1
|
Hong Y, Wen Z, Qiao G, Tian T, Wen X. Single-Base Methylome Analysis of Sweet Cherry ( Prunus avium L.) on Dwarfing Rootstocks Reveals Epigenomic Differences Associated with Scion Dwarfing Conferred by Grafting. Int J Mol Sci 2024; 25:11100. [PMID: 39456883 PMCID: PMC11508414 DOI: 10.3390/ijms252011100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Plant grafting using dwarfing rootstocks is one of the important cultivation measures in the sweet cherry (Prunus avium) industry. In this work, we aimed to explore the effects of the dwarfing rootstock "Pd1" (Prunus tomentosa) on sweet cherry 'Shuguang2' scions by performing morphological observations using the paraffin slice technique, detecting GA (gibberellin) and IAA (auxin) contents using UPLC-QTRAP-MS (ultra-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer), and implementing integration analyses of the epigenome and transcriptome using whole-genome bisulfite sequencing and transcriptome sequencing. Anatomical analysis indicated that the cell division ability of the SAM (shoot apical meristem) in dwarfing plants was reduced. Pd1 rootstock significantly decreased the levels of GAs and IAA in sweet cherry scions. Methylome analysis showed that the sweet cherry genome presented 15.2~18.6%, 59.88~61.55%, 28.09~33.78%, and 2.99~5.28% methylation at total C, CG, CHG, and CHH sites, respectively. Shoot tips from dwarfing plants exhibited a hypermethylated pattern mostly due to increased CHH methylation, while leaves exhibited a hypomethylated pattern. According to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, DMGs (differentially methylated genes) and DEGs (differentially expressed genes) were enriched in hormone-related GO terms and KEGG pathways. Global correlation analysis between methylation and transcription revealed that mCpG in the gene body region enhanced gene expression and mCHH in the region near the TSS (transcription start site) was positively correlated with gene expression. Next, we found some hormone-related genes and TFs with significant changes in methylation and transcription, including SAURs, ARF, GA2ox, ABS1, bZIP, MYB, and NAC. This study presents a methylome map of the sweet cherry genome, revealed widespread DNA methylation alterations in scions caused by dwarfing rootstock, and obtained abundant genes with methylation and transcription alterations that are potentially involved in rootstock-induced growth changes in sweet cherry scions. Our findings can lay a good basis for further epigenetic studies on sweet cherry dwarfing and provide valuable new insight into understanding rootstock-scion interactions.
Collapse
Affiliation(s)
| | | | | | | | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Y.H.); (Z.W.); (G.Q.); (T.T.)
| |
Collapse
|
2
|
Chen B, Wang L, Li L, Zhou M, Pan S, Wang Q, Hou Y, Zhou X. N 6-methyladenosine facilitates arsenic-induced neoplastic phenotypes of human bronchial epithelial cells by promoting miR-106b-5p maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116803. [PMID: 39094460 DOI: 10.1016/j.ecoenv.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Arsenic is a widespread carcinogen and an important etiological factor for lung cancer. Dysregulated miRNAs have been implicated in arsenic carcinogenesis and the mechanisms of arsenic-induced dysregulated miRNAs have not been fully elucidated. N6-methyladenosine (m6A) modification is known to modulate pri-miRNA processing. However, whether m6A-mediated pri-miRNA processing is involved in arsenic carcinogenesis is poorly understood. Here, we found that m6A modification was significantly increased in arsenite-transformed human bronchial epithelial BEAS-2B cells (0.5 µM arsenite, 16 weeks). Meanwhile, METTL3 was significantly upregulated at week 12 and 16 during cell transformation. The proliferation, migration, invasion, and anchorage-independent growth of arsenite-transformed cells were inhibited by the reduction of m6A levels through METTL3 knockdown. Further experiments suggest that the oncogene miR-106b-5p is a potentially essential m6A target mediating arsenic-induced lung cancer. miR-106b-5p was observed to be upregulated after exposure to arsenite for 12 and 16 weeks, and the reduction of m6A levels caused by METTL3 knockdown inhibited miR-106b-5p maturation in arsenite-transformed cells. What's more, miR-106b-5p overexpression successfully rescued METTL3 knockdown-induced inhibition of the neoplastic phenotypes of transformed cells. Additionally, Basonuclin 2 (BNC2) was uncovered as a potential target of miR-106b-5p and downregulated by METTL3 via enhancing miR-106b-5p maturation. Additionally, the METTL3 inhibitor STM2457 suppressed neoplastic phenotypes of arsenite-transformed BEAS-2B cells by blocking pri-miR-106b methylation. These results demonstrate that m6A modification promotes the neoplastic phenotypes of arsenite-transformed BEAS-2B cells through METTL3/miR-106b-5p/BNC2 pathway, providing a new prospective for understanding arsenic carcinogenesis.
Collapse
Affiliation(s)
- Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lujiao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaxuan Hou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Godschalk R, Faulk C, LaRocca J, van Benthem J, Marchetti F. Epigenotoxicity: Decoding the epigenetic imprints of genotoxic agents and their implications for regulatory genetic toxicology. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39262275 DOI: 10.1002/em.22626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Regulatory genetic toxicology focuses on DNA damage and subsequent gene mutations. However, genotoxic agents can also affect epigenetic marks, and incorporation of epigenetic data into the regulatory framework may thus enhance the accuracy of risk assessment. Additionally, epigenetic alterations may identify non-genotoxic carcinogens that are not captured with the current battery of tests. Epigenetic alterations could also explain long-term consequences and potential transgenerational effects in the absence of DNA mutations. Therefore, at the 2022 International Workshops on Genotoxicity Testing (IWGT) in Ottawa (Ontario, Canada), an expert workgroup explored whether including epigenetic endpoints would improve regulatory genetic toxicology. Here we summarize the presentations and the discussions on technical advancements in assessing epigenetics, how the assessment of epigenetics can enhance strategies for detecting genotoxic and non-genotoxic carcinogens and the correlation between epigenetic alterations with other relevant apical endpoints.
Collapse
Affiliation(s)
- Roger Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
5
|
Bagheri M, Lee MK, Muller KE, Miller TW, Pattabiraman DR, Christensen BC. Alteration of DNA methyltransferases by eribulin elicits broad DNA methylation changes with potential therapeutic implications for triple-negative breast cancer. Epigenomics 2024; 16:293-308. [PMID: 38356412 PMCID: PMC10910603 DOI: 10.2217/epi-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kristen E Muller
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon NH 03756, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Diwakar R Pattabiraman
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
6
|
Stößer S, Lumpp T, Fischer F, Gunesch S, Schumacher P, Hartwig A. Effect of Long-Term Low-Dose Arsenic Exposure on DNA Methylation and Gene Expression in Human Liver Cells. Int J Mol Sci 2023; 24:15238. [PMID: 37894918 PMCID: PMC10607230 DOI: 10.3390/ijms242015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Millions of people around the world are exposed to elevated levels of arsenic through food or drinking water. Epidemiological studies have linked chronic arsenic exposure to an increased risk of several cancers, cardiovascular disease, central nervous system neuropathies, and genotoxic as well as immunotoxic effects. In addition to the induction of oxidative stress and inhibition of DNA repair processes, epigenetic effects, including altered DNA methylation patterns resulting in aberrant gene expression, may contribute to carcinogenicity. However, the underlying mechanisms by which chronic micromolar concentrations of arsenite affect the methylation status of DNA are not fully understood. In this study, human HepG2 hepatocarcinoma cells were treated with 0.5-10 μM sodium arsenite for 24 h, 10, or 20 days. During these periods, the effects on global DNA methylation, cell cycle phase distribution, and gene expression were investigated. While no impact on DNA methylation was seen after short-term exposure, global hypomethylation was observed at both long-term exposure periods, with concomitant induction of the DNA methyltransferase genes DNMT1 and DNMT3B, while DNMT3A was slightly down-regulated. Pronounced time- and concentration-dependent effects were also seen in the case of genes involved in DNA damage response and repair, inflammation, oxidative stress response, and metal homeostasis. These results suggest that chronic low-dose arsenite exposure can lead to global hypomethylation. As an underlying mechanism, the consistent down-regulation of DNA methyltransferase genes could be excluded; alternatively, interactions at the protein level could play an important role.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Takahashi N, Yamaguchi S, Ohtsuka R, Takeda M, Yoshida T, Kosaka T, Harada T. Gene expression analysis of antioxidant and DNA methylation on the rat liver after 4-week wood preservative chromated copper arsenate exposure. J Toxicol Pathol 2023; 36:31-43. [PMID: 36683727 PMCID: PMC9837468 DOI: 10.1293/tox.2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Our previous 4-week repeated dose toxicity study showed that wood preservative chromated copper arsenate (CCA) induced hepatocellular hypertrophy accompanied by biochemical hepatic dysfunction and an increase in oxidative stress marker, 8-hydroxydeoxyguanosine, in female rats. To further explore the molecular mechanisms of CCA hepatotoxicity, we analyzed 10%-buffered formalin-fixed liver samples from female rats for cell proliferation, apoptosis, and protein glutathionylation and conducted microarray analysis on frozen liver samples from female rats treated with 0 or 80 mg/kg/day of CCA. Chemical analysis revealed that dimethylated arsenical was the major metabolite in liver tissues of male and female rats. CCA increase labeling indices of proliferating cell nuclear antigen and decrease terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling accompanied with increased expression of protein glutathionylation, indicating a decrease in glutathione (GSH) in hepatocytes of female rats. Microarray analysis revealed that CCA altered gene expression of antioxidants, glutathione-S-transferase (GST), heat shock proteins and ubiquitin-proteasome pathway, cell proliferation, apoptosis, DNA methylation, cytochrome P450, and glucose and lipid metabolism in female rats. Increased expression of GSTs, including Gsta2, Gsta3, Mgst1, and Cdkn1b (p27), and decreased expression of the antioxidant Mt1, and DNA methylation Dnmt1, Dnmt3a, and Ctcf were confirmed in the liver of female rats in a dose-dependent manner. Methylation status of the promoter region of the Mt1 was not evidently changed between control and treatment groups. The results suggested that CCA decreased GSH and altered the expression of several genes, including antioxidants, GST, and DNA methylation, followed by impaired cell proliferation in the liver of female rats.
Collapse
Affiliation(s)
- Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan,*Corresponding author: N Takahashi (e-mail: )
| | - Satoru Yamaguchi
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Ryouichi Ohtsuka
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Makio Takeda
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Takanori Harada
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| |
Collapse
|
8
|
Cui YH, Wilkinson E, Peterson J, He YY. ALKBH4 Stabilization Is Required for Arsenic-Induced 6mA DNA Methylation Inhibition, Keratinocyte Malignant Transformation, and Tumorigenicity. WATER 2022; 14:3595. [PMID: 37207134 PMCID: PMC10194016 DOI: 10.3390/w14223595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Inorganic arsenic is one of the well-known human skin carcinogens. However, the molecular mechanism by which arsenic promotes carcinogenesis remains unclear. Previous studies have established that epigenetic changes, including changes in DNA methylation, are among the critical mechanisms that drive carcinogenesis. N6-methyladenine (6mA) methylation on DNA is a widespread epigenetic modification that was initially found on bacterial and phage DNA. Only recently has 6mA been identified in mammalian genomes. However, the function of 6mA in gene expression and cancer development is not well understood. Here, we show that chronic low doses of arsenic induce malignant transformation and tumorigenesis in keratinocytes and lead to the upregulation of ALKBH4 and downregulation of 6mA on DNA. We found that reduced 6mA levels in response to low levels of arsenic were mediated by the upregulation of the 6mA DNA demethylase ALKBH4. Moreover, we found that arsenic increased ALKBH4 protein levels and that ALKBH4 deletion impaired arsenic-induced tumorigenicity in vitro and in mice. Mechanistically, we found that arsenic promoted ALKBH4 protein stability through reduced autophagy. Together, our findings reveal that the DNA 6mA demethylaseALKBH4 promotes arsenic tumorigenicity and establishes ALKBH4 as a promising target for arsenic-induced tumorigenesis.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Emma Wilkinson
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jack Peterson
- The College, Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
10
|
Rosenberg T, Marco A, Kisliouk T, Haron A, Shinder D, Druyan S, Meiri N. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. FASEB J 2022; 36:e22406. [PMID: 35713935 DOI: 10.1096/fj.202101948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
The question of whether behavioral traits are heritable is under debate. An obstacle in demonstrating transgenerational inheritance in mammals originates from the maternal environment's effect on offspring phenotype. Here, we used in ovo embryonic heat conditioning (EHC) of first-generation chicks, demonstrating heredity of both heat and immunological resilience, confirmed by a reduced fibril response in their untreated offspring to either heat or LPS challenge. Concordantly, transcriptome analysis confirmed that EHC induces changes in gene expression in the anterior preoptic hypothalamus (APH) that contribute to these phenotypes in the offspring. To study the association between epigenetic mechanisms and trait heritability, DNA-methylation patterns in the APH of offspring of control versus EHC fathers were evaluated. Genome-wide analysis revealed thousands of differentially methylated sites (DMSs), which were highly enriched in enhancers and CCCTC-binding factor (CTCF) sites. Overlap analysis revealed 110 differentially expressed genes that were associated with altered methylation, predominantly on enhancers. Gene-ontology analysis shows pathways associated with immune response, chaperone-mediated protein folding, and stress response. For the proof of concept, we focused on HSP25 and SOCS3, modulators of heat and immune responses, respectively. Chromosome conformational capture (3C) assay identified interactions between their promoters and methylated enhancers, with the strongest frequency on CTCF binding sites. Furthermore, gene expression corresponded with the differential methylation patterns, and presented increased CTCF binding in both hyper- and hypomethylated DMSs. Collectively, we demonstrate that EHC induces transgenerational thermal and immunological resilience traits. We propose that one of the mechanisms underlying inheritance depends on three-dimensional (3D) chromatin reorganization.
Collapse
Affiliation(s)
- Tali Rosenberg
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Asaf Marco
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Amit Haron
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
11
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Sharma V, Gangopadhyay S, Shukla S, Chauhan A, Singh S, Singh RD, Tiwari R, Singh D, Srivastava V. Prenatal exposure to arsenic promotes sterile inflammation through the Polycomb repressive element EZH2 and accelerates skin tumorigenesis in mouse. Toxicol Appl Pharmacol 2022; 443:116004. [DOI: 10.1016/j.taap.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
13
|
Singh V, Kushwaha S, Ansari JA, Gangopadhyay S, Mishra SK, Dey RK, Giri AK, Patnaik S, Ghosh D. MicroRNA-129-5p-regulated microglial expression of the surface receptor CD200R1 controls neuroinflammation. J Biol Chem 2021; 298:101521. [PMID: 34952004 PMCID: PMC8762073 DOI: 10.1016/j.jbc.2021.101521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein β (CEBPβ) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3′-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.
Collapse
Affiliation(s)
- Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddhartha Gangopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Giri
- CSIR-Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation. Cells 2021; 10:cells10113215. [PMID: 34831437 PMCID: PMC8620267 DOI: 10.3390/cells10113215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air–liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.
Collapse
|
15
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Saintilnord WN, Fondufe-Mittendorf Y. Arsenic-induced epigenetic changes in cancer development. Semin Cancer Biol 2021; 76:195-205. [PMID: 33798722 PMCID: PMC8481342 DOI: 10.1016/j.semcancer.2021.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Arsenic is a ubiquitous metalloid whose high levels of toxicity pose major health concerns to millions of people worldwide by increasing susceptibility to various cancers and non-cancer illnesses. Since arsenic is not a mutagen, the mechanism by which it causes changes in gene expression and disease pathogenesis is not clear. One possible mechanism is through generation of reactive oxygen species. Another equally important mechanism still very much in its infancy is epigenetic dysregulation. In this review, we discuss recent discoveries underlying arsenic-induced epigenetic changes in cancer development. Importantly, we highlight the proposed mechanisms targeted by arsenic to drive oncogenic gene expression.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
17
|
Zhao H, Ma D, Xie J, Sanchez O, Huang F, Yuan C. Live-Cell Probe for In Situ Single-Cell Monitoring of Mitochondrial DNA Methylation. ACS Sens 2021; 6:3575-3586. [PMID: 34586782 DOI: 10.1021/acssensors.1c00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria, as the center of energy production, play an important role in cell homeostasis by regulating the cellular metabolism and mediating the cellular response to stress. Epigenetic changes such as DNA and histone methylation have been increasingly recognized to play a significant role in homeostasis and stress response. The cross-talking between the metabolome and the epigenome has attracted significant attention in recent years but with a major focus on how metabolism contributes to epigenomic changes. Few studies have focused on how epigenetic modifications may alter the mitochondrial composition and activity. In this work, we designed a novel probe targeting methylated CpGs of mitochondrial DNA (mtDNA). We demonstrated the capability of our probe to reveal the spatial distribution of methylated mtDNA and capture the mtDNA methylation changes at a single-cell level. We were also able to track single-cell mtDNA and nDNA methylation simultaneously and discovered the unsynchronized dynamics of the nucleus and mitochondria. Our tool offers a unique opportunity to understand the epigenetic regulation of mtDNA and its dynamic response to the microenvironment and cellular changes.
Collapse
Affiliation(s)
- Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Donghan Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oscar Sanchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
19
|
Nava-Rivera LE, Betancourt-Martínez ND, Lozoya-Martínez R, Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Delgado-Aguirre H, Zambrano-Ortíz JO, Morán-Martínez J. Transgenerational effects in DNA methylation, genotoxicity and reproductive phenotype by chronic arsenic exposure. Sci Rep 2021; 11:8276. [PMID: 33859283 PMCID: PMC8050275 DOI: 10.1038/s41598-021-87677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
An emerging concern is the influences of early life exposure to environmental toxicants on offspring characteristics in later life. Since recent evidence suggests a transgenerational transference of aberrant phenotypes from exposed-parents to non-exposed offspring related to adult-onset diseases including reproductive phenotype. The transgenerational potential of arsenic a well know genotoxic and epigenetic modifier agent has not been assessed in mammals until now. In this experimental study, we evaluated the transgenerational effects of arsenic in a rat model with chronic exposure to arsenic. Rats chronically exposed to arsenic in drinking water (1 mg As2O3/mL) (F0) were mated to produce the arsenic lineage (F1, F2, and F3). The arsenic toxic effects on were evaluated over the four generations by analyzing the DNA methylation percentage, genotoxicity in WBC and physical and reproductive parameters, including sperm quality parameters and histopathological evaluation of the gonads. Chronic exposure to arsenic caused genotoxic damage (F0-F3) different methylation patterns, alterations in physical and reproductive parameters, aberrant morphology in the ovaries (F0 and F1) and testicles (F1-F3), and a decrease in the quality of sperm (F0-F3, except F2). Parental chronic arsenic exposure causes transgenerational genotoxicity and changes in global DNA methylation which might be associated with reproductive defects in rats. Combined with recent studies reveal that disturbances in the early life of an individual can affect the health of later generations.
Collapse
Affiliation(s)
- Lydia Enith Nava-Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Rodrigo Lozoya-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Hector Delgado-Aguirre
- Laboratorio de Histocompatibilidad, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - José Omar Zambrano-Ortíz
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México.
| |
Collapse
|
20
|
Saintilnord WN, Tenlep SYN, Preston JD, Duregon E, DeRouchey JE, Unrine JM, de Cabo R, Pearson KJ, Fondufe-Mittendorf YN. Chronic Exposure to Cadmium Induces Differential Methylation in Mice Spermatozoa. Toxicol Sci 2021; 180:262-276. [PMID: 33483743 PMCID: PMC8041459 DOI: 10.1093/toxsci/kfab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Sara Y N Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Joshua D Preston
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| | - Yvonne N Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| |
Collapse
|
21
|
Von Walden F, Rea M, Mobley CB, Fondufe-Mittendorf Y, McCarthy JJ, Peterson CA, Murach KA. The myonuclear DNA methylome in response to an acute hypertrophic stimulus. Epigenetics 2020; 15:1151-1162. [PMID: 32281477 PMCID: PMC7595631 DOI: 10.1080/15592294.2020.1755581] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to multi-nucleated muscle fibres, numerous resident and infiltrating mononuclear cells populate the muscle compartment. As most epigenetic assays in skeletal muscle are conducted on whole tissue homogenates, essentially nothing is known about regulatory processes exclusively within muscle fibres in vivo. Utilizing a novel genetically modified mouse model developed by our laboratory, we (1) outline a simple and rapid workflow for isolating pure myonuclei from small tissue samples via fluorescent activated cell sorting and extracting high-quality large-fragment DNA for downstream analyses, and (2) provide information on myonuclear and interstitial cell nuclear CpG DNA methylation via reduced representation bisulphite sequencing (RRBS) using mice that were subjected to an acute mechanical overload of the plantaris muscle. In 3-month-old mice, myonuclei are ~50% of total nuclei in sham and ~30% in 3-d overloaded muscle, the difference being attributable to mononuclear cell infiltration and proliferation with overload. In purified myonuclei, pathway analysis of hypomethylated promoter regions following overload was distinct from interstitial nuclei and revealed marked regulation of factors that converge on the master regulator of muscle growth mTOR, and on autophagy. Specifically, acute hypomethylation of Rheb, Rictor, Hdac1, and Hdac2, in addition to a major driver of ribosome biogenesis Myc, reveals the epigenetic regulation of hypertrophic signalling within muscle fibres that may underpin the long-term growth response to loading. This study provides foundational information on global myonuclear epigenetics in vivo using RRBS, and demonstrates the importance of isolating specific nuclear populations to study the epigenetic regulation of skeletal muscle fibre adaptation.
Collapse
Affiliation(s)
- Ferdinand Von Walden
- K6 Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - C. Brooks Mobley
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | | | - John J. McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A. Peterson
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Kevin A. Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
22
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
23
|
Barajas-Olmos FM, Ortiz-Sánchez E, Imaz-Rosshandler I, Córdova-Alarcón EJ, Martínez-Tovar A, Villanueva-Toledo J, Morales-Marín ME, Cruz-Colín JL, Rangel C, Orozco L, Centeno F. Analysis of the dynamic aberrant landscape of DNA methylation and gene expression during arsenic-induced cell transformation. Gene 2019; 711:143941. [PMID: 31242453 DOI: 10.1016/j.gene.2019.143941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
Inorganic arsenic is a well-known carcinogen associated with several types of cancer, but the mechanisms involved in arsenic-induced carcinogenesis are not fully understood. Recent evidence points to epigenetic dysregulation as an important mechanism in this process; however, the effects of epigenetic alterations in gene expression have not been explored in depth. Using microarray data and applying a multivariate clustering analysis in a Gaussian mixture model, we describe the alterations in DNA methylation around the promoter region and the impact on gene expression in HaCaT cells during the transformation process caused by chronic exposure to arsenic. Using this clustering approach, the genes were grouped according to their methylation and expression status in the epigenetic landscape, and the changes that occurred during the cellular transformation were identified adequately. Thus, we present a valuable method for identifying epigenomic dysregulation.
Collapse
Affiliation(s)
- Francisco M Barajas-Olmos
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Ivan Imaz-Rosshandler
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 OWA, UK
| | | | - Adolfo Martínez-Tovar
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Jairo Villanueva-Toledo
- Centro de Investigación en Salud "Dr. Jesús Kumate Rodríguez", Instituto Mexicano del Seguro Social, Mérida, Yucatán, Mexico; Cátedras CONACYT - Fundación IMSS AC, CONACYT, Ciudad de México, Mexico
| | - Mirna E Morales-Marín
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - José L Cruz-Colín
- Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Claudia Rangel
- Computational Genomics Consortium, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Federico Centeno
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Chen YJ, Huang CH, Shi YJ, Lee YC, Wang LJ, Chang LS. The suppressive effect of arsenic trioxide on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 expression induces apoptosis in human leukemia cells. Toxicol Appl Pharmacol 2018; 358:43-55. [PMID: 30213730 DOI: 10.1016/j.taap.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Abstract
Arsenic trioxide (ATO) has been reported to inhibit the activity of Ten-eleven translocation methylcytosine dioxygenase (TET). TET modulates FOXP3 expression, while dysregulation of FOXP3 expression promotes the malignant progression of leukemia cells. We examined the role of TET-FOXP3 axis in the cytotoxic effects of ATO on the human acute myeloid leukemia cell line, U937. ATO-induced apoptosis in U937 cells was characterized by activation of caspase-3/-9, mitochondrial depolarization, and MCL1 downregulation. In addition, ATO-treated U937 cells showed ROS-mediated inhibition of TET2 transcription, leading to downregulation of FOXP3 expression and in turn, suppression of FOXP3-mediated activation of Lyn and Akt. Overexpression of FOXP3 or Lyn minimized the suppressive effect of ATO on Akt activation and MCL1 expression. Promoter luciferase activity and chromatin immunoprecipitation assays revealed the crucial role of Akt-mediated CREB phosphorylation in MCL1 transcription. Further, ATO-induced Akt inactivation promoted GSK3β-mediated degradation of MCL1. Transfection of constitutively active Akt expression abrogated ATO-induced MCL1 downregulation. MCL1 overexpression lessened the ATO-induced depolarization of mitochondrial membrane and increased the viability of ATO-treated cells. Thus, our data suggest that ATO induces mitochondria-mediated apoptosis in U937 cells through its suppressive effect on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 transcription and protein stabilization. Our findings also indicate that the same pathway underlies ATO-induced death in human leukemia HL-60 cells.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
25
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Moggs J, Terranova R. Chromatin dynamics underlying latent responses to xenobiotics. Toxicol Res (Camb) 2018; 7:606-617. [PMID: 30090610 PMCID: PMC6062062 DOI: 10.1039/c7tx00317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Pleiotropic xenobiotics can trigger dynamic alterations in mammalian chromatin structure and function but many of these are likely non-adverse and simply reflect short-term changes in DNA transactions underlying normal homeostatic, adaptive and protective cellular responses. However, it is plausible that a subset of xenobiotic-induced perturbations of somatic tissue or germline epigenomes result in delayed-onset and long-lasting adverse effects, in particular if they occur during critical stages of growth and development. These could include reprogramming, dedifferentiation, uncontrolled growth, and cumulative toxicity effects through molecular memory of prior xenobiotic exposures or altered susceptibility to subsequent xenobiotic exposures. Here we discuss the current evidence for epigenetic mechanisms underlying latent responses to xenobiotics, and the potential for identifying molecular epigenetic changes that are prodromal to overt morphologic or functional toxicity phenotypes.
Collapse
Affiliation(s)
- Jonathan Moggs
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| | - Rémi Terranova
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| |
Collapse
|
27
|
Meehan RR, Thomson JP, Lentini A, Nestor CE, Pennings S. DNA methylation as a genomic marker of exposure to chemical and environmental agents. Curr Opin Chem Biol 2018; 45:48-56. [PMID: 29505975 DOI: 10.1016/j.cbpa.2018.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Recent progress in interpreting comprehensive genetic and epigenetic profiles for human cellular states has contributed new insights into the developmental origins of disease, elucidated novel signalling pathways and enhanced drug discovery programs. A similar comprehensive approach to decoding the epigenetic readouts from chemical challenges in vivo would yield new paradigms for monitoring and assessing environmental exposure in model systems and humans.
Collapse
Affiliation(s)
- Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Antonio Lentini
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden.
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, UK.
| |
Collapse
|
28
|
Role of CTCF in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:61-68. [PMID: 31395350 DOI: 10.1016/j.mrrev.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
CCCTC-binding factor (CTCF) is a highly conserved, ubiquitously expressed zinc finger protein. CTCF is a multifunctional protein, associated with a number of vital cellular processes such as transcriptional activation, repression, insulation, imprinting and genome organization. Emerging evidence indicates that CTCF is also involved in DNA damage response. In this review, we focus on the newly identified role of CTCF in facilitating DNA double-strand break repair. Due to the large number of cellular processes in which CTCF is involved, factors that functionally affect CTCF could have serious implications on genomic stability. It is becoming increasingly clear that exposure to environmental toxicants could have adverse effects on CTCF functions. Here we discuss the various ways that environmental toxicants could impact CTCF functions and the potential consequences on DNA damage response.
Collapse
|
29
|
Rea M, Gripshover T, Fondufe-Mittendorf Y. Selective inhibition of CTCF binding by iAs directs TET-mediated reprogramming of 5-hydroxymethylation patterns in iAs-transformed cells. Toxicol Appl Pharmacol 2018; 338:124-133. [PMID: 29175454 PMCID: PMC5738917 DOI: 10.1016/j.taap.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Methylation at cytosine (5mC) is a fundamental epigenetic DNA modification recently associated with iAs-mediated carcinogenesis. In contrast, the role of 5-hydroxymethylcytosine (5hmC), the oxidation product of 5mC in iAs-mediated carcinogenesis is unknown. Here we assess the hydroxymethylome in iAs-transformed cells, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks. Moreover, this pathologic iAs-mediated carcinogenesis is characterized by a shift toward a higher hydroxymethylation pattern genome-wide. At specific promoters, hydroxymethylation correlated with increased gene expression. Furthermore, this increase in hydroxymethylation occurs concurrently with an upregulation of ten-eleven translocation (TET) enzymes that oxidize 5-methylcytosine (5mC) in DNA. To gain an understanding into how iAs might impact TET expression, we found that iAs inhibits the binding of CTCF at the proximal, weak CTCF binding sites of the TET1 and TET2 gene promoters and enhances CTCF binding at the stronger distal binding site. Further analyses suggest that this distal site acts as an enhancer, thus high CTCF occupancy at the enhancer region of TET1 and TET2 possibly drives their high expression in iAs-transformed cells. These results have major implications in understanding the impact of differential CTCF binding, genome architecture and its consequences in iAs-mediated pathogenesis.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Tyler Gripshover
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Eastern Kentucky University, Richmond, KY 40475, USA
| | - Yvonne Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
30
|
Eckstein M, Rea M, Fondufe-Mittendorf YN. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2017; 331:6-17. [PMID: 28336213 PMCID: PMC5747965 DOI: 10.1016/j.taap.2017.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
Abstract
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment.
Collapse
Affiliation(s)
- Meredith Eckstein
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|