1
|
Gupta M, Cilkiz M, Ibrahim MMA, Athrey G. Gut Microbiome-Brain Crosstalk in the Early Life of Chicken Reveals the Circadian Regulation of Key Metabolic and Immune Signaling Processes. Microorganisms 2025; 13:789. [PMID: 40284627 PMCID: PMC12029235 DOI: 10.3390/microorganisms13040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Circadian rhythms are innate biological systems that control everyday behavior and physiology. Furthermore, bilateral interaction between the host's circadian rhythm and the gut microbes influences a variety of health ramifications, including metabolic diseases, obesity, and mental health including GALT physiology and the microbiome population. Therefore, we are studying the correlation between differential gene expression in the chicken brain and microbiota abundance during circadian rhythms. To understand this, we raised freshly hatched chicks under two photoperiod treatments: normal photoperiod (NP = 12/12 LD) and extended photoperiod (EP 23/1 LD). The chicks were randomly assigned to one of two treatments. After 21 days of circadian entrainment, the chicks were euthanized at nine time points spaced six hours apart over 48 h to characterize the brain transcriptomes. Each sample's RNA was extracted, and 36 mRNA libraries were generated and sequenced using Illumina technology, followed by data processing, count data generation, and differential gene expression analysis. We generated an average of 17.5 million reads per library for 237.9 M reads. When aligned to the Galgal6 reference genome, 11,867 genes had detectable expression levels, with a common dispersion value of 0.105. To identify the genes that follow 24 h rhythms, counts per million data were performed in DiscoRhythm. We discovered 577 genes with Cosinor and 417 with the JTK cycle algorithm that exhibit substantial rhythms. We used weighted gene co-expression network analysis (WGCNA) to analyze the correlation between differentially expressed genes and microbiota abundance. The most enriched pathways included aldosterone-regulated sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, GABAergic synapse, oxidative phosphorylation, serotonergic synapse, dopaminergic synapse and circadian entrainment. This study builds on our previous study, and adds new findings about the specific interactions and co-regulation of the brain transcriptome and the gut microbiota. The interaction between gut microbiota and host gene expression highlights the potential benefits of microbiome-modulation approaches to improve gut health and performance in poultry.
Collapse
Affiliation(s)
- Mridula Gupta
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
| | - Mustafa Cilkiz
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Mohamed M. A. Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt;
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
- Faculty of Ecology & Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Wang Z, Yu J, Zhai M, Wang Z, Sheng K, Zhu Y, Wang T, Liu M, Wang L, Yan M, Zhang J, Xu Y, Wang X, Ma L, Hu W, Cheng H. System-level time computation and representation in the suprachiasmatic nucleus revealed by large-scale calcium imaging and machine learning. Cell Res 2024; 34:493-503. [PMID: 38605178 PMCID: PMC11217450 DOI: 10.1038/s41422-024-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the mammalian central circadian pacemaker with heterogeneous neurons acting in concert while each neuron harbors a self-sustained molecular clockwork. Nevertheless, how system-level SCN signals encode time of the day remains enigmatic. Here we show that population-level Ca2+ signals predict hourly time, via a group decision-making mechanism coupled with a spatially modular time feature representation in the SCN. Specifically, we developed a high-speed dual-view two-photon microscope for volumetric Ca2+ imaging of up to 9000 GABAergic neurons in adult SCN slices, and leveraged machine learning methods to capture emergent properties from multiscale Ca2+ signals as a whole. We achieved hourly time prediction by polling random cohorts of SCN neurons, reaching 99.0% accuracy at a cohort size of 900. Further, we revealed that functional neuron subtypes identified by contrastive learning tend to aggregate separately in the SCN space, giving rise to bilaterally symmetrical ripple-like modular patterns. Individual modules represent distinctive time features, such that a module-specifically learned time predictor can also accurately decode hourly time from random polling of the same module. These findings open a new paradigm in deciphering the design principle of the biological clock at the system level.
Collapse
Affiliation(s)
- Zichen Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Jing Yu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Muyue Zhai
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Zehua Wang
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kaiwen Sheng
- Beijing Academy of Artificial Intelligence, Beijing, China
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yu Zhu
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Tianyu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Mianzhi Liu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Lu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Miao Yan
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Xianhua Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Lei Ma
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Beijing Academy of Artificial Intelligence, Beijing, China.
| | - Wei Hu
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China.
| | - Heping Cheng
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Bonnefont X. Cell Signaling in the Circadian Pacemaker: New Insights from in vivo Imaging. Neuroendocrinology 2024; 115:103-110. [PMID: 38754404 DOI: 10.1159/000539344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND "One for all, and all for one," the famous rallying cry of the Three Musketeers, in Alexandre Dumas's popular novel, certainly applies to the 20,000 cells composing the suprachiasmatic nuclei (SCN). These cells work together to form the central clock that coordinates body rhythms in tune with the day-night cycle. Like virtually every body cell, individual SCN cells exhibit autonomous circadian oscillations, but this rhythmicity only reaches a high level of precision and robustness when the cells are coupled with their neighbors. Therefore, understanding the functional network organization of SCN cells beyond their core rhythmicity is an important issue in circadian biology. SUMMARY The present review summarizes the main results from our recent study demonstrating the feasibility of recording SCN cells in freely moving mice and the significance of variations in intracellular calcium over several timescales. KEY MESSAGE We discuss how in vivo imaging at the cell level will be pivotal to interrogate the mammalian master clock, in an integrated context that preserves the SCN network organization, with intact inputs and outputs.
Collapse
Affiliation(s)
- Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Rodan AR. Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. Physiology (Bethesda) 2024; 39:0. [PMID: 38411570 PMCID: PMC11368518 DOI: 10.1152/physiol.00006.2024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
6
|
Hiro S, Kobayashi K, Nemoto T, Enoki R. In-phasic cytosolic-nuclear Ca 2+ rhythms in suprachiasmatic nucleus neurons. Front Neurosci 2023; 17:1323565. [PMID: 38178840 PMCID: PMC10765503 DOI: 10.3389/fnins.2023.1323565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the master circadian clock in mammals. SCN neurons exhibit circadian Ca2+ rhythms in the cytosol, which is thought to act as a messenger linking the transcriptional/translational feedback loop (TTFL) and physiological activities. Transcriptional regulation occurs in the nucleus in the TTFL model, and Ca2+-dependent kinase regulates the clock gene transcription. However, the Ca2+ regulatory mechanisms between cytosol and nucleus as well as the ionic origin of Ca2+ rhythms remain unclear. In the present study, we monitored circadian-timescale Ca2+ dynamics in the nucleus and cytosol of SCN neurons at the single-cell and network levels. We observed robust nuclear Ca2+ rhythm in the same phase as the cytosolic rhythm in single SCN neurons and entire regions. Neuronal firing inhibition reduced the amplitude of both nuclear and cytosolic Ca2+ rhythms, whereas blocking of Ca2+ release from the endoplasmic reticulum (ER) via ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors had a minor effect on either Ca2+ rhythms. We conclude that the in-phasic circadian Ca2+ rhythms in the cytosol and nucleus are mainly driven by Ca2+ influx from the extracellular space, likely through the nuclear pore. It also raises the possibility that nuclear Ca2+ rhythms directly regulate transcription in situ.
Collapse
Affiliation(s)
- Sota Hiro
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Kenta Kobayashi
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Ryosuke Enoki
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
7
|
Enoki R, Kon N, Shimizu K, Kobayashi K, Hiro S, Chang CP, Nakane T, Ishii H, Sakamoto J, Yamaguchi Y, Nemoto T. Cold-induced suspension and resetting of Ca 2+ and transcriptional rhythms in the suprachiasmatic nucleus neurons. iScience 2023; 26:108390. [PMID: 38077129 PMCID: PMC10700853 DOI: 10.1016/j.isci.2023.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 05/09/2025] Open
Abstract
Does the circadian clock keep running under such hypothermic states as daily torpor and hibernation? This fundamental question has been a research subject for decades but has remained unsettled. We addressed this subject by monitoring the circadian rhythm of clock gene transcription and intracellular Ca2+ in the neurons of the suprachiasmatic nucleus (SCN), master circadian clock, in vitro under a cold environment. We discovered that the transcriptional and Ca2+ rhythms are maintained at 22°C-28°C, but suspended at 15°C, accompanied by a large Ca2+ increase. Rewarming instantly resets the Ca2+ rhythms, while transcriptional rhythms reach a stable phase after the transient state and recover their phase relationship with the Ca2+ rhythm. We conclude that SCN neurons remain functional under moderate hypothermia but stop ticking in deep hypothermia and that the rhythms reset after rewarming. These data also indicate that stable Ca2+ oscillation precedes clock gene transcriptional rhythms in SCN neurons.
Collapse
Affiliation(s)
- Ryosuke Enoki
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Kimiko Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kenta Kobayashi
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Sota Hiro
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ching-Pu Chang
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tatsuto Nakane
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Hirokazu Ishii
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Joe Sakamoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low-Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
8
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Davidson AJ, Beckner D, Bonnefont X. A Journey in the Brain's Clock: In Vivo Veritas? BIOLOGY 2023; 12:1136. [PMID: 37627020 PMCID: PMC10452196 DOI: 10.3390/biology12081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the circadian pacemaker that coordinates mammalian rhythms in tune with the day-night cycle. Understanding the determinants of the intrinsic rhythmicity of this biological clock, its outputs, and resetting by environmental cues, has been a longstanding goal of the field. Integrated techniques of neurophysiology, including lesion studies and in vivo multi-unit electrophysiology, have been key to characterizing the rhythmic nature and outputs of the SCN in animal models. In parallel, reduced ex vivo and in vitro approaches have permitted us to unravel molecular, cellular, and multicellular mechanisms underlying the pacemaker properties of the SCN. New questions have emerged in recent years that will require combining investigation at a cell resolution within the physiological context of the living animal: What is the role of specific cell subpopulations in the SCN neural network? How do they integrate various external and internal inputs? What are the circuits involved in controlling other body rhythms? Here, we review what we have already learned about the SCN from in vivo studies, and how the recent development of new genetically encoded tools and cutting-edge imaging technology in neuroscience offers chronobiologists the opportunity to meet these challenges.
Collapse
Affiliation(s)
- Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Delaney Beckner
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| |
Collapse
|
10
|
Ragozzino FJ, Peterson B, Karatsoreos IN, Peters JH. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS). J Physiol 2023; 601:1881-1896. [PMID: 36975145 PMCID: PMC10192157 DOI: 10.1113/jp284370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.
Collapse
Affiliation(s)
- Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ilia N. Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Arginine-vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo. Proc Natl Acad Sci U S A 2023; 120:e2209329120. [PMID: 36656857 PMCID: PMC9942887 DOI: 10.1073/pnas.2209329120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.
Collapse
|
13
|
Ono D, Wang H, Hung CJ, Wang HT, Kon N, Yamanaka A, Li Y, Sugiyama T. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus. SCIENCE ADVANCES 2023; 9:eabq7032. [PMID: 36598978 PMCID: PMC11318661 DOI: 10.1126/sciadv.abq7032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The mammalian central circadian clock, located in the suprachiasmatic nucleus (SCN), coordinates the timing of physiology and behavior to local time cues. In the SCN, second messengers, such as cAMP and Ca2+, are suggested to be involved in the input and/or output of the molecular circadian clock. However, the functional roles of second messengers and their dynamics in the SCN remain largely unclear. In the present study, we visualized the spatiotemporal patterns of circadian rhythms of second messengers and neurotransmitter release in the SCN. Here, we show that neuronal activity regulates the rhythmic release of vasoactive intestinal peptides from the SCN, which drives the circadian rhythms of intracellular cAMP in the SCN. Furthermore, optical manipulation of intracellular cAMP levels in the SCN shifts molecular and behavioral circadian rhythms. Together, our study demonstrates that intracellular cAMP is a key molecule in the organization of the SCN circadian neuronal network.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hsin-tzu Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Takashi Sugiyama
- Advanced Optics and Biological Engineering, Evident Corporation, Tokyo, Japan
| |
Collapse
|
14
|
Chrobok L, Ahern J, Piggins HD. Ticking and talking in the brainstem satiety centre: Circadian timekeeping and interactions in the diet-sensitive clock of the dorsal vagal complex. Front Physiol 2022; 13:931167. [PMID: 36117684 PMCID: PMC9481231 DOI: 10.3389/fphys.2022.931167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.
Collapse
|
15
|
El Cheikh Hussein L, Fontanaud P, Mollard P, Bonnefont X. Nested calcium dynamics support daily cell unity and diversity in the suprachiasmatic nuclei of free-behaving mice. PNAS NEXUS 2022; 1:pgac112. [PMID: 36741435 PMCID: PMC9896879 DOI: 10.1093/pnasnexus/pgac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
The suprachiasmatic nuclei (SCN) of the anterior hypothalamus host the circadian pacemaker that synchronizes mammalian rhythms with the day-night cycle. SCN neurons are intrinsically rhythmic, thanks to a conserved cell-autonomous clock mechanism. In addition, circuit-level emergent properties confer a unique degree of precision and robustness to SCN neuronal rhythmicity. However, the multicellular functional organization of the SCN is not yet fully understood. Indeed, although SCN neurons are well-coordinated, experimental evidences indicate that some neurons oscillate out of phase in SCN explants, and possibly to a larger extent in vivo. Here, to tackle this issue we used microendoscopic Ca2+ i imaging and investigated SCN rhythmicity at a single cell resolution in free-behaving mice. We found that SCN neurons in vivo exhibited fast Ca2+ i spikes superimposed upon slow changes in baseline Ca2+ i levels. Both spikes and baseline followed a time-of-day modulation in many neurons, but independently from each other. Daily rhythms in basal Ca2+ i were highly coordinated, while spike activity from the same neurons peaked at multiple times of the light cycle, and unveiled clock-independent coactivity in neuron subsets. Hence, fast Ca2+ i spikes and slow changes in baseline Ca2+ i levels highlighted how multiple individual activity patterns could articulate within the temporal unity of the SCN cell network in vivo, and provided support for a multiplex neuronal code in the circadian pacemaker.
Collapse
Affiliation(s)
- Lama El Cheikh Hussein
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, IGF, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France,BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, IGF, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France,BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, IGF, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France,BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, 141 Rue de la Cardonille, F-34094 Montpellier, Cedex 5, France
| | | |
Collapse
|
16
|
Luan J, Yang K, Ding Y, Zhang X, Wang Y, Cui H, Zhou D, Chen L, Ma Z, Wang W, Zhang W, Liu X. Valsartan-mediated chronotherapy in spontaneously hypertensive rats via targeting clock gene expression in vascular smooth muscle cells. Arch Physiol Biochem 2022; 128:490-500. [PMID: 31794282 DOI: 10.1080/13813455.2019.1695840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study was to investigate the underlying mechanisms of valsartan chronotherapy in regulating blood pressure variability. METHODS RT-PCR was used to assay clock genes expression rhythm in the hypothalamus, aortic vessels, and target organs after valsartan chronotherapy. WB was used to measure Period 1 (Per1), Period 2 (Per2) protein expression in aortic vessels, as well as to measure phosphorylation of 20-kDa regulatory myosin light chain (MLC20) in VSMCs. RESULTS Specific clock genes in the hypothalamus, and Per1 and Per2 in aorta abdominalis, exhibited disordered circadian expression in vivo. Valsartan asleep time administration (VSA) restored circadian clock gene expression in a tissue- and gene-specific manner. In vitro, VSA was more efficient in blocking angiotensin II relative to VWA, which led to differential circadian rhythms of Per1 and Per2, ultimately corrected MLC20 phosphorylation. CONCLUSION VSA may be efficacious in regulating circadian clock genes rhythm, then concomitantly correct circadian blood pressure rhythms.
Collapse
Affiliation(s)
- Jiajie Luan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Kui Yang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Yanyun Ding
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Xiaotong Zhang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Yaqin Wang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Haiju Cui
- Department of Pharmacy, XuanCheng Vocational and Technical college, XuanCheng, Anhui, P.R. China
| | - Deixi Zhou
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Lu Chen
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Zhangqing Ma
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Wusan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Wen Zhang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Xiaoyun Liu
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| |
Collapse
|
17
|
The Expression and Function of Circadian Rhythm Genes in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4044606. [PMID: 34697563 PMCID: PMC8541861 DOI: 10.1155/2021/4044606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.
Collapse
|
18
|
Plante AE, Rao VP, Rizzo MA, Meredith AL. Comparative Ca 2+ channel contributions to intracellular Ca 2+ levels in the circadian clock. BIOPHYSICAL REPORTS 2021; 1:100005. [PMID: 35330949 PMCID: PMC8942421 DOI: 10.1016/j.bpr.2021.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022]
Abstract
Circadian rhythms in mammals are coordinated by the central clock in the brain, located in the suprachiasmatic nucleus (SCN). Multiple molecular and cellular signals display a circadian variation within SCN neurons, including intracellular Ca2+, but the mechanisms are not definitively established. SCN cytosolic Ca2+ levels exhibit a peak during the day, when both action potential firing and Ca2+ channel activity are increased, and are decreased at night, correlating with a reduction in firing rate. In this study, we employ a single-color fluorescence anisotropy reporter (FLARE), Venus FLARE-Cameleon, and polarization inverted selective-plane illumination microscopy to measure rhythmic changes in cytosolic Ca2+ in SCN neurons. Using this technique, the Ca2+ channel subtypes contributing to intracellular Ca2+ at the peak and trough of the circadian cycle were assessed using a pharmacological approach with Ca2+ channel inhibitors. Peak (218 ± 16 nM) and trough (172 ± 13 nM) Ca2+ levels were quantified, indicating a 1.3-fold circadian variance in Ca2+ concentration. Inhibition of ryanodine-receptor-mediated Ca2+ release produced a larger relative decrease in cytosolic Ca2+ at both time points compared to voltage-gated Ca2+channels. These results support the hypothesis that circadian Ca2+ rhythms in SCN neurons are predominantly driven by intracellular Ca2+ channels, although not exclusively so. The study provides a foundation for future experiments to probe Ca2+ signaling in a dynamic biological context using FLAREs.
Collapse
Affiliation(s)
- Amber E. Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vishnu P. Rao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Megan A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Abdel-Rahman EA, Hosseiny S, Aaliya A, Adel M, Yasseen B, Al-Okda A, Radwan Y, Saber SH, Elkholy N, Elhanafy E, Walker EE, Zuniga-Hertz JP, Patel HH, Griffiths HR, Ali SS. Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria. J Adv Res 2021; 31:35-47. [PMID: 34194831 PMCID: PMC8240107 DOI: 10.1016/j.jare.2021.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events. Objectives Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods. Methods We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points. Results Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene Bmal1, lower expression of per2, greater expression of MICU1 gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene cyclophilin D. Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration. Conclusions Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.
Collapse
Affiliation(s)
- Engy A. Abdel-Rahman
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Salma Hosseiny
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Abdullah Aaliya
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Adel
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Yasseen
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| | - Abdelrahman Al-Okda
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Yasmine Radwan
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Saber H. Saber
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Nada Elkholy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Eslam Elhanafy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Emily E. Walker
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan P. Zuniga-Hertz
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sameh S. Ali
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| |
Collapse
|
20
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Kon N, Wang HT, Kato YS, Uemoto K, Kawamoto N, Kawasaki K, Enoki R, Kurosawa G, Nakane T, Sugiyama Y, Tagashira H, Endo M, Iwasaki H, Iwamoto T, Kume K, Fukada Y. Na +/Ca 2+ exchanger mediates cold Ca 2+ signaling conserved for temperature-compensated circadian rhythms. SCIENCE ADVANCES 2021; 7:7/18/eabe8132. [PMID: 33931447 PMCID: PMC8087402 DOI: 10.1126/sciadv.abe8132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/11/2021] [Indexed: 05/25/2023]
Abstract
Circadian rhythms are based on biochemical oscillations generated by clock genes/proteins, which independently evolved in animals, fungi, plants, and cyanobacteria. Temperature compensation of the oscillation speed is a common feature of the circadian clocks, but the evolutionary-conserved mechanism has been unclear. Here, we show that Na+/Ca2+ exchanger (NCX) mediates cold-responsive Ca2+ signaling important for the temperature-compensated oscillation in mammalian cells. In response to temperature decrease, NCX elevates intracellular Ca2+, which activates Ca2+/calmodulin-dependent protein kinase II and accelerates transcriptional oscillations of clock genes. The cold-responsive Ca2+ signaling is conserved among mice, Drosophila, and Arabidopsis The mammalian cellular rhythms and Drosophila behavioral rhythms were severely attenuated by NCX inhibition, indicating essential roles of NCX in both temperature compensation and autonomous oscillation. NCX also contributes to the temperature-compensated transcriptional rhythms in cyanobacterial clock. Our results suggest that NCX-mediated Ca2+ signaling is a common mechanism underlying temperature-compensated circadian rhythms both in eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- Naohiro Kon
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hsin-Tzu Wang
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiaki S Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kyouhei Uemoto
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Naohiro Kawamoto
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Koji Kawasaki
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Ryosuke Enoki
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | - Tatsuto Nakane
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Hideaki Tagashira
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Motomu Endo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
22
|
Aten S, Kalidindi A, Yoon H, Rumbaugh G, Hoyt KR, Obrietan K. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and light-entrainment capacity. Eur J Neurosci 2020; 53:732-749. [PMID: 33174316 DOI: 10.1111/ejn.15043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master circadian clock. The phasing of the SCN oscillator is locked to the daily solar cycle, and an intracellular signaling cassette from the small GTPase Ras to the p44/42 mitogen-activated protein kinase (ERK/MAPK) pathway is central to this entrainment process. Here, we analyzed the expression and function of SynGAP-a GTPase-activating protein that serves as a negative regulator of Ras signaling-within the murine SCN. Using a combination of immunohistochemical and Western blotting approaches, we show that SynGAP is broadly expressed throughout the SCN. In addition, temporal profiling assays revealed that SynGAP expression is regulated over the circadian cycle, with peak expression occurring during the circadian night. Further, time-of-day-gated expression of SynGAP was not observed in clock arrhythmic BMAL1 null mice, indicating that the daily oscillation in SynGAP is driven by the inherent circadian timing mechanism. We also show that SynGAP phosphorylation at serine 1138-an event that has been found to modulate its functional efficacy-is regulated by clock time and is responsive to photic input. Finally, circadian phenotypic analysis of Syngap1 heterozygous mice revealed enhanced locomotor activity, increased sensitivity to light-evoked clock entrainment, and elevated levels of light-evoked MAPK activity, which is consistent with the role of SynGAP as a negative regulator of MAPK signaling. These findings reveal that SynGAP functions as a modulator of SCN clock entrainment, an effect that may contribute to sleep and circadian abnormalities observed in patients with SYNGAP1 gene mutations.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Gavin Rumbaugh
- Scripps Research, Department of Neuroscience, Jupiter, FL, USA.,Scripps Research, Department of Molecular Medicine, Jupiter, FL, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Said R, Lobanova L, Papagerakis S, Papagerakis P. Calcium Sets the Clock in Ameloblasts. Front Physiol 2020; 11:920. [PMID: 32848861 PMCID: PMC7411184 DOI: 10.3389/fphys.2020.00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Stromal interaction molecule 1 (STIM1) is one of the main components of the store operated Ca2+ entry (SOCE) signaling pathway. Individuals with mutated STIM1 present severely hypomineralized enamel characterized as amelogenesis imperfecta (AI) but the downstream molecular mechanisms involved remain unclear. Circadian clock signaling plays a key role in regulating the enamel thickness and mineralization, but the effects of STIM1-mediated AI on circadian clock are unknown. Objectives The aim of this study is to examine the potential links between SOCE and the circadian clock during amelogenesis. Methods We have generated mice with ameloblast-specific deletion of Stim1 (Stim1fl/fl/Amelx-iCre+/+, Stim1 cKO) and analyzed circadian gene expression profile in Stim1 cKO compared to control (Stim1fl/fl/Amelx-iCre–/–) using ameloblast micro-dissection and RNA micro-array of 84 circadian genes. Expression level changes were validated by qRT-PCR and immunohistochemistry. Results Stim1 deletion has resulted in significant upregulation of the core circadian activator gene Brain and Muscle Aryl Hydrocarbon Receptor Nuclear Translocation 1 (Bmal1) and downregulation of the circadian inhibitor Period 2 (Per2). Our analyses also revealed that SOCE disruption results in dysregulation of two additional circadian regulators; p38α mitogen-activated protein kinase (MAPK14) and transforming growth factor-beta1 (TGF-β1). Both MAPK14 and TGF-β1 pathways are known to play major roles in enamel secretion and their dysregulation has been previously implicated in the development of AI phenotype. Conclusion These data indicate that disruption of SOCE significantly affects the ameloblasts molecular circadian clock, suggesting that alteration of the circadian clock may be partly involved in the development of STIM1-mediated AI.
Collapse
Affiliation(s)
- Raed Said
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Petros Papagerakis
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Bartman CM, Matveyenko A, Prakash YS. It's about time: clocks in the developing lung. J Clin Invest 2020; 130:39-50. [PMID: 31895049 DOI: 10.1172/jci130143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The discovery of peripheral intracellular clocks revealed circadian oscillations of clock genes and their targets in all cell types, including those in the lung, sparking exploration of clocks in lung disease pathophysiology. While the focus has been on the role of these clocks in adult airway diseases, clock biology is also likely to be important in perinatal lung development, where it has received far less attention. Historically, fetal circadian rhythms have been considered irrelevant owing to lack of external light exposure, but more recent insights into peripheral clock biology raise questions of clock emergence, its concordance with tissue-specific structure/function, the interdependence of clock synchrony and functionality in perinatal lung development, and the possibility of lung clocks in priming the fetus for postnatal life. Understanding the perinatal molecular clock may unravel mechanistic targets for chronic airway disease across the lifespan. With current research providing more questions than answers, it is about time to investigate clocks in the developing lung.
Collapse
Affiliation(s)
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, Maywood ES, Hastings MH. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun 2020; 11:3394. [PMID: 32636383 PMCID: PMC7341843 DOI: 10.1038/s41467-020-17110-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/05/2020] [Indexed: 12/01/2022] Open
Abstract
The hypothalamic suprachiasmatic nuclei (SCN) are the principal mammalian circadian timekeeper, co-ordinating organism-wide daily and seasonal rhythms. To achieve this, cell-autonomous circadian timing by the ~20,000 SCN cells is welded into a tight circuit-wide ensemble oscillation. This creates essential, network-level emergent properties of precise, high-amplitude oscillation with tightly defined ensemble period and phase. Although synchronised, regional cell groups exhibit differentially phased activity, creating stereotypical spatiotemporal circadian waves of cellular activation across the circuit. The cellular circuit pacemaking components that generate these critical emergent properties are unknown. Using intersectional genetics and real-time imaging, we show that SCN cells expressing vasoactive intestinal polypeptide (VIP) or its cognate receptor, VPAC2, are neurochemically and electrophysiologically distinct, but together they control de novo rhythmicity, setting ensemble period and phase with circuit-level spatiotemporal complexity. The VIP/VPAC2 cellular axis is therefore a neurochemically and topologically specific pacemaker hub that determines the emergent properties of the SCN timekeeper. Circadian activity modulation in the suprachiasmatic nucleus (SCN) is a network-level emergent property that requires neuropeptide VIP signaling, yet the precise cellular mechanisms are unknown. Patton et al. show that cells expressing VIP or its receptor VPAC2 together determine these emergent properties of the SCN.
Collapse
Affiliation(s)
- Andrew P Patton
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Mathew D Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Nicola J Smyllie
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Neurosurgery, Stanford University, Stanford, USA
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Brain Sciences, UK Dementia Research Institute, Imperial College London, London, UK
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
26
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Buijink MR, Olde Engberink AHO, Wit CB, Almog A, Meijer JH, Rohling JHT, Michel S. Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock. J Biol Rhythms 2020; 35:167-179. [PMID: 31983261 PMCID: PMC7134598 DOI: 10.1177/0748730419900867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.
Collapse
Affiliation(s)
- M Renate Buijink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anneke H O Olde Engberink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte B Wit
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Assaf Almog
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos H T Rohling
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock. J Mol Biol 2020; 432:3639-3660. [PMID: 31996314 DOI: 10.1016/j.jmb.2020.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
29
|
Circadian rhythms in Per1, PER2 and Ca 2+ of a solitary SCN neuron cultured on a microisland. Sci Rep 2019; 9:18271. [PMID: 31797953 PMCID: PMC6892917 DOI: 10.1038/s41598-019-54654-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms in Per1, PER2 expression and intracellular Ca2+ were measured from a solitary SCN neuron or glial cell which was physically isolated from other cells. Dispersed cells were cultured on a platform of microisland (100–200 μm in diameter) in a culture dish. Significant circadian rhythms were detected in 57.1% for Per1 and 70.0% for PER2 expression. When two neurons were located on the same island, the circadian rhythms showed desynchronization, indicating a lack of oscillatory coupling. Circadian rhythms were also detected in intracellular Ca2+ of solitary SCN neurons. The ratio of circadian positive neurons was significantly larger without co-habitant of glial cells (84.4%) than with it (25.0%). A relatively large fraction of SCN neurons generates the intrinsic circadian oscillation without neural or humoral networks. In addition, glial cells seem to interrupt the expression of the circadian rhythmicity of intracellular Ca2+ under these conditions.
Collapse
|
30
|
Wang Y, Lv K, Zhao M, Chen H, Ji G, Zhang Y, Wang T, Cao H, Li Y, Qu L. Analysis of miRNA expression profiles in the liver of Clock Δ19 mutant mice. PeerJ 2019; 7:e8119. [PMID: 31799078 PMCID: PMC6885354 DOI: 10.7717/peerj.8119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
The circadian clock controls the physiological functions of many tissues including the liver via an autoregulatory transcriptional−translational feedback loop, of which CLOCK is a core positive component. In addition, many studies have indicated that microRNAs (miRNAs) regulate liver function. However, how CLOCK-regulated miRNAs are linked to liver function remains largely unknown. In this study, miRNAs expression profiles were performed in the liver of ClockΔ19 mutant mice. Compared to wild type mice, totals of 61 and 57 putative CLOCK-regulated miRNAs were differentially expressed (fold change absolute value ≥2) at zeitgeber time 2 and zeitgeber time 14, respectively. According to the pathway analyses, the target genes of differentially expressed miRNAs were mainly involved in pathways in cancer, the PI3K-Akt signaling pathway and the MAPK signaling pathway. Protein−protein interaction analyses revealed that the hub genes were primarily associated with pathway in cancer and circadian rhythms. Expression validation showed that while the expression levels of miR-195 and miR-340 were up-regulated, the rhythms of these two miRNAs were always maintained. The expression level of nr1d2 mRNA was down-regulated. We identified a number of prospective CLOCK-regulated miRNAs that play roles in the various physiological processes of the liver, providing a reference to better understanding the potential regulatory mechanisms in the liver.
Collapse
Affiliation(s)
- Yanli Wang
- School of Life Sciences, Northwestern Polytechnical University, Xian, Shaanxi, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Mei Zhao
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yongliang Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xian, Shaanxi, China
| | - Tingmei Wang
- School of Life Sciences, Northwestern Polytechnical University, Xian, Shaanxi, China
| | - Hongqing Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, Xian, Shaanxi, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
31
|
Yap JLY, Tai YK, Fröhlich J, Fong CHH, Yin JN, Foo ZL, Ramanan S, Beyer C, Toh SJ, Casarosa M, Bharathy N, Kala MP, Egli M, Taneja R, Lee CN, Franco-Obregón A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism. FASEB J 2019; 33:12853-12872. [PMID: 31518158 DOI: 10.1096/fj.201900057r] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated in vitro myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades. The expression levels of peroxisome proliferator-activated receptor γ coactivator 1α, the master regulator of mitochondriogenesis, was also enhanced by brief PEMF exposure. Accordingly, mitochondriogenesis and respiratory capacity were both enhanced with PEMF exposure, paralleling TRPC1 expression and pharmacological sensitivity. Clustered regularly interspaced short palindromic repeats-Cas9 knockdown of TRPC1 precluded proliferative and mitochondrial responses to supplemental PEMFs, whereas small interfering RNA gene silencing of TRPM7 did not, coinciding with data that magnetoreception did not coincide with the expression or function of other TRP channels. The aminoglycoside antibiotics antagonized and down-regulated TRPC1 expression and, when applied concomitantly with PEMF exposure, attenuated PEMF-stimulated calcium entry, mitochondrial respiration, proliferation, differentiation, and epigenetic directive in myoblasts, elucidating why the developmental potential of magnetic fields may have previously escaped detection. Mitochondrial-based survival adaptations were also activated upon PEMF stimulation. Magnetism thus deploys an authentic myogenic directive that relies on an interplay between mitochondria and TRPC1 to reach fruition.-Yap, J. L. Y., Tai, Y. K., Fröhlich, J., Fong, C. H. H., Yin, J. N., Foo, Z. L., Ramanan, S., Beyer, C., Toh, S. J., Casarosa, M., Bharathy, N., Kala, M. P., Egli, M., Taneja, R., Lee, C. N., Franco-Obregón, A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.
Collapse
Affiliation(s)
- Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Zi Ling Foo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Christian Beyer
- Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Centre Suisse d'Électronique et de Microtechnique (CSEM SA), Neuchâtel, Switzerland
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marcel Egli
- Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| |
Collapse
|
32
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.
Collapse
|
33
|
The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Sci Rep 2019; 9:11883. [PMID: 31417156 PMCID: PMC6695496 DOI: 10.1038/s41598-019-48341-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Post-translational regulation plays a central role in the circadian clock mechanism. However, nucleocytoplasmic translocation of core clock proteins, a key step in circadian timekeeping, is not fully understood. Earlier we found that the NRON scaffolding complex regulates nuclear translocation of NFAT and its signaling. Here, we show that components of the NRON complex also regulate the circadian clock. In peripheral cell clock models, genetic perturbation of the NRON complex affects PER and CRY protein nuclear translocation, dampens amplitude, and alters period length. Further, we show small molecules targeting the NFAT pathway alter nuclear translocation of PER and CRY proteins and impact circadian rhythms in peripheral cells and tissue explants of the master clock in the suprachiasmatic nucleus. Taken together, these studies highlight a key role for the NRON complex in regulating PER/CRY subcellular localization and circadian timekeeping.
Collapse
|
34
|
Yokoi R, Okabe M, Matsuda N, Odawara A, Karashima A, Suzuki I. Impact of Sleep-Wake-Associated Neuromodulators and Repetitive Low-Frequency Stimulation on Human iPSC-Derived Neurons. Front Neurosci 2019; 13:554. [PMID: 31191238 PMCID: PMC6549533 DOI: 10.3389/fnins.2019.00554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
The cross-regional neurons in the brainstem, hypothalamus, and thalamus regulate the central nervous system, including the cerebral cortex, in a sleep–wake cycle-dependent manner. A characteristic brain wave, called slow wave, of about 1 Hz is observed during non-REM sleep, and the sleep homeostasis hypothesis proposes that the synaptic connection of a neural network is weakened during sleep. In the present study, in vitro human induced pluripotent stem cell (iPSC)-derived neurons, we investigated the responses to the neuromodulator known to be involved in sleep–wake regulation. We also determined whether long-term depression (LTD)-like phenomena could be induced by 1 Hz low-frequency stimulation (LFS), which is within the range of the non-REM sleep slow wave. A dose-dependent increase was observed in the number of synchronized burst firings (SBFs) when 0.1–1000 nM of serotonin, acetylcholine, histamine, orexin, or noradrenaline, all with increased extracellular levels during wakefulness, was administered to hiPSC-derived dopaminergic (DA) neurons. The number of SBFs repeatedly increased up to 5 h after 100 nM serotonin administration, inducing a 24-h rhythm cycle. Next, in human iPSC-derived glutamate neurons, 1 Hz LFS was administered four times for 15 min every 90 min. A significant reduction in both the number of firings and SBFs was observed in the 15 min immediately after LFS. Decreased frequency of spontaneous activity and recovery over time were repeatedly observed. Furthermore, we found that LFS attenuates synaptic connections, and particularly attenuates the strong connections in the neuronal network, and does not cause uniform attenuation. These results suggest sleep–wake states can be mimicked by cyclic neuromodulator administration and show that LTD-like phenomena can be induced by LFS in vitro human iPSC-derived neurons. These results could be applied in studies on the mechanism of slow waves during sleep or in an in vitro drug efficacy evaluation depending on sleep–wake state.
Collapse
Affiliation(s)
- Remi Yokoi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Miho Okabe
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Aoi Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
35
|
Michel S, Meijer JH. From clock to functional pacemaker. Eur J Neurosci 2019; 51:482-493. [PMID: 30793396 PMCID: PMC7027845 DOI: 10.1111/ejn.14388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
In mammals, the central pacemaker that coordinates 24‐hr rhythms is located in the suprachiasmatic nucleus (SCN). Individual neurons of the SCN have a molecular basis for rhythm generation and hence, they function as cell autonomous oscillators. Communication and synchronization among these neurons are crucial for obtaining a coherent rhythm at the population level, that can serve as a pace making signal for brain and body. Hence, the ability of single SCN neurons to produce circadian rhythms is equally important as the ability of these neurons to synchronize one another, to obtain a bona fide pacemaker at the SCN tissue level. In this chapter we will discuss the mechanisms underlying synchronization, and plasticity herein, which allows adaptation to changes in day length. Furthermore, we will discuss deterioration in synchronization among SCN neurons in aging, and gain in synchronization by voluntary physical activity or exercise.
Collapse
Affiliation(s)
- Stephan Michel
- Group Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Group Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
Ultradian calcium rhythms in the paraventricular nucleus and subparaventricular zone in the hypothalamus. Proc Natl Acad Sci U S A 2018; 115:E9469-E9478. [PMID: 30228120 PMCID: PMC6176559 DOI: 10.1073/pnas.1804300115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite that the various functions in mammals fluctuate in the ultradian fashion, the origin and mechanism of the rhythm are largely unknown. In this study, we found synchronous ultradian calcium rhythms in the hypothalamic paraventricular nucleus (PVN), subparaventricular zone (SPZ), and suprachiasmatic nucleus (SCN). The ultradian rhythms were originated from the SPZ-PVN region and transmitted to the SCN. Neurochemical interventions revealed that the glutamatergic mechanism is critical for generation and a tetrodotoxin-sensitive neural network for synchrony of the ultradian rhythm. The GABAergic system could have a role in refining the circadian output signals. The study provides the first clue to understand the loci and mechanism of ultradian rhythm in the hypothalamus. The suprachiasmatic nucleus (SCN), the master circadian clock in mammals, sends major output signals to the subparaventricular zone (SPZ) and further to the paraventricular nucleus (PVN), the neural mechanism of which is largely unknown. In this study, the intracellular calcium levels were measured continuously in cultured hypothalamic slices containing the PVN, SPZ, and SCN. We detected ultradian calcium rhythms in both the SPZ-PVN and SCN regions with periods of 0.5–4.0 hours, the frequency of which depended on the local circadian rhythm in the SPZ-PVN region. The ultradian rhythms were synchronous in the entire SPZ-PVN region and a part of the SCN. Because the ultradian rhythms were not detected in the SCN-only slice, the origin of ultradian rhythm is the SPZ-PVN region. In association with an ultradian bout, a rapid increase of intracellular calcium in a millisecond order was detected, the frequency of which determined the amplitude of an ultradian bout. The synchronous ultradian rhythms were desynchronized and depressed by a sodium channel blocker tetrodotoxin, suggesting that a tetrodotoxin-sensitive network is involved in synchrony of the ultradian bouts. In contrast, the ultradian rhythm is abolished by glutamate receptor blockers, indicating the critical role of glutamatergic mechanism in ultradian rhythm generation, while a GABAA receptor blocker increased the frequency of ultradian rhythm and modified the circadian rhythm in the SCN. A GABAergic network may refine the circadian output signals. The present study provides a clue to unraveling the loci and network mechanisms of the ultradian rhythm.
Collapse
|
37
|
Belle MDC, Allen CN. The circadian clock: A tale of genetic-electrical interplay and synaptic integration. CURRENT OPINION IN PHYSIOLOGY 2018; 5:75-79. [PMID: 31011692 DOI: 10.1016/j.cophys.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pioneering work in Drosophila uncovered the building blocks of the molecular clock, consisting of transcription-translation feedback loops (TTFLs). Subsequent experimental work demonstrated that the mammalian TTFL is localized in cells and tissues throughout the brain and body. Further research established that neuronal activity forms an essential aspect of clock function. However, how the membrane electrical activity of clock neurons of the suprachiasmatic nucleus collaborate with the TTFL to drive circadian behaviors remains mostly unknown. Intercellular communication synchronizes the individual circadian oscillators to produce a precise and coherent circadian output. Here, we briefly review significant research that is increasing our understanding of the critical interactions between the TTFL and neuronal and glial activity in the generation of circadian timing signals.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK.
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
38
|
Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 2018; 99:555-563.e5. [PMID: 30017392 PMCID: PMC6085153 DOI: 10.1016/j.neuron.2018.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/13/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, integrating environmental input to align physiological and behavioral rhythms to local time cues. Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it is unknown how firing activity of VIP neurons releases VIP to entrain circadian rhythms. To identify physiologically relevant firing patterns, we optically tagged VIP neurons and characterized spontaneous firing over 3 days. VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous firing activity. We next tested whether physiologically relevant firing affected circadian rhythms through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies shifted gene expression rhythms in vitro through VIP signaling. In vivo, high-frequency VIP neuron activation rapidly entrained circadian locomotor rhythms. Thus, increases in VIP neuronal firing frequency release VIP and entrain molecular and behavioral circadian rhythms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John H Abel
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha P Chen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tracey O Hermanstyne
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeff R Jones
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
40
|
Whitt JP, McNally BA, Meredith AL. Differential contribution of Ca 2+ sources to day and night BK current activation in the circadian clock. J Gen Physiol 2017; 150:259-275. [PMID: 29237755 PMCID: PMC5806683 DOI: 10.1085/jgp.201711945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/16/2023] Open
Abstract
Large conductance K+ (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca2+ (Ca2+i). To enable this regulation, BK channels functionally couple to both voltage-gated Ca2+ channels (VGCCs) and channels mediating Ca2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca2+i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca2+i are reduced. Here, to determine whether diurnal regulation of Ca2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca2+ channels (LTCCs) are the primary daytime Ca2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca2+i release. The N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca2+ sources in the SCN, contributing to diurnal regulation of SCN excitability.
Collapse
Affiliation(s)
- Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Beth A McNally
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. eNeuro 2017; 4:eN-NWR-0160-17. [PMID: 28828400 PMCID: PMC5562299 DOI: 10.1523/eneuro.0160-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Circadian rhythms of mammalian physiology and behavior are coordinated by the suprachiasmatic nucleus (SCN) in the hypothalamus. Within SCN neurons, various aspects of cell physiology exhibit circadian oscillations, including circadian clock gene expression, levels of intracellular Ca2+ ([Ca2+]i), and neuronal firing rate. [Ca2+]i oscillates in SCN neurons even in the absence of neuronal firing. To determine the causal relationship between circadian clock gene expression and [Ca2+]i rhythms in the SCN, as well as the SCN neuronal network dependence of [Ca2+]i rhythms, we introduced GCaMP3, a genetically encoded fluorescent Ca2+ indicator, into SCN neurons from PER2::LUC knock-in reporter mice. Then, PER2 and [Ca2+]i were imaged in SCN dispersed and organotypic slice cultures. In dispersed cells, PER2 and [Ca2+]i both exhibited cell autonomous circadian rhythms, but [Ca2+]i rhythms were typically weaker than PER2 rhythms. This result matches the predictions of a detailed mathematical model in which clock gene rhythms drive [Ca2+]i rhythms. As predicted by the model, PER2 and [Ca2+]i rhythms were both stronger in SCN slices than in dispersed cells and were weakened by blocking neuronal firing in slices but not in dispersed cells. The phase relationship between [Ca2+]i and PER2 rhythms was more variable in cells within slices than in dispersed cells. Both PER2 and [Ca2+]i rhythms were abolished in SCN cells deficient in the essential clock gene Bmal1. These results suggest that the circadian rhythm of [Ca2+]i in SCN neurons is cell autonomous and dependent on clock gene rhythms, but reinforced and modulated by a synchronized SCN neuronal network.
Collapse
|
42
|
Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2017; 114:E2476-E2485. [PMID: 28270612 DOI: 10.1073/pnas.1616815114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms.
Collapse
|