cells. Oridonin, a bioactive diterpenoid compound that is isolated from the plant Rabdosia rubescens, has been identified as an anticancer agent in various types of cancer. However, its roles in cell proliferation, apoptosis, and migration in a hypoxic microenvironment and the associated regulatory mechanisms have not yet to be fully elucidated in GBC. The present study investigated the effect of oridonin on cell proliferation, apoptosis, the cell cycle and cell migration in GBC in vitro and in vivo. Furthermore, the role of oridonin in hypoxia-induced cell migration and its underlying mechanisms were explored in GBC. The results indicated that treatment with oridonin significantly suppressed cell proliferation and the metastatic ability of GBC-SD cells in a dose-dependent manner, increased the level of cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Further experiments demonstrated that oridonin could inhibit hypoxia-induced epithelial-mesenchymal transition and cell migration by downregulating the expression levels of hypoxia-inducible factor (HIF)-1α/matrix metallopeptidase (MMP)-9. In addition, oridonin suppressed GBC cell growth and downregulated the expression levels of HIF-1α and MMP-9 in a GBC-SD cell xenograft model. Taken together, these results suggest that oridonin possesses anticancer properties in GBC. Notably, oridonin can suppress tumor epithelial-mesenchymal transition and cell migration by targeting the HIF-1α/MMP-9 signaling pathway.
Collapse
|
43
|
Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 2020; 11:4382-4406. [PMID: 31284268 PMCID: PMC6660044 DOI: 10.18632/aging.102059] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms, such as DNA methylation, affect tubular maladaptive response after Acute Kidney Injury (AKI) and accelerate renal aging. Upon ischemia/reperfusion (I/R) injury, Complement activation leads to C5a release that mediates damage; however, little is known about the effect of C5a-C5a Receptor (C5aR) interaction in Renal Tubular Epithelial Cells (RTEC). Through a whole-genome DNA methylation analysis in cultured RTEC, we found that C5a induced aberrant methylation, particularly in regions involved in cell cycle control, DNA damage and Wnt signaling. The most represented genes were BCL9, CYP1B1 and CDK6. C5a stimulation of RTEC led to up-regulation of SA-β Gal and cell cycle arrest markers such as p53 and p21. C5a increased also IL-6, MCP-1 and CTGF gene expression, consistent with SASP development. In accordance, in a swine model of renal I/R injury, we found the increased expression of Wnt4 and βcatenin correlating with SA-β Gal, p21, p16 and IL-6 positivity. Administration of Complement Inhibitor (C1-Inh), antagonized SASP by reducing SA-β Gal, p21, p16, IL-6 and abrogating Wnt4/βcatenin activation. Thus, C5a affects the DNA methylation of genes involved in tubular senescence. Targeting epigenetic programs and Complement may offer novels strategies to protect tubular cells from accelerated aging and to counteract progression to Chronic Kidney Disease
Collapse
|
44
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The "Warburg effect" illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| |
Collapse
|
45
|
Sadeghi F, Kardar GA, Bolouri MR, Nasri F, Sadri M, Falak R. Overexpression of bHLH domain of HIF-1 failed to inhibit the HIF-1 transcriptional activity in hypoxia. Biol Res 2020; 53:25. [PMID: 32503642 PMCID: PMC7275393 DOI: 10.1186/s40659-020-00293-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background Hypoxia inducible factor-1 (HIF-1) is considered as the most activated transcriptional factor in response to low oxygen level or hypoxia. HIF-1 binds the hypoxia response element (HRE) sequence in the promoter of different genes, mainly through the bHLH domain and activates the transcription of genes, especially those involved in angiogenesis and EMT. Considering the critical role of bHLH in binding HIF-1 to the HRE sequence, we hypothesized that bHLH could be a promising candidate to be targeted in hypoxia condition. Methods We inserted an inhibitory bHLH (ibHLH) domain in a pIRES2-EGFP vector and transfected HEK293T cells with either the control vector or the designed construct. The ibHLH domain consisted of bHLH domains of both HIF-1a and Arnt, capable of competing with HIF-1 in binding to HRE sequences. The transfected cells were then treated with 200 µM of cobalt chloride (CoCl2) for 48 h to induce hypoxia. Real-time PCR and western blot were performed to evaluate the effect of ibHLH on the genes and proteins involved in angiogenesis and EMT. Results Hypoxia was successfully induced in the HEK293T cell line as the gene expression of VEGF, vimentin, and β-catenin were significantly increased after treatment of untransfected HEK293T cells with 200 µM CoCl2. The gene expression of VEGF, vimentin, and β-catenin and protein level of β-catenin were significantly decreased in the cells transfected with either control or ibHLH vectors in hypoxia. However, ibHLH failed to be effective on these genes and the protein level of β-catenin, when compared to the control vector. We also observed that overexpression of ibHLH had more inhibitory effect on gene and protein expression of N-cadherin compared to the control vector. However, it was not statistically significant. Conclusion bHLH has been reported to be an important domain involved in the DNA binding activity of HIF. However, we found that targeting this domain is not sufficient to inhibit the endogenous HIF-1 transcriptional activity. Further studies about the function of critical domains of HIF-1 are necessary for developing a specific HIF-1 inhibitor.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology Asthma & Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Moghe A, Monga SP. BCL9/BCL9L in hepatocellular carcinoma: will it or Wnt it be the next therapeutic target? Hepatol Int 2020; 14:460-462. [PMID: 32488834 PMCID: PMC7368815 DOI: 10.1007/s12072-020-10059-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/23/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Akshata Moghe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA
| | - Satdarshan P Monga
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA. .,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Yao B, Li Y, Wang L, Chen T, Niu Y, Liu Q, Liu Z. MicroRNA-3194-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by decreasing Wnt/β-catenin signaling through targeting BCL9. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3885-3895. [PMID: 31561723 DOI: 10.1080/21691401.2019.1670190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023]
Abstract
Local and systemic metastasis of hepatocellular carcinoma (HCC) causes the poor prognosis and increasing evidence confirms that aberrant miRNAs were involved in cancer progression. However, the expression and mechanisms of a specific miR-3194-3p in HCC remains unknown. In this research, we demonstrated that miR-3194-3p, significantly down-regulated in HCC tissues and cell lines, was associated with metastasis and recurrence of HCC. Notably, gain- and loss-of-function assays demonstrated that miR-3194-3p inhibited the migration, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. BCL9, up-regulated in HCC tissues, was a direct downstream target of miR-3194-3p and mediated the functional influence of miR-3194-3p. Most importantly, miR-3194-3p exerted its function by regulating β-catenin pathway. Moreover, miR-3194-3p and BCL9 expression were markedly correlated with adverse clinical features and poor prognosis of HCC patients. We showed that hypoxia was responsible for the down-expression of miR-3194-3p in HCC. Also, the promoting effects of hypoxia on metastasis and EMT of HCC cells were reversed by miR-3194-3p. Altogether, our study suggested that miR-3194-3p inhibits HCC EMT via decreasing Wnt/β-catenin signaling through targeting BCL9 and might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yazhao Li
- Translational Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
48
|
Sharma M, Molehin D, Castro-Piedras I, Martinez EG, Pruitt K. Acetylation of conserved DVL-1 lysines regulates its nuclear translocation and binding to gene promoters in triple-negative breast cancer. Sci Rep 2019; 9:16257. [PMID: 31700102 PMCID: PMC6838061 DOI: 10.1038/s41598-019-52723-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Dishevelled (DVL) proteins are central mediators of the Wnt signalling pathway and are versatile regulators of several cellular processes, yet little is known about their post-translational regulation. Acetylation is a reversible post-translational modification (PTM) which regulates the function of several non-histone proteins involved in tumorigenesis. Since we previously demonstrated that lysine deacetylase, SIRT-1, regulates DVL protein levels and its function, we reasoned that DVL could potentially be a substrate for SIRT-1 mediated deacetylation. To further examine the potential role of multiple families of lysine deacetylases in the post-translational regulation of DVL, we screened for novel acetylation sites using liquid chromatography mass-spectrometry (LC-MS/MS) analysis. Herein, we report 12 DVL-1 lysine residues that show differential acetylation in response to changes in oxygen tension and deacetylase inhibition in triple-negative breast cancer (TNBC). PTMs are well documented to influence protein activity, and cellular localization. We also identify that acetylation of two key lysine residues, K69 and K285, present on the DIX and PDZ domains respectively, promote nuclear over cytoplasmic localization of DVL-1, and influences its promoter binding and regulation of genes implicated in cancer. Collectively, these findings for the first time, uncover acetylation as a novel layer of regulation of DVL-1 proteins.
Collapse
Affiliation(s)
- Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
49
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D, Xu Q. Hypoxia‑inducible factors in hepatocellular carcinoma (Review). Oncol Rep 2019; 43:3-15. [PMID: 31746396 PMCID: PMC6908932 DOI: 10.3892/or.2019.7397] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Maintenance of an appropriate oxygen concentration is essential for the function of the liver. However, in many pathological conditions, and particularly in the tumor microenvironment, cells and tissues are frequently in a hypoxic state. In the presence of hypoxia, the cells adapt to the low oxygen levels through the hypoxia-inducible factor (HIF) pathway. Overgrowth of tumor cells restricts the diffusion of oxygen in tumors, leading to insufficient blood supply and the creation of a hypoxic microenvironment, and, as a consequence, activation of the expression of HIFs. HIFs possess a wide range of target genes, which function to control a variety of signaling pathways; thus, HIFs modulate cellular metabolism, immune escape, angiogenesis, metastasis, extracellular matrix remodeling, cancer stem cells and other properties of the tumor. Given their crucial role in the occurrence and development of tumors, HIFs are expected to become new targets of precise treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yang Guo
- Graduate Department, BengBu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Yuling Gao
- Department of Genetics, Shaoxing Women and Children Hospital, Shaoxin, Zhejiang 312030, P.R. China
| | - Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
50
|
Seifert ME, Gaut JP, Guo B, Jain S, Malone AF, Geraghty F, Manna DD, Yang ES, Yi N, Brennan DC, Mannon RB. WNT pathway signaling is associated with microvascular injury and predicts kidney transplant failure. Am J Transplant 2019; 19:2833-2845. [PMID: 30916889 PMCID: PMC6763350 DOI: 10.1111/ajt.15372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/25/2023]
Abstract
Microvascular injury is associated with accelerated kidney transplant dysfunction and allograft failure. Molecular pathology can identify new mechanisms of microvascular injury while improving on the diagnostic and prognostic capabilities of traditional histology. We conducted a case-control study of archived kidney biopsy specimens stored up to 10 years with microvascular injury (n = 50) compared with biopsy specimens without histologic injury (n = 45) from patients of similar age, race, and sex. We measured WNT gene expression with a multiplex quantification platform by using digital barcoding, given the importance of WNT reactivation to the response to wounding in the kidney microvasculature and other compartments. Of 210 genes from a commercial WNT panel, 71 were associated with microvascular injury and 79 were associated with allograft failure, with considerable overlap of genes between each set. Molecular pathology identified 46 biopsy specimens with molecular evidence of microvascular injury; 18 (39%) were either C4d negative, donor-specific antibody negative, or had no microvascular injury by histology. The majority of cases with molecular evidence of microvascular injury had poor long-term outcomes. We identified novel WNT pathway genes associated with microvascular injury and allograft failure in residual clinical biopsy specimens obtained up to 10 years earlier. Further mechanistic studies may identify the WNT pathway as a new diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Michael E. Seifert
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL
| | - Joseph P. Gaut
- Department of Pathology, Washington University, St. Louis, Missouri
| | - Boyi Guo
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, Alabama
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Feargal Geraghty
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Deborah Della Manna
- UAB NanoString Laboratory, Department of Radiation Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Eddy S. Yang
- UAB NanoString Laboratory, Department of Radiation Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, Alabama
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri,Comprehensive Transplant Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Roslyn B. Mannon
- Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama,Comprehensive Transplant Institute, University of Alabama School of Medicine, Birmingham, Alabama
| |
Collapse
|