1
|
Kandelis-Shalev S, Goyal M, Elam T, Assaraf S, Dahan N, Farchi O, Berenshtein E, Dzikowski R. SUN-domain proteins of the malaria parasite Plasmodium falciparum are essential for proper nuclear division and DNA repair. mBio 2025; 16:e0021625. [PMID: 40042312 PMCID: PMC11980560 DOI: 10.1128/mbio.00216-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
The protozoan parasite Plasmodium falciparum, which is responsible for the deadliest form of human malaria, accounts for over half a million deaths a year. These parasites proliferate in human red blood cells by consecutive rounds of closed mitoses called schizogony. Their virulence is attributed to their ability to modify the infected red cells to adhere to the vascular endothelium and to evade immunity through antigenic switches. Spatial dynamics at the nuclear periphery were associated with the regulation of processes that enable the parasites to establish long-term infection. However, our knowledge of components of the nuclear envelope (NE) in Plasmodium remains limited. One of the major protein complexes at the NE is the linker of nucleoskeleton and cytoskeleton (LINC) complex that forms a connecting bridge between the cytoplasm and the nucleus through the interaction of SUN and KASH domain proteins. Here, we have identified two SUN-domain proteins as possible components of the LINC complex of P. falciparum and show that their proper expression is essential for the parasite's proliferation in human red blood cells, and their depletion leads to the formation of membranous whorls and morphological changes of the NE. In addition, their differential expression highlights different functions at the nuclear periphery as PfSUN2 is specifically associated with heterochromatin, while PfSUN1 expression is essential for activation of the DNA damage response. Our data provide indications for the involvement of the LINC complex in crucial biological processes in the intraerythrocytic development cycle of malaria parasites. IMPORTANCE Plasmodium falciparum, the parasite causing the deadliest form of malaria, is able to thrive in its human host by tight regulation of cellular processes, orchestrating nuclear dynamics with cytoplasmic machineries that are separated by the nuclear envelope. One of the major protein complexes that connect nuclear and cytoplasmic processes in eukaryotes is the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, while the nuclear periphery of P. falciparum was implicated in several important functions, the role of the LINC complex in Plasmodium biology is unknown. Here, we identify two components of P. falciparum LINC complex and demonstrate that they are essential for the parasites' proliferation in human blood, and their depletion leads to the formation of morphological changes in the cell. In addition, the two components have different functions in activating the DNA damage response and in their association with heterochromatin. Our data provide evidence for their essential roles in the parasites' cell cycle.
Collapse
Affiliation(s)
- Sofiya Kandelis-Shalev
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tal Elam
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shany Assaraf
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noa Dahan
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Omer Farchi
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eduard Berenshtein
- Core facility of The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Shabani S, Serbus LR. Pfs16: A Key Parasitophorous Vacuole Membrane Protein Crucial for Malaria Parasite Development and Transmission. Protein J 2025; 44:133-146. [PMID: 39979562 DOI: 10.1007/s10930-025-10260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Malaria remains a formidable challenge to global health, claiming the lives of nearly half a million individuals annually despite vigorous efforts to curb its spread. Among the myriad factors influencing the persistence and virulence of this disease, the role of specific proteins during the Plasmodium development cycle is critical. The protein of interest, Pfs16, is a Parasitophorous Vacuole Membrane Protein expressed from the earliest asexual stages, which encompass the development of Plasmodium falciparum in the host, to the final stage of the parasite's development in the mosquito, the sporozoite, playing a crucial role in this lifecycle. Understanding the function and mechanism of this conserved protein is pivotal for advancing our strategies to combat malaria. In this review, we examine the work on Pfs16 in both the asexual and sexual stages of parasite development, aiming to gain a better understanding of this protein as a promising candidate for drug and vaccine development.
Collapse
Affiliation(s)
- Sadeq Shabani
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA.
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA
| |
Collapse
|
3
|
Zanghí G, Patel H, Smith JL, Camargo N, Bae Y, Hesping E, Boddey JA, Venugopal K, Marti M, Flannery EL, Chuenchob V, Fishbaugher ME, Mikolajczak SA, Roobsoong W, Sattabongkot J, Gupta P, Pazzagli L, Rezakhani N, Betz W, Hayes K, Goswami D, Vaughan AM, Kappe SHI. Genome-wide gene expression profiles throughout human malaria parasite liver stage development in humanized mice. Nat Microbiol 2025; 10:569-584. [PMID: 39891010 PMCID: PMC11790487 DOI: 10.1038/s41564-024-01905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/04/2024] [Indexed: 02/03/2025]
Abstract
Gene expression of Plasmodium falciparum (Pf) liver-stage (LS) parasites has remained poorly characterized, although they are major vaccine and drug targets. Using a human liver-chimaeric mouse model and a fluorescent parasite line (PfNF54CSPGFP), we isolated PfLS and performed transcriptomics on key LS developmental phases. We linked clustered gene expression to ApiAP2, a major family of transcription factors that regulate the parasite life cycle. This provided insights into transcriptional regulation of LS infection and expression of essential LS metabolic and biosynthetic pathways. We observed expression of antigenically variant PfEMP1 proteins and the major Pf protein export machine PTEX and identified protein candidates that might be exported by LS parasites. Comparing Pf and P. vivax LS transcriptomes, we uncovered differences in their expression of sexual commitment factors. This data will aid LS research and vaccine and drug target identification for prevention of malaria infection.
Collapse
Affiliation(s)
- Gigliola Zanghí
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jenny L Smith
- Research Scientific Computing, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Yeji Bae
- Research Scientific Computing, Seattle Children's Research Institute, Seattle, WA, USA
| | - Eva Hesping
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kannan Venugopal
- Institute for Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Institute for Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Matthew E Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Priya Gupta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucia Pazzagli
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kiera Hayes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Liu Y, Cheng S, He G, He D, Wang D, Wang S, Chen L, Zhu L, Feng Y, Cui L, Cao Y, Zhu X. An inner membrane complex protein IMC1g in Plasmodium berghei is involved in asexual stage schizogony and parasite transmission. mBio 2025; 16:e0265224. [PMID: 39576115 PMCID: PMC11708024 DOI: 10.1128/mbio.02652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The inner membrane complex (IMC), a double-membrane organelle underneath the plasma membrane in apicomplexan parasites, plays a significant role in motility and invasion and confers shape to the cell. We characterized the function of PbIMC1g, a component of the IMC1 family member in Plasmodium berghei. PbIMC1g is recruited to the IMC in late schizonts, activated gametocytes, and ookinetes. Pairwise yeast two-hybrid assays demonstrate that PbIMC1g interacts with IMC1c, a component of the PHIL1 complex, and the core sub-repeat motif "EKI(V)V(I)EVP" in PbIMC1g is essential for this interaction. Localization of PbIMC1g to the IMC was dependent on its IMCp domain, while its C-terminus and palmitoylation sites were required for the full efficiency of proper IMC targeting. PbIMC1g is required for asexual stage development, and its conditional knockdown resulted in a defect in schizogony. Additionally, PbIMC1g was also important for male gametogenesis and ookinete development. As an IMC component that assists in anchoring the glideosome to the subpellicular network, PbIMC1g was also involved in ookinete motility and mosquito midgut invasion. IMC1g from the human parasite Plasmodium vivax could functionally replace PbIMC1g in P. berghei, confirming the evolutionary conservation of IMC1g proteins in Plasmodium spp. Together, this work reveals an essential role of IMC1g in the parasite life cycle and suggests that IMC1 family members likely contribute to parasite gliding and invasion. IMPORTANCE The malaria parasite's inner membrane complex is critical to maintain its structural integrity and motility. Here, we identified the function of the IMC1g protein, a member of the IMC1 family, in invasive and proliferative stages of P. berghei. We found that the IMCp domain of PbIMC1g is critical for proper IMC targeting, and PbIMC1g interacts with PbIMC1c. Conditional knockdown of PbIMC1g expression affects schizogony, gametogenesis, and ookinete conversion. PbIMC1g interacts with IMC1c to firmly anchor the glideosome to the subpellicular network. Additionally, we confirmed that IMC1g is functionally conserved in Plasmodium spp. These data reveal the function of IMC1g protein in anchoring the glideosome, providing further insight into the mechanism of the glideosome function.
Collapse
Affiliation(s)
- Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shitong Cheng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dawei He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Duo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sicong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Nagar R, Garcia Castillo SS, Pinzon-Ortiz M, Patray S, Coppi A, Kanatani S, Moritz RL, Swearingen KE, Ferguson MAJ, Sinnis P. The major surface protein of malaria sporozoites is GPI-anchored to the plasma membrane. J Biol Chem 2024; 300:107557. [PMID: 39002668 PMCID: PMC11359735 DOI: 10.1016/j.jbc.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of Plasmodium falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry-based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for the presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.
Collapse
Affiliation(s)
- Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Stefano S Garcia Castillo
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; Johns Hopkins Malaria Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maria Pinzon-Ortiz
- Department of Medical Parsitology, New York University School of Medicine, New York, New York, USA
| | - Sharon Patray
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alida Coppi
- Department of Medical Parsitology, New York University School of Medicine, New York, New York, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; Johns Hopkins Malaria Institute, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Dans MG, Boulet C, Watson GM, Nguyen W, Dziekan JM, Evelyn C, Reaksudsan K, Mehra S, Razook Z, Geoghegan ND, Mlodzianoski MJ, Goodman CD, Ling DB, Jonsdottir TK, Tong J, Famodimu MT, Kristan M, Pollard H, Stewart LB, Brandner-Garrod L, Sutherland CJ, Delves MJ, McFadden GI, Barry AE, Crabb BS, de Koning-Ward TF, Rogers KL, Cowman AF, Tham WH, Sleebs BE, Gilson PR. Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1. Nat Commun 2024; 15:5219. [PMID: 38890312 PMCID: PMC11189555 DOI: 10.1038/s41467-024-49491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia.
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Coralie Boulet
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, 1206, Switzerland
| | - Gabrielle M Watson
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jerzy M Dziekan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cindy Evelyn
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kitsanapong Reaksudsan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Mlodzianoski
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Joshua Tong
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Mojca Kristan
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Harry Pollard
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Lindsay B Stewart
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Luke Brandner-Garrod
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alyssa E Barry
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash University, 3800, Melbourne, VIC, Australia
| | - Tania F de Koning-Ward
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alan F Cowman
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Nagar R, Garcia Castillo SS, Pinzon-Ortiz M, Patray S, Coppi A, Kanatani S, Moritz RL, Swearingen KE, Ferguson MAJ, Sinnis P. The major surface protein of malaria sporozoites is GPI-anchored to the plasma membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595204. [PMID: 38826328 PMCID: PMC11142060 DOI: 10.1101/2024.05.21.595204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of P. falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI-anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [ 3 H]-palmitic acid and [ 3 H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for presence of myo -inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for a highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo -inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.
Collapse
|
9
|
Khan S, Patel MP, Patni AD, Cha SJ. Targeting Plasmodium Life Cycle with Novel Parasite Ligands as Vaccine Antigens. Vaccines (Basel) 2024; 12:484. [PMID: 38793735 PMCID: PMC11125637 DOI: 10.3390/vaccines12050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The WHO reported an estimated 249 million malaria cases and 608,000 malaria deaths in 85 countries in 2022. A total of 94% of malaria deaths occurred in Africa, 80% of which were children under 5. In other words, one child dies every minute from malaria. The RTS,S/AS01 malaria vaccine, which uses the Plasmodium falciparum circumsporozoite protein (CSP) to target sporozoite infection of the liver, achieved modest efficacy. The Malaria Vaccine Implementation Program (MVIP), coordinated by the WHO and completed at the end of 2023, found that immunization reduced mortality by only 13%. To further reduce malaria death, the development of a more effective malaria vaccine is a high priority. Three malaria vaccine targets being considered are the sporozoite liver infection (pre-erythrocytic stage), the merozoite red blood cell infection (asexual erythrocytic stage), and the gamete/zygote mosquito infection (sexual/transmission stage). These targets involve specific ligand-receptor interactions. However, most current malaria vaccine candidates that target two major parasite population bottlenecks, liver infection, and mosquito midgut infection, do not focus on such parasite ligands. Here, we evaluate the potential of newly identified parasite ligands with a phage peptide-display technique as novel malaria vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA 31207, USA; (S.K.); (M.P.P.); (A.D.P.)
| |
Collapse
|
10
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Amwoma JG, Kituyi S, Wakoli DM, Ochora DO, Chemwor G, Maisiba R, Okore W, Opot B, Juma D, Muok EM, Garges EC, Egbo TE, Nyabuga FN, Andagalu B, Akala HM. Comparative analysis of peripheral whole blood transcriptome from asymptomatic carriers reveals upregulation of subsets of surface proteins implicated in Plasmodium falciparum phenotypic plasticity. Biochem Biophys Rep 2024; 37:101596. [PMID: 38146350 PMCID: PMC10749222 DOI: 10.1016/j.bbrep.2023.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.
Collapse
Affiliation(s)
- Joseph G. Amwoma
- Department of Biological Sciences, University of Embu, Kenya
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Sarah Kituyi
- Department of Biological Sciences, University of Embu, Kenya
- Forgarty International Center of the National Institutes of Health, Bethesda, MD, USA
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | - Douglas O. Ochora
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, Kenya
- DSI/NWU, Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Gladys Chemwor
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Risper Maisiba
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Winnie Okore
- Department of Biomedical Sciences and Technology, Maseno University, Kenya
| | - Benjamin Opot
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis Juma
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Eric M.O. Muok
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric C. Garges
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | | | - Ben Andagalu
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Hoseah M. Akala
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| |
Collapse
|
12
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
13
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
14
|
Batugedara G, Lu XM, Hristov B, Abel S, Chahine Z, Hollin T, Williams D, Wang T, Cort A, Lenz T, Thompson TA, Prudhomme J, Tripathi AK, Xu G, Cudini J, Dogga S, Lawniczak M, Noble WS, Sinnis P, Le Roch KG. Novel insights into the role of long non-coding RNA in the human malaria parasite, Plasmodium falciparum. Nat Commun 2023; 14:5086. [PMID: 37607941 PMCID: PMC10444892 DOI: 10.1038/s41467-023-40883-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Xueqing M Lu
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Steven Abel
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zeinab Chahine
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas Hollin
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Desiree Williams
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Tina Wang
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Todd Lenz
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Trevor A Thompson
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoyue Xu
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Sunil Dogga
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Photini Sinnis
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Karine G Le Roch
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Thompson TA, Chahine Z, Le Roch KG. The role of long noncoding RNAs in malaria parasites. Trends Parasitol 2023; 39:517-531. [PMID: 37121862 PMCID: PMC11695068 DOI: 10.1016/j.pt.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/02/2023]
Abstract
The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates a need for novel interventions. Controlled gene expression is central to the parasite's numerous life cycle transformations and adaptation. With few specific transcription factors (TFs) identified, crucial roles for chromatin states and epigenetics in parasite transcription have become evident. Although many chromatin-modifying enzymes are known, less is known about which factors mediate their impacts on transcriptional variation. Like those of higher eukaryotes, long noncoding RNAs (lncRNAs) have recently been shown to have integral roles in parasite gene regulation. This review aims to summarize recent developments and key findings on the role of lncRNAs in P. falciparum.
Collapse
Affiliation(s)
- Trevor A Thompson
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA.
| |
Collapse
|
16
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
17
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
18
|
Singh P, Lonardi S, Liang Q, Vydyam P, Khabirova E, Fang T, Gihaz S, Thekkiniath J, Munshi M, Abel S, Ciampossin L, Batugedara G, Gupta M, Lu XM, Lenz T, Chakravarty S, Cornillot E, Hu Y, Ma W, Gonzalez LM, Sánchez S, Estrada K, Sánchez-Flores A, Montero E, Harb OS, Le Roch KG, Mamoun CB. Babesia duncani multi-omics identifies virulence factors and drug targets. Nat Microbiol 2023; 8:845-859. [PMID: 37055610 PMCID: PMC10159843 DOI: 10.1038/s41564-023-01360-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.
| | - Qihua Liang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Pratap Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Tiffany Fang
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Loic Ciampossin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Sakshar Chakravarty
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), and Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Yangyang Hu
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California, Riverside, CA, USA
| | - Luis Miguel Gonzalez
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Jeninga MD, Tang J, Selvarajah SA, Maier AG, Duffy MF, Petter M. Plasmodium falciparum gametocytes display global chromatin remodelling during sexual differentiation. BMC Biol 2023; 21:65. [PMID: 37013531 PMCID: PMC10071754 DOI: 10.1186/s12915-023-01568-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.
Collapse
Affiliation(s)
- Myriam D Jeninga
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jingyi Tang
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Shamista A Selvarajah
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexander G Maier
- The Australian National University, Research School of Biology, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
- Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Michaela Petter
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
22
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
23
|
Zanghi G, Patel H, Camargo N, Smith JL, Bae Y, Flannery EL, Chuenchob V, Fishbaugher ME, Mikolajczak SA, Roobsoong W, Sattabongkot J, Hayes K, Vaughan AM, Kappe SHI. Global gene expression of human malaria parasite liver stages throughout intrahepatocytic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522945. [PMID: 36711670 PMCID: PMC9881933 DOI: 10.1101/2023.01.05.522945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum (Pf) is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent PfNF54 parasite line (PfNF54cspGFP) to isolate PfLS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early Pf LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS. The developmental time course gene expression analysis indicated that fatty acid biosynthesis, isoprenoid biosynthesis and iron metabolism are sustaining LS development along with amino acid metabolism and biosynthesis. Countering oxidative stress appears to play an important role during intrahepatic LS development. Furthermore, we observed expression of the variant PfEMP1 antigen-encoding var genes, and we confirmed expression of PfEMP1 protein during LS development. Transcriptome comparison of the late Pf liver stage schizonts with P. vivax (Pv) late liver stages revealed highly conserved gene expression profiles among orthologous genes. A notable difference however was the expression of genes regulating sexual stage commitment. While Pv schizonts expressed markers of sexual commitment, the Pf LS parasites were not sexually committed and showed expression of gametocytogenesis repression factors. Our results provide the first comprehensive gene expression profile of the human malaria parasite Pf LS isolated during in vivo intrahepatocytic development. This data will inform biological studies and the search for effective intervention strategies that can prevent infection.
Collapse
Affiliation(s)
- Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jenny L. Smith
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Yeji Bae
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Matthew E. Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kiera Hayes
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Real E, Nardella F, Scherf A, Mancio-Silva L. Repurposing of Plasmodium falciparum var genes beyond the blood stage. Curr Opin Microbiol 2022; 70:102207. [PMID: 36183663 DOI: 10.1016/j.mib.2022.102207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.
Collapse
Affiliation(s)
- Eliana Real
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Flore Nardella
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
25
|
Dephospho-Coenzyme A Kinase Is an Exploitable Drug Target against Plasmodium falciparum: Identification of Selective Inhibitors by High-Throughput Screening of a Large Chemical Compound Library. Antimicrob Agents Chemother 2022; 66:e0042022. [DOI: 10.1128/aac.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria is a mosquito-borne fatal infectious disease that affects humans and is caused by
Plasmodium
parasites, primarily
Plasmodium falciparum
. Widespread drug resistance compels us to discover novel compounds and alternative drug discovery targets.
Collapse
|
26
|
Analysis of Plasmodium falciparum myosin B ATPase activity and structure in complex with the calmodulin-like domain of its light chain MLC-B. J Biol Chem 2022; 298:102634. [PMID: 36273584 PMCID: PMC9692044 DOI: 10.1016/j.jbc.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.
Collapse
|
27
|
Epigenetic and Epitranscriptomic Gene Regulation in Plasmodium falciparum and How We Can Use It against Malaria. Genes (Basel) 2022; 13:genes13101734. [PMID: 36292619 PMCID: PMC9601349 DOI: 10.3390/genes13101734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.
Collapse
|
28
|
Baumgarten S, Bryant J. Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum. OPEN RESEARCH EUROPE 2022; 2:75. [PMID: 37645349 PMCID: PMC10445928 DOI: 10.12688/openreseurope.14836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 08/31/2023]
Abstract
Background: The maintenance, regulation, and dynamics of heterochromatin in the human malaria parasite, Plasmodium falciparum, has drawn increasing attention due to its regulatory role in mutually exclusive virulence gene expression and the silencing of key developmental regulators. The advent of genome-wide analyses such as chromatin-immunoprecipitation followed by sequencing (ChIP-seq) has been instrumental in understanding chromatin composition; however, even in model organisms, ChIP-seq experiments are susceptible to intrinsic experimental biases arising from underlying chromatin structure. Methods: We performed a control ChIP-seq experiment, re-analyzed previously published ChIP-seq datasets and compared different analysis approaches to characterize biases of genome-wide analyses in P. falciparum. Results: We found that heterochromatic regions in input control samples used for ChIP-seq normalization are systematically underrepresented in regard to sequencing coverage across the P. falciparum genome. This underrepresentation, in combination with a non-specific or inefficient immunoprecipitation, can lead to the identification of false enrichment and peaks across these regions. We observed that such biases can also be seen at background levels in specific and efficient ChIP-seq experiments. We further report on how different read mapping approaches can also skew sequencing coverage within highly similar subtelomeric regions and virulence gene families. To ameliorate these issues, we discuss orthogonal methods that can be used to characterize bona fide chromatin-associated proteins. Conclusions: Our results highlight the impact of chromatin structure on genome-wide analyses in the parasite and the need for caution when characterizing chromatin-associated proteins and features.
Collapse
Affiliation(s)
| | - Jessica Bryant
- Biology of Host-Parasite Interactions Unit, Pasteur Institute, Paris, Paris, 75015, France
- CNRS ERL9195, Paris, 75015, France
- INSERM U1201, Paris, France
| |
Collapse
|
29
|
Fréville A, Gnangnon B, Tremp AZ, De Witte C, Cailliau K, Martoriati A, Aliouat EM, Fernandes P, Chhuon C, Silvie O, Marion S, Guerrera IC, Dessens JT, Pierrot C, Khalife J. Plasmodium berghei leucine-rich repeat protein 1 downregulates protein phosphatase 1 activity and is required for efficient oocyst development. Open Biol 2022; 12:220015. [PMID: 35920043 PMCID: PMC9346556 DOI: 10.1098/rsob.220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Caroline De Witte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
30
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
31
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
32
|
Turnbull LB, Button-Simons KA, Agbayani N, Ferdig MT. Sources of transcription variation in Plasmodium falciparum. J Genet Genomics 2022; 49:965-974. [PMID: 35395422 DOI: 10.1016/j.jgg.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Variation in transcript abundance can contribute to both short-term environmental response and long-term evolutionary adaptation. Most studies are designed to assess differences in mean transcription levels and do not consider other potentially important and confounding sources of transcriptional variation. Detailed quantification of variation sources will improve our ability to detect and identify the mechanisms that contribute to genome-wide transcription changes that underpin adaptive responses. To quantify innate levels of expression variation, we measured mRNA levels for more than 5000 genes in the malaria parasite, Plasmodium falciparum, among clones derived from two parasite strains across biologically and experimentally replicated batches. Using a mixed effects model, we partitioned the total variation among four sources - between strain, within strain, environmental batch effects, and stochastic noise. We found 646 genes with significant variation attributable to at least one of these sources. These genes were categorized by their predominant variation source and further examined using gene ontology enrichment analysis to associate function with each source of variation. Genes with environmental batch effect and within strain transcript variation may contribute to phenotypic plasticity, while genes with between strain variation may contribute to adaptive responses and processes that lead to parasite strain-specific survival under varied conditions.
Collapse
Affiliation(s)
- Lindsey B Turnbull
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katrina A Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nestor Agbayani
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA; Rush School of Medicine, Chicago, IL, 60612, USA
| | - Michael T Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
33
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
34
|
Holm I, Nardini L, Pain A, Bischoff E, Anderson CE, Zongo S, Guelbeogo WM, Sagnon N, Gohl DM, Nowling RJ, Vernick KD, Riehle MM. Comprehensive Genomic Discovery of Non-Coding Transcriptional Enhancers in the African Malaria Vector Anopheles coluzzii. Front Genet 2022; 12:785934. [PMID: 35082832 PMCID: PMC8784733 DOI: 10.3389/fgene.2021.785934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences. Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.
Collapse
Affiliation(s)
- Inge Holm
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Luisa Nardini
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Adrien Pain
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France.,Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Cameron E Anderson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ministry of Health, Ouagadougou, Burkina Faso
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, United States.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Ronald J Nowling
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering (MSOE), Milwaukee, WI, United States
| | - Kenneth D Vernick
- Institut Pasteur, Université de Paris, CNRS UMR 2000, Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Paris, France
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
35
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
36
|
Olajide JS, Olopade B, Cai J. Functional Intricacy and Symmetry of Long Non-Coding RNAs in Parasitic Infections. Front Cell Infect Microbiol 2021; 11:751523. [PMID: 34692567 PMCID: PMC8531492 DOI: 10.3389/fcimb.2021.751523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
RNAs are a class of molecules and the majority in eukaryotes are arbitrarily termed non- coding transcripts which are broadly classified as short and long non-coding RNAs. Recently, knowledge of the identification and functions of long non-coding RNAs have continued to accumulate and they are being recognized as important molecules that regulate parasite-host interface, parasite differentiation, host responses, and disease progression. Herein, we present and integrate the functions of host and parasite long non-coding RNAs during infections within the context of epigenetic re-programming and molecular crosstalk in the course of host-parasite interactions. Also, the modular range of parasite and host long non-coding RNAs in coordinated parasite developmental changes and host immune dynamic landscapes are discussed. We equally canvass the prospects of long non-coding RNAs in disease diagnosis and prognosis. Hindsight and suggestions are offered with the aim that it will bolster our understanding for future works on host and parasite long non-coding RNAs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Institute of Veterinary Research Chinese Academy of Agricultural Sciences, Lanzhou, China.,Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bolatito Olopade
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Institute of Veterinary Research Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
37
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
38
|
Schneider P, Reece SE. The private life of malaria parasites: Strategies for sexual reproduction. Mol Biochem Parasitol 2021; 244:111375. [PMID: 34023299 PMCID: PMC8346949 DOI: 10.1016/j.molbiopara.2021.111375] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Malaria parasites exhibit a complex lifecycle, requiring extensive asexual replication in the liver and blood of the vertebrate host, and in the haemocoel of the insect vector. Yet, they must also undergo a single round of sexual reproduction, which occurs in the vector's midgut upon uptake of a blood meal. Sexual reproduction is obligate for infection of the vector and thus, is essential for onwards transmission to new hosts. Sex in malaria parasites involves several bottlenecks in parasite number, making the stages involved attractive targets for blocking disease transmission. Malaria parasites have evolved a suite of adaptations ("strategies") to maximise the success of sexual reproduction and transmission, which could undermine transmission-blocking interventions. Yet, understanding parasite strategies may also reveal novel opportunities for such interventions. Here, we outline how evolutionary and ecological theories, developed to explain reproductive strategies in multicellular taxa, can be applied to explain two reproductive strategies (conversion rate and sex ratio) expressed by malaria parasites within the vertebrate host.
Collapse
Affiliation(s)
- Petra Schneider
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
40
|
Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021; 37:815-830. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Krista Fleck
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | - Tony Isebe
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Pegine Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Victoria Jeffers
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nilmar Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
41
|
Carrington E, Cooijmans RHM, Keller D, Toenhake CG, Bártfai R, Voss TS. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 2021; 24:102444. [PMID: 33997710 PMCID: PMC8105651 DOI: 10.1016/j.isci.2021.102444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites undergo a complex life cycle in the human host and the mosquito vector. The ApiAP2 family of DNA-binding proteins plays a dominant role in parasite development and life cycle progression. Most ApiAP2 factors studied to date act as transcription factors regulating stage-specific gene expression. Here, we characterized an ApiAP2 factor in Plasmodium falciparum that we termed PfAP2-HC. We demonstrate that PfAP2-HC specifically binds to heterochromatin throughout the genome. Intriguingly, PfAP2-HC does not bind DNA in vivo and recruitment of PfAP2-HC to heterochromatin is independent of its DNA-binding domain but strictly dependent on heterochromatin protein 1. Furthermore, our results suggest that PfAP2-HC functions neither in the regulation of gene expression nor in heterochromatin formation or maintenance. In summary, our findings reveal PfAP2-HC as a core component of heterochromatin in malaria parasites and identify unexpected properties and substantial functional divergence among the members of the ApiAP2 family of regulatory proteins. The ApiAP2 factor AP2-HC is a core component of heterochromatin in malaria parasites Binding of AP2-HC to heterochromatin strictly depends on heterochromatin protein 1 The AP2 DNA-binding domain of AP2-HC is dispensable for heterochromatin association
Collapse
Affiliation(s)
- Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Dominique Keller
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Till Steffen Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
42
|
Witmer K, Dahalan FA, Metcalf T, Talman AM, Howick VM, Lawniczak MKN. Using scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage. Front Cell Infect Microbiol 2021; 11:604129. [PMID: 33732658 PMCID: PMC7958875 DOI: 10.3389/fcimb.2021.604129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
The crossing of the mosquito midgut epithelium by the malaria parasite motile ookinete form represents the most extreme population bottleneck in the parasite life cycle and is a prime target for transmission blocking strategies. However, we have little understanding of the clonal variation that exists in a population of ookinetes in the vector, partially because the parasites are difficult to access and are found in low numbers. Within a vector, variation may result as a response to specific environmental cues or may exist independent of those cues as a potential bet-hedging strategy. Here we use single-cell RNA-seq to profile transcriptional variation in Plasmodium berghei ookinetes across different vector species, and between and within individual midguts. We then compare our results to low-input transcriptomes from individual Anopheles coluzzii midguts infected with the human malaria parasite Plasmodium falciparum. Although the vast majority of transcriptional changes in ookinetes are driven by development, we have identified candidate genes that may be responding to environmental cues or are clonally variant within a population. Our results illustrate the value of single-cell and low-input technologies in understanding clonal variation of parasite populations.
Collapse
Affiliation(s)
- Kathrin Witmer
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Farah Aida Dahalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tom Metcalf
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Arthur M. Talman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Virginia M. Howick
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mara K. N. Lawniczak
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
43
|
Ruberto AA, Bourke C, Merienne N, Obadia T, Amino R, Mueller I. Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites. Sci Rep 2021; 11:4127. [PMID: 33619283 PMCID: PMC7900125 DOI: 10.1038/s41598-021-82914-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
In the malaria-causing parasite's life cycle, Plasmodium sporozoites must travel from the midgut of a mosquito to the salivary glands before they can infect a mammalian host. However, only a fraction of sporozoites complete the journey. Since salivary gland invasion is required for transmission of sporozoites, insights at the molecular level can contribute to strategies for malaria prevention. Recent advances in single-cell RNA sequencing provide an opportunity to assess sporozoite heterogeneity at a resolution unattainable by bulk RNA sequencing methods. In this study, we use a droplet-based single-cell RNA sequencing workflow to analyze the transcriptomes of over 8000 Plasmodium berghei sporozoites derived from the midguts and salivary glands of Anopheles stephensi mosquitoes. The detection of known marker genes confirms the successful capture and sequencing of samples composed of a mixed population of sporozoites. Using data integration, clustering, and trajectory analyses, we reveal differences in gene expression profiles of individual sporozoites, and identify both annotated and unannotated markers associated with sporozoite development. Our work highlights the utility of a high-throughput workflow for the transcriptomic profiling of Plasmodium sporozoites, and provides new insights into gene usage during the parasite's development in the mosquito.
Collapse
Affiliation(s)
- Anthony A Ruberto
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| | - Caitlin Bourke
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicolas Merienne
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Thomas Obadia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, 75015, Paris, France
| | - Rogerio Amino
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Ivo Mueller
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for Transmission: Gene Regulation in Plasmodium Sporozoites. Front Cell Infect Microbiol 2021; 10:618430. [PMID: 33585284 PMCID: PMC7878544 DOI: 10.3389/fcimb.2020.618430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.
Collapse
Affiliation(s)
- Sylvie Briquet
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Carine Marinach
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Catherine Vaquero
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
45
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
46
|
Hollin T, Le Roch KG. From Genes to Transcripts, a Tightly Regulated Journey in Plasmodium. Front Cell Infect Microbiol 2020; 10:618454. [PMID: 33425787 PMCID: PMC7793691 DOI: 10.3389/fcimb.2020.618454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, we have witnessed significant progresses in understanding gene regulation in Apicomplexa including the human malaria parasite, Plasmodium falciparum. This parasite possesses the ability to convert in multiple stages in various hosts, cell types, and environments. Recent findings indicate that P. falciparum is talented at using efficient and complementary molecular mechanisms to ensure a tight control of gene expression at each stage of its life cycle. Here, we review the current understanding on the contribution of the epigenome, atypical transcription factors, and chromatin organization to regulate stage conversion in P. falciparum. The adjustment of these regulatory mechanisms occurring during the progression of the life cycle will be extensively discussed.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| |
Collapse
|
47
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
48
|
Dynamic Chromatin Structure and Epigenetics Control the Fate of Malaria Parasites. Trends Genet 2020; 37:73-85. [PMID: 32988634 DOI: 10.1016/j.tig.2020.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Multiple hosts and various life cycle stages prompt the human malaria parasite, Plasmodium falciparum, to acquire sophisticated molecular mechanisms to ensure its survival, spread, and transmission to its next host. To face these environmental challenges, increasing evidence suggests that the parasite has developed complex and complementary layers of regulatory mechanisms controlling gene expression. Here, we discuss the recent developments in the discovery of molecular components that contribute to cell replication and differentiation and highlight the major contributions of epigenetics, transcription factors, and nuclear architecture in controlling gene regulation and life cycle progression in Plasmodium spp.
Collapse
|
49
|
Llorà-Batlle O, Michel-Todó L, Witmer K, Toda H, Fernández-Becerra C, Baum J, Cortés A. Conditional expression of PfAP2-G for controlled massive sexual conversion in Plasmodium falciparum. SCIENCE ADVANCES 2020; 6:eaaz5057. [PMID: 32577509 PMCID: PMC7286680 DOI: 10.1126/sciadv.aaz5057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Malaria transmission requires that some asexual parasites convert into sexual forms termed gametocytes. The initial stages of sexual development, including sexually committed schizonts and sexual rings, remain poorly characterized, mainly because they are morphologically identical to their asexual counterparts and only a small subset of parasites undergo sexual development. Here, we describe a system for controlled sexual conversion in the human malaria parasite Plasmodium falciparum, based on conditional expression of the PfAP2-G transcription factor. Using this system, ~90 percent of the parasites converted into sexual forms upon induction, enabling the characterization of committed and early sexual stages without further purification. We characterized sexually committed schizonts and sexual rings at the transcriptomic and phenotypic levels, which revealed down-regulation of genes involved in solute transport upon sexual commitment, among other findings. The new inducible lines will facilitate the study of early sexual stages at additional levels, including multiomic characterization and drug susceptibility assays.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Lucas Michel-Todó
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Kathrin Witmer
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Haruka Toda
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Carmen Fernández-Becerra
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- IGTP Institut d’Investigació Germans Trias i Pujol, Badalona 08916, Catalonia, Spain
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Alfred Cortés
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- ICREA, Barcelona 08010, Catalonia, Spain
- Corresponding author.
| |
Collapse
|
50
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|