1
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Manus MB, Goguen SK, Azad MB. The protective associations of breastfeeding with infant overweight and asthma are not dependent on maternal FUT2 secretor status. Front Nutr 2023; 10:1203552. [PMID: 37964924 PMCID: PMC10642293 DOI: 10.3389/fnut.2023.1203552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Breastfeeding supplies infant gut bacteria with human milk oligosaccharides (HMOs) as a nutrient source. HMO profiles are influenced by the FUT2 gene, which encodes an enzyme affecting the fucosylation of milk sugars. 20 to 40% of individuals have a "non-secretor" polymorphism that inactivates the FUT2 gene, resulting in variable HMO proportions in milk. This has engendered a concerning, yet unfounded, perception that non-secretor milk is "inferior." To address this untested hypothesis, we re-analyzed two datasets in which we previously showed that breastfeeding was protective against early life asthma and excessive infant weight gain in the Canadian CHILD Cohort Study. Using stratified regression models, we found that the protective association of exclusive breastfeeding and infant asthma was not modified by maternal secretor status (secretors aOR: 0.53, 95% CI 0.31 to 0.92; non-secretors aOR: 0.36, 95% CI 0.12 to 1.04; p for interaction = 0.50, N = 2086 children). Similarly, the association of breastfeeding with lower infant BMI and weight gain velocity did not vary by maternal secretor status (infant BMI: secretors aβ -0.47, 95% CI -0.66 to -0.29; non-secretors aβ -0.46, 95% CI -0.78 to -0.13; p for interaction = 0.60; N = 1971 infants). Our results indicate that secretor and non-secretor mothers can equally promote infant growth and respiratory health through breastfeeding. These findings run contrary to the idea that non-secretor milk is an inferior food source, and instead reify the importance of breastfeeding for all infants. The results of this study can inform feeding recommendations that are applicable to all infants, regardless of maternal secretor status.
Collapse
Affiliation(s)
- Melissa B. Manus
- Manitoba Interdisciplinary Lactation Centre (MILC), Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie K. Goguen
- Manitoba Interdisciplinary Lactation Centre (MILC), Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B. Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Ma X, Ding J, Ren H, Xin Q, Li Z, Han L, Liu D, Zhuo Z, Liu C, Ren Z. Distinguishable Influence of the Delivery Mode, Feeding Pattern, and Infant Sex on Dynamic Alterations in the Intestinal Microbiota in the First Year of Life. MICROBIAL ECOLOGY 2023; 86:1799-1813. [PMID: 36864279 DOI: 10.1007/s00248-023-02188-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 09/13/2023]
Abstract
The delivery mode, the feeding pattern and infant sex significantly influence the development of the infant gut flora. However, the extent to which these factors contribute to the establishment of the gut microbiota at different stages has rarely been studied. The factors that play a dominant role in determining microbial colonization of the infant gut at specific time points are unknown. The purpose of this study was to assess the different contributions of the delivery mode, the feeding pattern and infant sex to the composition of the infant gut microbiome. Here, 213 fecal samples from 55 infants at five ages (0, 1, 3, 6, and 12 months postpartum) were collected, and the composition of the gut microbiota via 16S rRNA sequencing was analyzed. The results showed that the average relative abundances of four genera, Bifidobacterium, Bacteroides, Parabacteroides, and Phascolarctobacterium, were increased in vaginally delivered infants versus cesarean section-delivered infants, while those of ten genera, such as Salmonella and Enterobacter, were reduced. The relative proportions of Anaerococcus and Peptostreptococcaceae were higher in exclusive breastfeeding than in combined feeding, while those of Coriobacteriaceae, Lachnospiraceae and Erysipelotrichaceae were lower. The average relative abundances of two genera, Alistipes and Anaeroglobus, were increased in male infants compared with female infants, whereas those of the phyla Firmicutes and Proteobacteria were reduced. During the first year of life, the average UniFrac distances revealed that the individual difference in the gut microbial composition in vaginally delivered infants was greater than that in cesarean section-delivered infants (P < 0.001) and that infants who received combined feeding had greater individual microbiota differences than exclusively breastfed infants (P < 0.01). The delivery mode, infant sex, and the feeding pattern were the dominant factors determining colonization of the infant gut microbiota at 0 months, from 1 to 6 months, and at 12 months postpartum, respectively. This study demonstrated for the first time that infant sex accounted for the dominant contribution to infant gut microbial development from 1 to 6 months postpartum. More broadly, this study effectively established the extent to which the delivery mode, the feeding pattern and infant sex contribute to the development of the gut microbiota at various time points during the first year of life.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Ding
- Department of Quality Control, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, 201111, China
| | - Qi Xin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Han
- Department of Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dingjiandi Liu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihong Zhuo
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Muro-Valdez JC, Meza-Rios A, Aguilar-Uscanga BR, Lopez-Roa RI, Medina-Díaz E, Franco-Torres EM, Zepeda-Morales ASM. Breastfeeding-Related Health Benefits in Children and Mothers: Vital Organs Perspective. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1535. [PMID: 37763654 PMCID: PMC10536202 DOI: 10.3390/medicina59091535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Breast milk (BM) is a constantly changing fluid that represents the primary source of nutrition for newborns. It is widely recognized that breastfeeding provides benefits for both the child and the mother, including a lower risk of ovarian and breast cancer, type 2 diabetes mellitus, decreased blood pressure, and more. In infants, breastfeeding has been correlated with a lower risk of infectious diseases, obesity, lower blood pressure, and decreased incidence of respiratory infections, diabetes, and asthma. Various factors, such as the baby's sex, the health status of the mother and child, the mother's diet, and the mode of delivery, can affect the composition of breast milk. This review focuses on the biological impact of the nutrients in BM on the development and functionality of vital organs to promote the benefit of health.
Collapse
Affiliation(s)
- Julio César Muro-Valdez
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Rocio Ivette Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Eunice Medina-Díaz
- Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Av. José Parres Arias 5, Rinconada de la Azalea, Industrial Belenes, Zapopan 45150, Mexico
| | - Esmeralda Marisol Franco-Torres
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| |
Collapse
|
5
|
Barnett D, Endika M, Klostermann C, Gu F, Thijs C, Nauta A, Schols H, Smidt H, Arts I, Penders J. Human milk oligosaccharides, antimicrobial drugs, and the gut microbiota of term neonates: observations from the KOALA birth cohort study. Gut Microbes 2023; 15:2164152. [PMID: 36617628 PMCID: PMC9833409 DOI: 10.1080/19490976.2022.2164152] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
The infant gut microbiota affects childhood health. This pioneer microbiota may be vulnerable to antibiotic exposures, but could be supported by prebiotic oligosaccharides found in breast milk and some infant formulas. We sought to characterize the effects of several exposures on the neonatal gut microbiota, including human milk oligosaccharides (HMOs), galacto-oligosaccharides (GOS), and infant/maternal antimicrobial exposures. We profiled the stool microbiota of 1023 one-month-old infants from the KOALA Birth Cohort using 16S rRNA gene amplicon sequencing. We quantified 15 HMOs in breast milk from the mothers of 220 infants, using high-performance liquid chromatography-mass spectrometry. Both breastfeeding and antibiotic exposure decreased gut microbial diversity, but each was associated with contrasting shifts in microbiota composition. Other factors associated with microbiota composition included C-section, homebirth, siblings, and exposure to animals. Neither infant exposure to oral antifungals nor maternal exposure to antibiotics during pregnancy were associated with infant microbiota composition. Four distinct groups of breast milk HMO compositions were evident, corresponding to maternal Secretor status and Lewis group combinations defined by the presence/absence of certain fucosylated HMOs. However, we found the strongest evidence for microbiota associations between two non-fucosylated HMOs: 6'-sialyllactose (6'-SL) and lacto-N-hexaose (LNH), which were associated with lower and higher relative abundances of Bifidobacterium, respectively. Among 111 exclusively formula-fed infants, the GOS-supplemented formula was associated with a lower relative abundance of Clostridium perfringens. In conclusion, the gut microbiota is sensitive to some prebiotic and antibiotic exposures during early infancy and understanding their effects could inform future strategies for safeguarding a health-promoting infant gut microbiota.
Collapse
Affiliation(s)
- D.J.M Barnett
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M.F Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - C.E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - F Gu
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - C Thijs
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Nauta
- FrieslandCampina, LE Amersfoort, The Netherlands
| | - H.A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - H Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - I.C.W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - J Penders
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
6
|
Tsaturyan V, Manvelyan A, Balayan M, Harutyunyan N, Pepoyan E, Torok T, Chikindas M, Pepoyan A. Host genetics and gut microbiota composition: Baseline gut microbiota composition as a possible prognostic factor for the severity of COVID-19 in patients with familial Mediterranean fever disease. Front Microbiol 2023; 14:1107485. [PMID: 37065143 PMCID: PMC10098164 DOI: 10.3389/fmicb.2023.1107485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background It is known that the gut microbiome of a healthy person affects the process of COVID-19 after getting infected with SARS-CoV-2 virus. It is also believed that colchicine can alleviate the severity of COVID-19. Objective Current investigations aimed to evaluate the associations between the baseline gut microbiota composition of healthy and Familial Mediterranean fever (FMF) - carrier Armenian men populations, and the severity of the COVID-19 disease after their infection with the SARS-CoV-2. The study has a purpose of answering three core questions: i. Do the characteristics of gut microbiome of Armenians affect the course of COVID-19 severity? ii. How does the COVID-19 disease course on go for FMF patients who have been taking colchicine as a medication over the years after getting infected with SARS-CoV-2? iii. Is there an initial gut micribiota structure pattern for non-FMF and FMF patients in the cases when COVID-19 appears in mild form? Methods The gut microbiota composition in non-FMF and FMF patients before the first infection (mild and moderate course of COVID-19) was considered. COVID-19 was diagnosed by SARS-CoV-2 nucleic acid RT-PCR in nasopharyngeal swab and/or sputum. Results The number of patients with male FMF with mild COVID-19 was approximately two times higher than that of non-FMF male subjects with COVID-19. In addition, an association of COVID-19 disease severity with the baseline gut Prevotella, Clostridium hiranonis, Eubacterium biforme, Veillonellaceae, Coprococcus, and Blautia diversities in the non-FMF and FMF populations were revealed by us, which can be used as risk/prognostic factor for the severity of COVID-19.
Collapse
Affiliation(s)
- Vardan Tsaturyan
- Faculty of Military Medicine, Yerevan State Medical University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Anahit Manvelyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Marine Balayan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Natalya Harutyunyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Elya Pepoyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Tamas Torok
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael Chikindas
- Health Promoting Naturals Laboratory, Rutgers State University, New Brunswick, NJ, United States
| | - Astghik Pepoyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- The International Scientific-Educational Center of the National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- *Correspondence: Astghik Pepoyan
| |
Collapse
|
7
|
Ziemski M, Adamov A, Kim L, Flörl L, Bokulich NA. Reproducible acquisition, management and meta-analysis of nucleotide sequence (meta)data using q2-fondue. Bioinformatics 2022; 38:5081-5091. [PMID: 36130056 PMCID: PMC9665871 DOI: 10.1093/bioinformatics/btac639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The volume of public nucleotide sequence data has blossomed over the past two decades and is ripe for re- and meta-analyses to enable novel discoveries. However, reproducible re-use and management of sequence datasets and associated metadata remain critical challenges. We created the open source Python package q2-fondue to enable user-friendly acquisition, re-use and management of public sequence (meta)data while adhering to open data principles. RESULTS q2-fondue allows fully provenance-tracked programmatic access to and management of data from the NCBI Sequence Read Archive (SRA). Unlike other packages allowing download of sequence data from the SRA, q2-fondue enables full data provenance tracking from data download to final visualization, integrates with the QIIME 2 ecosystem, prevents data loss upon space exhaustion and allows download of (meta)data given a publication library. To highlight its manifold capabilities, we present executable demonstrations using publicly available amplicon, whole genome and metagenome datasets. AVAILABILITY AND IMPLEMENTATION q2-fondue is available as an open-source BSD-3-licensed Python package at https://github.com/bokulich-lab/q2-fondue. Usage tutorials are available in the same repository. All Jupyter notebooks used in this article are available under https://github.com/bokulich-lab/q2-fondue-examples. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Lina Kim
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zürich, Zürich 8092, Switzerland
| | - Lena Flörl
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zürich, Zürich 8092, Switzerland
| | | |
Collapse
|
8
|
Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, Zutin TLM, Girio RJS, Repetti CSF, Detregiachi CRP, Bueno PCS, Mazuqueli Pereira EDSB, Goulart RDA, Haber JFDS. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int J Mol Sci 2022; 23:8805. [PMID: 35955942 PMCID: PMC9369010 DOI: 10.3390/ijms23158805] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/11/2022] Open
Abstract
Modifications in the microbiota caused by environmental and genetic reasons can unbalance the intestinal homeostasis, deregulating the host's metabolism and immune system, intensifying the risk factors for the development and aggravation of non-alcoholic fat liver disease (NAFLD). The use of probiotics, prebiotics and synbiotics have been considered a potential and promising strategy to regulate the gut microbiota and produce beneficial effects in patients with liver conditions. For this reason, this review aimed to evaluate the effectiveness of probiotics, prebiotics, and symbiotics in patients with NAFLD and NASH. Pubmed, Embase, and Cochrane databases were consulted, and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines were followed. The clinical trials used in this study demonstrated that gut microbiota interventions could improve a wide range of markers of inflammation, glycemia, insulin resistance, dyslipidemia, obesity, liver injury (decrease of hepatic enzymes and steatosis and fibrosis). Although microbiota modulators do not play a healing role, they can work as an important adjunct therapy in pathological processes involving NAFLD and its spectrums, either by improving the intestinal barrier or by preventing the formation of toxic metabolites for the liver or by acting on the immune system.
Collapse
Affiliation(s)
- Rodrigo Zamignan Carpi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Heron Fernando Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Tereza L. Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Raul J. S. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Sampaio Fonseca Repetti
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- Department of Biochemistry, School of Dentistry, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| |
Collapse
|
9
|
Tsaturyan V, Kushugulova A, Mirzabekyan S, Sidamonidze K, Tsereteli D, Torok T, Pepoyan A. Promising Indicators in Probiotic-recommendations in COVID-19 and its Accompanying Diseases. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Scientific data suggests the possible beneficial role of probiotics in treatments for COVID-19, but the species/strains-specificity and disease-specificity of probiotics need high attention in choosing the appropriate probiotic in diseases, in particularly in the COVID-19. We hope this review will raise awareness of the COVID-19 probiotic recommendations, highlighting the latest scientific information about virus/hydrogen peroxide/probiotics and the importance of finding out of a specific “criterion” for the probiotics’ recommendation in this disease.
Collapse
|
10
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Mehta S, Huey SL, McDonald D, Knight R, Finkelstein JL. Nutritional Interventions and the Gut Microbiome in Children. Annu Rev Nutr 2021; 41:479-510. [PMID: 34283919 DOI: 10.1146/annurev-nutr-021020-025755] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gut microbiome plays an integral role in health and disease, and diet is a major driver of its composition, diversity, and functional capacity. Given the dynamic development of the gut microbiome in infants and children, it is critical to address two major questions: (a) Can diet modify the composition, diversity, or function of the gut microbiome, and (b) will such modification affect functional/clinical outcomes including immune function, cognitive development, and overall health? We synthesize the evidence on the effect of nutritional interventions on the gut microbiome in infants and children across 26 studies. Findings indicate the need to study older children, assess the whole intestinal tract, and harmonize methods and interpretation of findings, which are critical for informing meaningful clinical and public health practice. These findings are relevant for precision health, may help identify windows of opportunity for intervention, and may inform the design and delivery of such interventions. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Daniel McDonald
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Departments of Bioengineering and Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Julia L Finkelstein
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
The Effect of Immunobiotic/Psychobiotic Lactobacillus acidophilus Strain INMIA 9602 Er 317/402 Narine on Gut Prevotella in Familial Mediterranean Fever: Gender-Associated Effects. Probiotics Antimicrob Proteins 2021; 13:1306-1315. [PMID: 34132998 DOI: 10.1007/s12602-021-09779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Possible mechanisms involved in sex-dependent differences in the gut microbiota have a growing interest worldwide, but the effects of probiotics dependence on the gender of the host have remained outside of researchers' attention until now. Previously, our research data described gender-specific differences in the gut microbiota of Armenian Familial Mediterranean fever (FMF) patients. Taking into account the possible association of Prevotella spp. with depressive disorders, the aim of the current investigations was an evaluation of changes in the abundance of gut Prevotella of FMF patients in association with the patient's depression and gender. The differences between healthy and FMF diseased gut microbiota in terms of Prevotella abundance were revealed. In addition, the gender-dependent effects of immunobiotic/psychobiotic Narine on the abundance of gut Prevotella of FMF patients and patients' depression scores were shown by us in this study.
Collapse
|
13
|
Laursen MF, Pekmez CT, Larsson MW, Lind MV, Yonemitsu C, Larnkjær A, Mølgaard C, Bode L, Dragsted LO, Michaelsen KF, Licht TR, Bahl MI. Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly. ISME COMMUNICATIONS 2021; 1:21. [PMID: 36737495 PMCID: PMC9723702 DOI: 10.1038/s43705-021-00021-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Breastfeeding protects against diseases, with potential mechanisms driving this being human milk oligosaccharides (HMOs) and the seeding of milk-associated bacteria in the infant gut. In a cohort of 34 mother-infant dyads we analyzed the microbiota and HMO profiles in breast milk samples and infant's feces. The microbiota in foremilk and hindmilk samples of breast milk was compositionally similar, however hindmilk had higher bacterial load and absolute abundance of oral-associated bacteria, but a lower absolute abundance of skin-associated Staphylococcus spp. The microbial communities within both milk and infant's feces changed significantly over the lactation period. On average 33% and 23% of the bacterial taxa detected in infant's feces were shared with the corresponding mother's milk at 5 and 9 months of age, respectively, with Streptococcus, Veillonella and Bifidobacterium spp. among the most frequently shared. The predominant HMOs in feces associated with the infant's fecal microbiota, and the dominating infant species B. longum ssp. infantis and B. bifidum correlated inversely with HMOs. Our results show that breast milk microbiota changes over time and within a feeding session, likely due to transfer of infant oral bacteria during breastfeeding and suggest that milk-associated bacteria and HMOs direct the assembly of the infant gut microbiota.
Collapse
Affiliation(s)
| | - Ceyda T Pekmez
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Melanie Wange Larsson
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nursing and Nutrition, University College Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Chloe Yonemitsu
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA
| | - Anni Larnkjær
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, Gordon A. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes 2021; 13:1-30. [PMID: 33978558 PMCID: PMC8276657 DOI: 10.1080/19490976.2021.1897210] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Early life, including the establishment of the intestinal microbiome, represents a critical window of growth and development. Postnatal factors affecting the microbiome, including mode of delivery, feeding type, and antibiotic exposure have been widely investigated, but questions remain regarding the influence of exposures in utero on infant gut microbiome assembly. This systematic review aimed to synthesize evidence on exposures before birth, which affect the early intestinal microbiome. Five databases were searched in August 2019 for studies exploring pre-pregnancy or pregnancy 'exposure' data in relation to the infant microbiome. Of 1,441 publications identified, 76 were included. Factors reported influencing microbiome composition and diversity included maternal antibiotic and probiotic uses, dietary intake, pre-pregnancy body mass index (BMI), gestational weight gain (GWG), diabetes, mood, and others. Eleven studies contributed to three meta-analyses quantifying associations between maternal intrapartum antibiotic exposure (IAP), BMI and GWG, and infant microbiome alpha diversity (Shannon Index). IAP, maternal overweight/obesity and excessive GWG were all associated with reduced diversity. Most studies were observational, few included early recruitment or longitudinal follow-up, and the timing, frequency, and methodologies related to stool sampling and analysis were variable. Standardization and collaboration are imperative to enhance understanding in this complex and rapidly evolving area.
Collapse
Affiliation(s)
- Allison Grech
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Ravin Lal
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kerith Duncanson
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Taylor
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Adrienne Gordon
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep 2020; 10:15792. [PMID: 32978424 PMCID: PMC7519658 DOI: 10.1038/s41598-020-72635-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
To compare gut microbiota of healthy infants that were exclusively breast-fed or formula-fed, we recruited 91 infants, who were assigned into three different groups and fed by breast milk (30 babies), formula A (30 babies) or formula B (31 babies) exclusively for more than 4 months after birth. Faecal bacterial composition was tested. Among different groups, α diversity was lower in breast-fed group than formula-fed groups in 40 days of age, but increased significantly in 6 months of age. The Bifidobacterium represented the most predominant genus and Enterobacteriaceae the second in all groups. In 40 days of age, Bifidobacterium and Bacteroides were significantly higher, while Streptococcus and Enterococcus were significantly lower in breast-fed group than they were in formula A-fed group. Lachnospiraceae was lower in breast-fed than formula B-fed group. Veillonella and Clostridioides were lower in breast-fed than formula-fed groups. In 3 months of age there were less Lachnospiraceae and Clostridioides in breast-fed group than formula-fed groups. There were also significant differences of microbiota between formula A-fed and formula B-fed groups. Those differences may have impacts on their long-term health.
Collapse
|
16
|
Quin C, Gibson DL. Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. Gut Microbes 2020; 11:1143-1171. [PMID: 32249675 PMCID: PMC7524360 DOI: 10.1080/19490976.2020.1736973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gastrointestinal tract with microorganisms during infancy represents a critical control point for shaping life-long immune-mediated disease susceptibility. Abnormal colonization or an imbalance of microbes, termed dysbiosis, is implicated in several diseases. Consequently, recent research has aimed at understanding ways to manipulate a dysbiotic microbiome during infancy to resemble a normal, healthy microbiome. However, one of the fundamental issues in microbiome research is characterizing what a "normal" infant microbiome is based on geography, ethnicity and cultural variations. This review provides a comprehensive account of what is currently known about the infant microbiome from a global context. In general, this review shows that the influence of cultural variations in feeding practices, delivery modes and hygiene are the biggest contributors to microbial variability. Despite geography or race, all humans have similar microbial succession during infancy.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada,Department of Medicine, University of British Columbia, Kelowna, Canada,CONTACT Deanna L. Gibson Department of Biology, University of British Columbia, Okanagan Campus, ASC 386, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| |
Collapse
|
17
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
18
|
Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. mBio 2020; 11:mBio.03196-19. [PMID: 32184252 PMCID: PMC7078481 DOI: 10.1128/mbio.03196-19] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human milk is the sole and recommended nutrition for the newborn infant and contains one of the largest constituents of diverse oligosaccharides, dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association studies indicate that HMOs have multiple physiological functions largely mediated through the establishment of the gut microbiome. Until recently, HMOs were not available to investigate their role in randomized controlled intervention trials. To our knowledge, this is the first report on the effects of 2 HMOs on establishing microbiota in newborn infants. We provide a detailed description of the microbiota changes observed upon feeding a formula with 2 HMOs in comparison to breastfed reference infants' microbiota. Then, we associate the microbiota to long-term health as assessed by prescribed antibiotic use. Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2′-fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infants (BF) served as a reference group. Stool microbiota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into seven fecal community types (FCTs) with marked differences in total microbial abundances. Three of the four 12-month FCTs were likely precursors of the adult enterotypes. At 3 months, microbiota composition in the test group (n = 58) appeared closer to that of BF (n = 35) than control (n = 63) by microbiota alpha (within group) and beta (between groups) diversity analyses and distribution of FCTs. While bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for Bifidobacteriaceae). HMO supplementation increased the number of infants with FCT BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We explored the association of the FCTs with reported morbidities and medication use up to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less likely to require antibiotics during the first year than those with FCT Bi. Previously reported lower rates of infection-related medication use with HMOs may therefore be linked to gut microbiota community types. (This study has been registered at ClinicalTrials.gov under registration number NCT01715246.)
Collapse
|
19
|
Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, Huynh R, Kearns PJ, Kueneman J, Kurosawa E, LaBumbard BC, Lyons C, McNally K, Schliep K, Shankar N, Tokash-Peters AG, Vences M, Whetstone R. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol 2020; 21:23. [PMID: 32014020 PMCID: PMC6996194 DOI: 10.1186/s13059-019-1908-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Host-associated microbiomes, the microorganisms occurring inside and on host surfaces, influence evolutionary, immunological, and ecological processes. Interactions between host and microbiome affect metabolism and contribute to host adaptation to changing environments. Meta-analyses of host-associated bacterial communities have the potential to elucidate global-scale patterns of microbial community structure and function. It is possible that host surface-associated (external) microbiomes respond more strongly to variations in environmental factors, whereas internal microbiomes are more tightly linked to host factors. RESULTS Here, we use the dataset from the Earth Microbiome Project and accumulate data from 50 additional studies totaling 654 host species and over 15,000 samples to examine global-scale patterns of bacterial diversity and function. We analyze microbiomes from non-captive hosts sampled from natural habitats and find patterns with bioclimate and geophysical factors, as well as land use, host phylogeny, and trophic level/diet. Specifically, external microbiomes are best explained by variations in mean daily temperature range and precipitation seasonality. In contrast, internal microbiomes are best explained by host factors such as phylogeny/immune complexity and trophic level/diet, plus climate. CONCLUSIONS Internal microbiomes are predominantly associated with top-down effects, while climatic factors are stronger determinants of microbiomes on host external surfaces. Host immunity may act on microbiome diversity through top-down regulation analogous to predators in non-microbial ecosystems. Noting gaps in geographic and host sampling, this combined dataset represents a global baseline available for interrogation by future microbial ecology studies.
Collapse
Affiliation(s)
- Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building – 401, 0843-03092 Panamá, Panama
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - C. Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Hayden A. Bender
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Daniel Buitrago-Rosas
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building – 401, 0843-03092 Panamá, Panama
| | - Hannah Diebboll
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Patrick J. Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Jordan Kueneman
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building – 401, 0843-03092 Panamá, Panama
| | - Emmi Kurosawa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | | | - Casandra Lyons
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Kerry McNally
- School for the Environment, University of Massachusetts, Boston, MA 02125 USA
- Animal Health Department, New England Aquarium, Boston, MA 02110 USA
| | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Nachiket Shankar
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Amanda G. Tokash-Peters
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
- Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, RN1, Butare, Rwanda
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| |
Collapse
|
20
|
Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation. Nutrients 2019; 12:nu12010071. [PMID: 31888048 PMCID: PMC7019425 DOI: 10.3390/nu12010071] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023] Open
Abstract
The infant's gut microbiome is generally rich in the Bifidobacterium genus. The mother's milk contains natural prebiotics, called human milk oligosaccharides (HMOs), as the third most abundant solid component after lactose and lipids, and of the different gut microbes, infant gut-associated bifidobacteria are the most efficient in assimilating HMOs. Indeed, the fecal concentration of HMOs was found to be negatively correlated with the fecal abundance of Bifidobacterium in infants. Given these results, two HMO molecules, 2'-fucosyllactose and lacto-N-neotetraose, have recently been industrialized to fortify formula milk. As of now, however, our knowledge about the HMO consumption pathways in infant gut-associated bifidobacteria is still incomplete. The recent studies indicate that HMO assimilation abilities significantly vary among different Bifidobacterium species and strains. Therefore, to truly maximize the effects of prebiotic and probiotic supplementation in commercialized formula, we need to understand HMO consumption behaviors of bifidobacteria in more detail. In this review, we summarized how different Bifidobacterium species/strains are equipped with varied gene sets required for HMO assimilation. We then examined the correlation between the abundance of the HMO-related genes and bifidobacteria-rich microbiota formation in the infant gut through data mining analysis of a deposited fecal microbiome shotgun sequencing dataset. Finally, we shortly described future perspectives on HMO-related studies.
Collapse
|
21
|
Underwood MA. Probiotics and the prevention of necrotizing enterocolitis. J Pediatr Surg 2019; 54:405-412. [PMID: 30241961 DOI: 10.1016/j.jpedsurg.2018.08.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immaturity of the host immune system and alterations in the intestinal microbiome appear to be key factors in the pathogenesis of necrotizing enterocolitis (NEC). The aim of this paper is to weigh the evidence for the use of probiotics to prevent NEC in premature infants. METHODS Animal studies, randomized controlled trials, observational cohort studies and meta-analyses involving administration of probiotic products for the prevention of NEC were reviewed. This review of the evidence summarizes the available preclinical and clinical data. RESULTS In animal models probiotic microbes alter the intestinal microbiome, decrease inflammation and intestinal permeability and decrease the incidence and severity of experimental NEC. In randomized, placebo-controlled trials and cohort studies of premature infants, probiotic microbes decrease the risk of NEC, death and sepsis. CONCLUSION Evidence is strong for the prevention of NEC with the use of combination probiotics in premature infants who receive breast milk. The potential risks and benefits of probiotic administration to premature infants should be carefully reviewed with parents. TYPE OF STUDY Therapeutic. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Mark A Underwood
- Division of Neonatology, University of California Davis, Ticon 2, Suite 253, 2516 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants. mSphere 2017; 2:mSphere00501-17. [PMID: 29242832 PMCID: PMC5717325 DOI: 10.1128/msphere.00501-17] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.
Collapse
|
23
|
Abstract
The biological functions of oxytocin in attachment and bonding between mother and infant in parturition and breastfeeding and between adults have been studied extensively. However, most current authors have proposed that infant attachment to the mother is learned through operant conditioning mechanisms via the infant's brain and central nervous system. We propose that oxytocin levels in the mother and infant are co-regulated by emotional connection or disconnection, and that the autonomic co-conditioning learning mechanism can be exploited to change a negative physiological and behavioral response between mother and infant into a positive one. Lack of efficacy and scalability of child development therapies that have come out of the attachment theoretical framework have prompted calls for new ideas. Here, we review calming cycle theory, which takes a new view of the emotional relationship of mother and infant, and predicts ways to positively intervene when problems arise. The theory builds upon the research and ideas of Pavlov and his followers and proposes that subcortical Pavlovian co-conditioning of the autonomic nervous systems of mother and infant is the key to maintaining emotional connection between the two and to shaping emotional behavior of the infant into adulthood. We review evidence in support of calming cycle theory from a randomized controlled trial of Family Nurture Intervention (FNI), which is designed to overcome adverse emotional, behavioral, and developmental outcomes in prematurely born infants. Finally, we discuss the role of visceral oxytocin and emotional behavior, and that the conditional mother-infant relationship may affect behavioral changes through anti-inflammatory gut-brain stem vagal signaling.
Collapse
Affiliation(s)
- Martha G Welch
- Director Nurture Science Program, Department of Pediatrics, Columbia University Medical Center, New York
| | - Robert J Ludwig
- Associate Director Nurture Science Program, Department of Pediatrics, Columbia University Medical Center, New York
| |
Collapse
|