1
|
Miller J, Perrier Q, Rengaraj A, Bowlby J, Byers L, Peveri E, Jeong W, Ritchey T, Gambelli AM, Rossi A, Calafiore R, Tomei A, Orlando G, Asthana A. State of the Art of Bioengineering Approaches in Beta-Cell Replacement. CURRENT TRANSPLANTATION REPORTS 2025; 12:17. [PMID: 40342868 PMCID: PMC12055624 DOI: 10.1007/s40472-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Purpose of the Review Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. Recent Findings First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. Summary These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
Collapse
Affiliation(s)
- Jake Miller
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Quentin Perrier
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
- Univ. Grenoble Alpes, Department of Pharmacy, Grenoble Alpes University Hospital, Grenoble, France
| | - Arunkumar Rengaraj
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Joshua Bowlby
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Lori Byers
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Emma Peveri
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Thomas Ritchey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | | | - Arianna Rossi
- Department of Engineering, University of Perugia, Perugia, Italy
| | | | - Alice Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| |
Collapse
|
2
|
Asthana A, Gallego A, Perrier Q, Lozano T, Byers LN, Ho-Heo J, Jeong W, Tamburrini R, Rengaraj A, Chaimov D, Tomei A, Fraker CA, Lee SJ, Orlando G. Comprehensive biocompatibility profiling of human pancreas-derived biomaterial. Front Bioeng Biotechnol 2025; 13:1518665. [PMID: 40352352 PMCID: PMC12062020 DOI: 10.3389/fbioe.2025.1518665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction The importance of the extracellular matrix (ECM) to pancreatic islets has been clearly demonstrated, as isolated islets grown in culture or transplanted, quickly lose viability and function after their matrix associations have been stripped away during the isolation process. Therefore, recapitulating the islet niche is a critical objective to move the field of islet transplantation forward. Methods As a first step to recreating the islet microenvironment, we have recently developed a detergent-free decellularization method to obtain a decellularized solubilized ECM (dsECM) powder from human pancreas. We have also shown that this gentler method (compared to traditional detergent-based methods) allows for thorough preservation of the molecular fingerprint of the innate organ. Furthermore, incorporation of dsECM in alginate-microencapsulated human islets, showed a significant increase in insulin secretion, compared to both free and alginate-only encapsulated islets. However, it is also essential to test the interaction of dsECM with multiple cell types to establish its safety for transplantation. Results and discussion Herein, we present a comprehensive in vitro evaluation of the cytotoxicity, hemocompatibility and immunocompatibility of dsECM to establish a concentration range where it deemed safe and biocompatible. Furthermore, dsECM-based bioinks were coaxially bioprinted and the resulting construct's biocompatibility and vascularization potential were also evaluated in vivo.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | | | - Quentin Perrier
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
- Univ. Grenoble Alpes, Pharmacy Department, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Lori N. Byers
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Jun Ho-Heo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Arunkumar Rengaraj
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | | | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Haderer L, Zhou Y, Tang P, Daneshgar A, Globke B, Krenzien F, Reutzel-Selke A, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH, Keshi E. Thrombogenicity Assessment of Perfusable Tissue-Engineered Constructs: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:126-161. [PMID: 39007511 DOI: 10.1089/ten.teb.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vascular surgery is facing a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency is particularly applicable to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs is promising as a solution to organ shortage for transplantation. To achieve this, it is essential to (re)construct a biocompatible and nonthrombogenic vascular network within these organs. In this systematic review, we identify, classify, and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue-engineered organs and tissues. We conducted a preregistered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines. This comprised a systematic data extraction, in-depth analysis, and risk of bias assessment of 116 included studies. We identified shaking (n = 28), flow loop (n = 17), ex vivo (arteriovenous shunt, n = 33), and dynamic in vitro models (n = 38) as the main approaches for thrombogenicity assessment. This comprehensive review reveals a prevalent lack of standardization and provides a valuable guide in the design of standardized experimental setups.
Collapse
Affiliation(s)
- Luna Haderer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Yijun Zhou
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Assal Daneshgar
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Karl Herbert Hillebrandt
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
4
|
Campo F, Neroni A, Pignatelli C, Pellegrini S, Marzinotto I, Valla L, Manenti F, Policardi M, Lampasona V, Piemonti L, Citro A. Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes. Cell Rep Med 2025; 6:101938. [PMID: 39922198 PMCID: PMC11866511 DOI: 10.1016/j.xcrm.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Intrahepatic islet transplantation in patients with type 1 diabetes is limited by donor availability and lack of engraftment. Alternative β cell sources and transplantation sites are needed. We demonstrate the feasibility to repurpose a decellularized lung as an endocrine pancreas for β cell replacement. We bioengineer an induced pluripotent stem cell (iPSC)-based version, fabricating a human iPSC-based vascularized endocrine pancreas (iVEP) using iPSC-derived β cells (iPSC-derived islets [SC-islets]) and endothelial cells (iECs). SC-islets and iECs are aggregated into vascularized iβ spheroids (ViβeSs), and over 7 days of culture, spheroids integrate into the bioengineered vasculature, generating a functional, perfusable human endocrine organ. In vitro, the vascularized extracellular matrix (ECM) sustained SC-islet engraftment and survival with a significantly preserved β cell mass and a physiologic insulin release. In vivo, iVEP restores normoglycemia in diabetic NSG mice. We report a human iVEP providing a controlled in vitro insulin-secreting phenotype and in vivo function.
Collapse
Affiliation(s)
- Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Libera Valla
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Fabio Manenti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
6
|
Berger C, Glaser M, Ziegler AL, Neukel V, Walz F, Zdzieblo D. Generation of a pancreas derived hydrogel for the culture of hiPSC derived pancreatic endocrine cells. Sci Rep 2024; 14:20653. [PMID: 39232042 PMCID: PMC11375036 DOI: 10.1038/s41598-024-67327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Stem cell-derived β-cells (SC-BCs) represent a potential source for curing diabetes. To date, in vitro generated SC-BCs display an immature phenotype and lack important features in comparison to their bona-fide counterparts. Transplantation into a living animal promotes SC-BCs maturation, indicating that components of the in vivo microenvironment trigger final SC-BCs development. Here, we investigated whether cues of the pancreas specific extracellular matrix (ECM) can improve the differentiation of human induced pluripotent stem cells (hiPSCs) towards β-cells in vitro. To this aim, a pancreas specific ECM (PanMa) hydrogel was generated from decellularized porcine pancreas and its effect on the differentiation of hiPSC-derived pancreatic hormone expressing cells (HECs) was tested. The hydrogel solidified upon neutralization at 37 °C with gelation kinetics similar to Matrigel. Cytocompatibility of the PanMa hydrogel was demonstrated for a culture duration of 21 days. Encapsulation and culture of HECs in the PanMa hydrogel over 7 days resulted in a stable gene and protein expression of most β-cell markers, but did not improve β-cell identity. In conclusion, the study describes the production of a PanMa hydrogel, which provides the basis for the development of ECM hydrogels that are more adapted to the demands of SC-BCs.
Collapse
Affiliation(s)
- Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Markus Glaser
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Ziegler
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Valentina Neukel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Fabiola Walz
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Project Center for Stem Cell Process Engineering, Fraunhofer Institute for Silicate Research, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| |
Collapse
|
7
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
8
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Keshi E, Tang P, Lam T, Moosburner S, Haderer L, Reutzel-Selke A, Kloke L, Pratschke J, Sauer IM, Hillebrandt KH. Toward a 3D Printed Perfusable Islet Embedding Structure: Technical Notes and Preliminary Results. Tissue Eng Part C Methods 2023; 29:469-478. [PMID: 37528629 DOI: 10.1089/ten.tec.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
To date, islet transplantation to treat type 1 diabetes mellitus remains unsuccessful in long-term follow-up, mainly due to failed engraftment and reconstruction of the islet niche. Alternative approaches, such as islet embedding structures (IESs) based on 3D printing have been developed. However, most of them have been implanted subcutaneously and only a few are intended for direct integration into the vascular system through anastomosis. In this study, we 3D printed a proof-of-concept IES using gelatin methacrylate biocompatible ink. This structure consisted of a branched vascular system surrounding both sides of a central cavity dedicated to islets of Langerhans. Furthermore, we designed a bioreactor optimized for these biological structures. This bioreactor allows seeding and perfusion experiments under sterile and physiological conditions. Preliminary experiments aimed to analyze if the vascular channel could successfully be seeded with mature endothelial cells and the central cavity with rat islets. Subsequently, the structures were used for a humanized model seeding human endothelial progenitor cells (huEPC) within the vascular architecture and human islets co-cultured with huEPC within the central cavity. The constructs were tested for hemocompatibility, suture strength, and anastomosability. The 3D printed IES appeared to be hemocompatible and anastomosable using an alternative cuff anastomosis in a simple ex vivo perfusion model. While rat islets alone could not successfully be embedded within the 3D printed structure for 3 days, human islets co-cultivated with huEPC successfully engrafted within the same time. This result emphasizes the importance of co-culture, nursing cells, and islet niche. In conclusion, we constructed a proof-of-concept 3D printed islet embedding device consisting of a vascular channel that is hemocompatible and perspectively anastomosable to clinical scale blood vessels. However, there are numerous limitations in this model that need to be overcome to transfer this technology to the bedside.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lam
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Luna Haderer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Kloke
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| |
Collapse
|
10
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
11
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
12
|
Hoshiba T, Yunoki S. Comparison of decellularization protocols for cultured cell-derived extracellular matrix-Effects on decellularization efficacy, extracellular matrix retention, and cell functions. J Biomed Mater Res B Appl Biomater 2023; 111:85-94. [PMID: 35852254 DOI: 10.1002/jbm.b.35135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
The in vitro reconstruction of the extracellular matrix (ECM) is required in tissue engineering and regenerative medicine because the ECM can regulate cell functions in vivo. For ECM reconstruction, a decellularization technique is used. ECM reconstructed by decellularization (dECM) is prepared from tissues/organs and cultured cells. Although decellularization methods have been optimized for tissue-/organ-derived dECM, the methods for cultured cell-derived dECM have not yet been optimized. Here, two physical (osmotic shocks) and five chemical decellularization methods are compared. The decellularization efficacies were changed according to the decellularization methods used. Among them, only the Triton X-100 and Tween 20 treatments could not decellularize completely. Additionally, when the efficacies were compared among different types of cells (monolayered cells with/without strong cell adhesion, multilayered cells), the efficacies were decreased for multilayered cells or cells with strong cell adhesion. Retained ECM contents tended to be greater in the dECM prepared by osmotic shocks than in those prepared by chemical methods. The contents impacted cell adhesion, shapes, growth and intracellular signal activation on the dECM. The comparison would be helpful for the optimization of decellularization methods for cultured cells, and it could also provide new insights into developing milder decellularization methods for tissues and organs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Shunji Yunoki
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| |
Collapse
|
13
|
Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci 2022; 24:ijms24010119. [PMID: 36613557 PMCID: PMC9820198 DOI: 10.3390/ijms24010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed. The scaffold supports the adhesion and proliferation of human adipose derived stem cell (hADSCs) and prolongs the viability and insulin-producing function of pancreatic islets. Experiments conducted allow for the reliance on the prospects of using the donor pancreas unsuitable for transplantation in the technologies of tissue engineering and regenerative medicine, including the development of a tissue equivalent of a pancreas.
Collapse
|
14
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
15
|
Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats. J Funct Biomater 2022; 13:jfb13040171. [PMID: 36278640 PMCID: PMC9589982 DOI: 10.3390/jfb13040171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
Collapse
|
16
|
Ponomareva AS, Baranova NV, Miloserdov IA, Sevastianov VI. In vitro effect of bioscaffolds on viability and insulin‑producing function of human islets of Langerhans. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-109-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The culture of islets of Langerhans with bioscaffolds – extracellular matrix (ECM) mimetics – can provide a native microenvironment suitable for islets. This is one of the main conditions for creating a pancreatic tissue equivalent.Objective: to compare the secretory capacity of viable human pancreatic islets in monoculture (control group) and cultured in the presence of two bioscaffolds: biopolymer collagen-based hydrogel scaffold (experimental group 1) and tissue-specific scaffold from decellularized deceased donor pancreas (experimental group 2).Materials and methods. Islets of Langerhans were isolated from the caudal pancreas using a collagenase technique. The viability of cultured islets was accessed by vital fluorescence staining, while secretory capacity was evaluated by enzyme-linked immunosorbent assay (ELISA).Results. Pancreatic islets cultured with bioscaffolds showed no signs of degradation and fragmentation, they remained viable throughout the entire period of observation (7 days). The monoculture of islets showed significant destructive changes during this period. Basal insulin levels in experimental groups 1 and 2 increased by 18.8% and 39.5% on day 1 of culture compared to the control group, by 72.8% and 102.7% on day 4 of incubation, and by 146.4% and 174.6% on day 7, respectively. The insulin secretion level of islets with tissue-specific scaffolds was 17.4% higher than that when cultured with biopolymer collagen-based scaffolds.Conclusion. Biopolymer and tissue-specific ECM mimetics contribute not only to preservation of the viability of isolated islets of Langerhans but also maintain their insulin secretion capacity for 7 days at a higher level in comparison with monoculture. The experiments revealed that the use of a tissue-specific scaffold for the creation of a pancreatic tissue equivalent has slight potential advantage over biopolymer scaffold.
Collapse
Affiliation(s)
- A. S. Ponomareva
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - N. V. Baranova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - I. A. Miloserdov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
17
|
Habeeb MA, Vishwakarma SK, Habeeb S, Khan AA. Current progress and emerging technologies for generating extrapancreatic functional insulin-producing cells. World J Transl Med 2022; 10:1-13. [DOI: 10.5528/wjtm.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Md Aejaz Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Safwaan Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
18
|
Tremmel DM, Sackett SD, Feeney AK, Mitchell SA, Schaid MD, Polyak E, Chlebeck PJ, Gupta S, Kimple ME, Fernandez LA, Odorico JS. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci Rep 2022; 12:7188. [PMID: 35504932 PMCID: PMC9065104 DOI: 10.1038/s41598-022-11085-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) plays a multitude of roles, including supporting cells through structural and biochemical interactions. ECM is damaged in the process of isolating human islets for clinical transplantation and basic research. A platform in which islets can be cultured in contact with natural pancreatic ECM is desirable to better understand and support islet health, and to recapitulate the native islet environment. Our study demonstrates the derivation of a practical and durable hydrogel from decellularized human pancreas that supports human islet survival and function. Islets embedded in this hydrogel show increased glucose- and KCl-stimulated insulin secretion, and improved mitochondrial function compared to islets cultured without pancreatic matrix. In extended culture, hydrogel co-culture significantly reduced levels of apoptosis compared to suspension culture and preserved controlled glucose-responsive function. Isolated islets displayed altered endocrine and non-endocrine cell arrangement compared to in situ islets; hydrogel preserved an islet architecture more similar to that observed in situ. RNA sequencing confirmed that gene expression differences between islets cultured in suspension and hydrogel largely fell within gene ontology terms related to extracellular signaling and adhesion. Natural pancreatic ECM improves the survival and physiology of isolated human islets.
Collapse
Affiliation(s)
- Daniel M Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sara Dutton Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Austin K Feeney
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha A Mitchell
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erzsebet Polyak
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter J Chlebeck
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakar Gupta
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle E Kimple
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Demko P, Hillebrandt KH, Napierala H, Haep N, Tang P, Gassner JMGV, Kluge M, Everwien H, Polenz D, Reutzel-Selke A, Raschzok N, Pratschke J, Sauer IM, Struecker B, Dobrindt EM. Perfusion-Based Recellularization of Rat Livers with Islets of Langerhans. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Artificial organs might serve as alternative solutions for whole organ transplantation. Decellularization of a liver provides a non-immunogenic matrix with the advantage of three afferent systems, the portal vein, the hepatic artery and the bile duct. This study aims to evaluate the recellularization of rat livers with islets of Langerhans via the bile duct and the portal vein for the comparison of different perfusion routes.
Methods
Rat livers were decellularized in a pressure-controlled perfusion manner and repopulated with intact isolated islets of Langerhans via either the portal vein or the bile duct.
Results
Repopulation via the portal vein showed islet clusters stuck within the vascular system demonstrated by ellipsoid borders of thick reticular tissue around the islet cluster in Azan staining. After recellularization via the bile duct, islets were distributed close to the vessels within the parenchymal space and without a surrounding reticular layer. Large clusters of islets had a diameter of up to 1000 µm without clear shapes.
Conclusion
We demonstrated the bile duct to be superior to the portal vein for repopulation of a decellularized rat liver with islets of Langerhans. This technique may serve as a bioengineering platform to generate an implantable and functional endocrine neo-pancreas and provide scaffolds with the anatomic benefit of three afferent systems to facilitate co-population of cells.
Collapse
|
20
|
Jiang L, Shen Y, Liu Y, Zhang L, Jiang W. Making human pancreatic islet organoids: Progresses on the cell origins, biomaterials and three-dimensional technologies. Theranostics 2022; 12:1537-1556. [PMID: 35198056 PMCID: PMC8825586 DOI: 10.7150/thno.66670] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes is one of the most socially challenging health concerns. Even though islet transplantation has shown promise for insulin-dependent diabetes, there is still no effective method for curing diabetes due to the severe shortage of transplantable donors. In recent years, organoid technology has attracted lots of attention as organoid can mirror the human organ in vivo to the maximum extent in vitro, thus bridging the gap between cellular- and tissue/organ-level biological models. Concurrently, human pancreatic islet organoids are expected to be a considerable source of islet transplantation. To construct human islet-like organoids, the seeding cells, biomaterials and three-dimensional structure are three key elements. Herein, this review summarizes current progresses about the cell origins, biomaterials and advanced technology being applied to make human islet organoids, and discusses the advantages, shortcomings, and future challenges of them as well. We hope this review can offer a cross-disciplinary perspective to build human islet organoids and provide insights for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yiru Shen
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yajing Liu
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Lei Zhang
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
21
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
22
|
Fathi I, Imura T, Inagaki A, Nakamura Y, Nabawi A, Goto M. Decellularized Whole-Organ Pre-vascularization: A Novel Approach for Organogenesis. Front Bioeng Biotechnol 2021; 9:756755. [PMID: 34746108 PMCID: PMC8567193 DOI: 10.3389/fbioe.2021.756755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction: Whole-organ decellularization is an attractive approach for three-dimensional (3D) organ engineering. However, progress with this approach is hindered by intra-vascular blood coagulation that occurs after in vivo implantation of the re-cellularized scaffold, resulting in a short-term graft survival. In this study, we explored an alternative approach for 3D organ engineering through an axial pre-vascularization approach and examined its suitability for pancreatic islet transplantation. Methods: Whole livers from male Lewis rats were decellularized through sequential arterial perfusion of detergents. The decellularized liver scaffold was implanted into Lewis rats, and an arteriovenous bundle was passed through the scaffold. At the time of implantation, fresh bone marrow preparation (BM; n = 3), adipose-derived stem cells (ADSCs; n = 4), or HBSS (n = 4) was injected into the scaffold through the portal vein. After 5 weeks, around 2,600 islet equivalents (IEQs) were injected through the portal vein of the scaffold. The recipient rats were rendered diabetic by the injection of 65 mg/kg STZ intravenously 1 week before islet transplantation and were followed up after transplantation by measuring the blood glucose and body weight for 30 days. Intravenous glucose tolerance test was performed in the cured animals, and samples were collected for immunohistochemical (IHC) analyses. Micro-computed tomography (CT) images were obtained from one rat in each group for representation. Results: Two rats in the BM group and one in the ADSC group showed normalization of blood glucose levels, while one rat from each group showed partial correction of blood glucose levels. In contrast, no rats were cured in the HBSS group. Micro-CT showed evidence of sprouting from the arteriovenous bundle inside the scaffold. IHC analyses showed insulin-positive cells in all three groups. The number of von-Willebrand factor-positive cells in the islet region was higher in the BM and ADSC groups than in the HBSS group. The number of 5-bromo-2'-deoxyuridine-positive cells was significantly lower in the BM group than in the other two groups. Conclusions: Despite the limited numbers, the study showed the promising potential of the pre-vascularized whole-organ scaffold as a novel approach for islet transplantation. Both BM- and ADSCs-seeded scaffolds were superior to the acellular scaffold.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ayman Nabawi
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Hashemi J, Barati G, Bibak B. Decellularized Matrix Bioscaffolds: Implementation of Native Microenvironment in Pancreatic Tissue Engineering. Pancreas 2021; 50:942-951. [PMID: 34643609 DOI: 10.1097/mpa.0000000000001868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT Type 1 diabetes is an autoimmune disease, and its incidence is usually estimated in the range of 5% to 10%. Currently, the administration of exogenous insulin is the standard of care therapy. However, this therapy is not effective in some patients who may develop some chronic complications. Islet transplantation into the liver is another therapy with promising outcomes; however, the long-term efficacy of this therapeutic option is limited to a small number of patients. Because native extracellular matrix (ECM) components provide a suitable microenvironment for islet functions, engineering a 3-dimensional construct that recapitulates the native pancreatic environment could address these obstacles. Many attempts have been conducted to mimic an in vivo microenvironment to increase the survival of islets or islet-like clusters. With the advent of decellularization technology, it is possible to use a native ECM in organ engineering. Pancreatic decellularized bioscaffold provides proper cell-cell and cell-ECM interactions and retains growth factors that are critical in the determination of cell fate within a native organ. This review summarizes the current knowledge of decellularized matrix technology and addresses its possible limitations before use in the clinic.
Collapse
Affiliation(s)
- Javad Hashemi
- From the Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd
| | | | | |
Collapse
|
24
|
Strategies for Vascularizing Pancreatic Islets and Stem Cell–Derived Islet Organoids. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
26
|
Han EX, Wang J, Kural M, Jiang B, Leiby KL, Chowdhury N, Tellides G, Kibbey RG, Lawson JH, Niklason LE. Development of a Bioartificial Vascular Pancreas. J Tissue Eng 2021; 12:20417314211027714. [PMID: 34262686 PMCID: PMC8243137 DOI: 10.1177/20417314211027714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.
Collapse
Affiliation(s)
- Edward X Han
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Juan Wang
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Mehmet Kural
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Department of Vascular Surgery, The
First Hospital of China Medical University, Shenyang, China
| | - Katherine L Leiby
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Nazar Chowdhury
- Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA
| | - George Tellides
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare
System, West Haven, CT, USA
| | - Richard G Kibbey
- Department of Internal Medicine
(Endocrinology), Yale University, New Haven, CT, USA
- Department of Cellular & Molecular
Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey H Lawson
- Department of Surgery, Duke
University, Durham, NC, USA
- Humacyte Inc., Durham, NC, USA
| | - Laura E Niklason
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
- Humacyte Inc., Durham, NC, USA
| |
Collapse
|
27
|
Asthana A, Tamburrini R, Chaimov D, Gazia C, Walker SJ, Van Dyke M, Tomei A, Lablanche S, Robertson J, Opara EC, Soker S, Orlando G. Comprehensive characterization of the human pancreatic proteome for bioengineering applications. Biomaterials 2020; 270:120613. [PMID: 33561625 DOI: 10.1016/j.biomaterials.2020.120613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Interactions between the pancreatic extracellular matrix (ECM) and islet cells are known to regulate multiple aspects of islet physiology, including survival, proliferation, and glucose-stimulated insulin secretion. Recognizing the essential role of ECM in islet survival and function, various engineering approaches have been developed that aim to utilize ECM-based materials to recreate a native-like microenvironment. However, a major impediment to the success of these approaches has been the lack of a robust and comprehensive characterization of the human pancreatic proteome. Herein, by combining mass spectrometry (MS) and multiplex ELISA, we have provided an improved workflow for the in-depth profiling of the proteome, including minor constituents that are generally underrepresented. Moreover, we have further validated the effectiveness of our detergent-free decellularization protocol in the removal of cellular proteins and retention of the matrisome. It has also been established that the decellularized ECM and its derivatives can provide more tissue-specific cues than traditionally used biological scaffolds and are therefore more physiologically relevant for the development of hydrogels, bioinks and medium additives, in order to create a pancreatic niche. The data generated in this study would contribute significantly to the efforts of comprehensively defining the ECM atlas and also serve as a standard for the human pancreatic proteome to provide further guidance for design and engineering strategies for improved tissue engineering scaffolds.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Carlo Gazia
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, USA
| | - Sandrine Lablanche
- Grenoble Alps University, Laboratory of Fundamental and Applied Bioenergetics (LBFA), And Environmental and System Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| |
Collapse
|
28
|
Engineering an endothelialized, endocrine Neo-Pancreas: Evaluation of islet functionality in an ex vivo model. Acta Biomater 2020; 117:213-225. [PMID: 32949822 DOI: 10.1016/j.actbio.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Islet-based recellularization of decellularized, repurposed rat livers may form a transplantable Neo-Pancreas. The aim of this study is the establishment of the necessary protocols, the evaluation of the organ structure and the analysis of the islet functionality ex vivo. After perfusion-based decellularization of rat livers, matrices were repopulated with endothelial cells and mesenchymal stromal cells, incubated for 8 days in a perfusion chamber, and finally repopulated on day 9 with intact rodent islets. Integrity and quality of re-endothelialization was assessed by histology and FITC-dextran perfusion assay. Functionality of the islets of Langerhans was determined on day 10 and day 12 via glucose stimulated insulin secretion. Blood gas analysis variables confirmed the stability of the perfusion cultivation. Histological staining showed that cells formed a monolayer inside the intact vascular structure. These findings were confirmed by electron microscopy. Islets infused via the bile duct could histologically be found in the parenchymal space. Adequate insulin secretion after glucose stimulation after 1-day and 3-day cultivation verified islet viability and functionality after the repopulation process. We provide the first proof-of-concept for the functionality of islets of Langerhans engrafted in a decellularized rat liver. Furthermore, a re-endothelialization step was implemented to provide implantability. This technique can serve as a bioengineered platform to generate implantable and functional endocrine Neo-Pancreases.
Collapse
|
29
|
Granato AEC, da Cruz EF, Rodrigues-Junior DM, Mosini AC, Ulrich H, Rodrigues BVM, Cheffer A, Porcionatto M. A novel decellularization method to produce brain scaffolds. Tissue Cell 2020; 67:101412. [PMID: 32866727 DOI: 10.1016/j.tice.2020.101412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Scaffolds composed of extracellular matrix (ECM) can assist tissue remodeling and repair following injury. The ECM is a complex biomaterial composed of proteins, glycoproteins, proteoglycans, and glycosaminoglycans, secreted by cells. The ECM contains fundamental biological cues that modulate cell behavior and serves as a structural scaffold for cell adhesion and growth. For clinical applications, where immune rejection is a constraint, ECM can be processed using decellularization methods intended to remove cells and donor antigens from tissue or organs, while preserving native biological cues essential for cell growth and differentiation. Recent studies show bioengineered organs composed by a combination of a diversity of materials and stem cells as a possibility of new therapeutic strategies to treat diseases that affect different tissues and organs, including the central nervous system (CNS). Nevertheless, the methodologies currently described for brain decellularization involve the use of several chemical reagents with many steps that ultimately limit the process of organ or tissue recellularization. Here, we describe for the first time a fast and straightforward method for complete decellularization of mice brain by the combination of rapid freezing and thawing following the use of only one detergent (Sodium dodecyl sulfate (SDS)). Our data show that using the protocol we describe here, the brain was entirely decellularized, while still maintaining ECM components that are essential for cell survival on the scaffold. Our results also show the cell-loading of the decellularized brain matrix with Neuro2a cells, which were identified by immunohistochemistry in their undifferentiated form. We conclude that this novel and simple method for brain decellularization can be used as a scaffold for cell-loading.
Collapse
Affiliation(s)
- Alessandro E C Granato
- Department of Biochemistry, Neurobiology Lab, Escola Paulista de Medicina, Universidade Federal São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Edgar Ferreira da Cruz
- Department of Medicine, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | - Amanda Cristina Mosini
- Department of Biochemistry, Neurobiology Lab, Escola Paulista de Medicina, Universidade Federal São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Arquimedes Cheffer
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marimelia Porcionatto
- Department of Biochemistry, Neurobiology Lab, Escola Paulista de Medicina, Universidade Federal São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Gaetani R, Aude S, DeMaddalena LL, Strassle H, Dzieciatkowska M, Wortham M, Bender RHF, Nguyen-Ngoc KV, Schmid-Schöenbein GW, George SC, Hughes CCW, Sander M, Hansen KC, Christman KL. Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue Eng Part C Methods 2020; 24:697-708. [PMID: 30398401 DOI: 10.1089/ten.tec.2018.0180] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Different approaches have investigated the effects of different extracellular matrices (ECMs) and three-dimensional (3D) culture on islet function, showing encouraging results. Ideally, the proper scaffold should mimic the biochemical composition of the native tissue as it drives numerous signaling pathways involved in tissue homeostasis and functionality. Tissue-derived decellularized biomaterials can preserve the ECM composition of the native tissue making it an ideal scaffold for 3D tissue engineering applications. However, the decellularization process may affect the retention of specific components, and the choice of a proper detergent is fundamental in preserving the native ECM composition. In this study, we evaluated the effect of different decellularization protocols on the mechanical properties and biochemical composition of pancreatic ECM (pECM) hydrogels. Fresh porcine pancreas tissue was harvested, cut into small pieces, rinsed in water, and treated with two different detergents (sodium dodecyl sulfate [SDS] or Triton X-100) for 1 day followed by 3 days in water. Effective decellularization was confirmed by PicoGreen assay, Hoescht, and H&E staining, showing no differences among groups. Use of a protease inhibitor (PI) was also evaluated. Effective decellularization was confirmed by PicoGreen assay and hematoxylin and eosin (H&E) staining, showing no differences among groups. Triton-treated samples were able to form a firm hydrogel under appropriate conditions, while the use of SDS had detrimental effects on the gelation properties of the hydrogels. ECM biochemical composition was characterized both in the fresh porcine pancreas and all decellularized pECM hydrogels by quantitative mass spectrometry analysis. Fibrillar collagen was the major ECM component in all groups, with all generated hydrogels having a higher amount compared with fresh pancreas. This effect was more pronounced in the SDS-treated hydrogels when compared with the Triton groups, showing very little retention of other ECM molecules. Conversely, basement membrane and matricellular proteins were better retained when the tissue was pretreated with a PI and decellularized in Triton X-100, making the hydrogel more similar to the native tissue. In conclusion, we showed that all the protocols evaluated in the study showed effective tissue decellularization, but only when the tissue was pretreated with a PI and decellularized in Triton detergent, the biochemical composition of the hydrogel was closer to the native tissue ECM. Impact Statement The article compares different methodologies for the generation of a pancreas-derived hydrogel for tissue engineering applications. The biochemical characterization of the newly generated hydrogel shows that the material retains all the extracellular molecules of the native tissue and is capable of sustaining functionality of the encapsulated beta-cells.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Soraya Aude
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Lea Lara DeMaddalena
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Heinz Strassle
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Matthew Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | | | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, California.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Karen L Christman
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
31
|
Berger C, Bjørlykke Y, Hahn L, Mühlemann M, Kress S, Walles H, Luxenhofer R, Ræder H, Metzger M, Zdzieblo D. Matrix decoded - A pancreatic extracellular matrix with organ specific cues guiding human iPSC differentiation. Biomaterials 2020; 244:119766. [PMID: 32199284 DOI: 10.1016/j.biomaterials.2020.119766] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/29/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
The extracellular matrix represents a dynamic microenvironment regulating essential cell functions in vivo. Tissue engineering approaches aim to recreate the native niche in vitro using biological scaffolds generated by organ decellularization. So far, the organ specific origin of such scaffolds was less considered and potential consequences for in vitro cell culture remain largely elusive. Here, we show that organ specific cues of biological scaffolds affect cellular behavior. In detail, we report on the generation of a well-preserved pancreatic bioscaffold and introduce a scoring system allowing standardized inter-study quality assessment. Using multiple analysis tools for in-depth-characterization of the biological scaffold, we reveal unique compositional, physico-structural, and biophysical properties. Finally, we prove the functional relevance of the biological origin by demonstrating a regulatory effect of the matrix on multi-lineage differentiation of human induced pluripotent stem cells emphasizing the significance of matrix specificity for cellular behavior in artificial microenvironments.
Collapse
Affiliation(s)
- Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Lukas Hahn
- Functional Polymer Materials, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Würzburg University, Würzburg, Germany
| | - Markus Mühlemann
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Kress
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany; Otto-von Guericke University, Core Facility Tissue Engineering, Magdeburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Würzburg University, Würzburg, Germany
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany.
| |
Collapse
|
32
|
Franco-Barraza J, Raghavan KS, Luong T, Cukierman E. Engineering clinically-relevant human fibroblastic cell-derived extracellular matrices. Methods Cell Biol 2020; 156:109-160. [PMID: 32222216 DOI: 10.1016/bs.mcb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) culturing models, replicating in vivo tissue microenvironments that incorporate native extracellular matrix (ECM), have revolutionized the cell biology field. Fibroblastic cells generate lattices of interstitial ECM proteins. Cell interactions with ECMs and with molecules sequestered/stored within these are crucial for tissue development and homeostasis maintenance. Hence, ECMs provide cells with biochemical and biomechanical cues to support and locally control cell function. Further, dynamic changes in ECMs, and in cell-ECM interactions, partake in growth, development, and temporary occurrences such as acute wound healing. Notably, dysregulation in ECMs and fibroblasts could be important triggers and modulators of pathological events such as developmental defects, and diseases associated with fibrosis and chronic inflammation such as cancer. Studying the type of fibroblastic cells producing these matrices and how alterations to these cells enable changes in ECMs are of paramount importance. This chapter provides a step-by-step method for producing multilayered (e.g., 3D) fibroblastic cell-derived matrices (fCDM). Methods also include means to assess ECM topography and other cellular traits, indicative of fibroblastic functional statuses, like naïve/normal vs. inflammatory and/or myofibroblastic. For these, protocols include indications for isolating normal and diseased fibroblasts (i.e., cancer-associated fibroblasts known as CAFs). Protocols also include means for conducting microscopy assessments, querying whether fibroblasts present with fCDM-dependent normal or CAF phenotypes. These are supported by discrete semi-quantitative digital imaging analyses, providing some imaging processing advice. Additionally, protocols include descriptions for effective fCDM decellularization, which renders cellular debris-free patho/physiological in vivo-like scaffolds, suitable as 3D substrates for subsequent cell culturing.
Collapse
Affiliation(s)
- Janusz Franco-Barraza
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Kristopher S Raghavan
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States; College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Tiffany Luong
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Vishwakarma SK, Lakkireddy C, Bardia A, Paspala SAB, Khan AA. Engineering bio-mimetic humanized neurological constructs using acellularized scaffolds of cryopreserved meningeal tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:34-44. [PMID: 31147006 DOI: 10.1016/j.msec.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is one of the most precarious conditions which have been one of the major reasons for continuous increasing mortality rate of SCI patients. Currently, there is no effective treatment modality for SCI patients posing major threat to the scientific and medical community. The available strategies don't mimic with the natural processes of nervous tissues repair/regeneration and majority of the approaches may induce the additional fibrotic or immunological response at the injury site and are not readily available on demand. To overcome these hurdles, we have developed a ready to use bioengineered human functional neurological construct (BHNC) for regenerative applications in SCI defects. We used cryopreserved meningeal tissues (CMT) for bioengineering these neurological constructs using acellularization and repopulation technology. The technology adopted herein generates intact neurological scaffolds from CMT and retains several crucial structural, biochemical and mechanical cues to enhance the regenerative mechanisms. The neurogenic differentiation on CMT scaffolds was almost similar to the freshly prepared meningeal scaffolds and mimics with the natural nervous tissue developmental mechanisms which offer intact 3D-microarchitecture and hospitable microenvironment enriched with several crucial neurotrophins for long-term cell survival and function. Functional assessment of developed BHNC showed highly increased positive staining for pre-synaptic granules of Synapsis-1 along with MAP-2 antibody with punctuate distribution in axonal regions of the neuronal cells which was well supported by the gene expression analysis of functional transcripts. Given the significant improvement in the field may enable to generate more such ready to use functional BHNC for wider applicability in SCI repair/regeneration.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr Habeebullah Life Sciences, Attapur, Hyderabad, Telangana, India.
| |
Collapse
|
34
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
35
|
Vishwakarma SK, Lakkireddy C, Bardia A, Nagarapu R, Paspala SAB, Habeeb MA, Khan AA. Biofabricated Humanized Insulin Producing Neo-Organs Generates Secondary Neo-Organoids Through Ectopic Transplantation. Cell Mol Bioeng 2019. [DOI: 10.1007/s12195-019-00586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 2019; 199:40-51. [PMID: 30735895 DOI: 10.1016/j.biomaterials.2019.01.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Islet transplantation is superior to extrinsic insulin supplementation in the treating severe Type 1 diabetes. However, its efficiency and longevity are limited by substantial islet loss post-transplantation due to lack of engraftment and vascular supply. To overcome these limitations, we developed a novel approach to bio-fabricate functional, vascularized islet organs (VIOs) ex vivo. We endothelialized acellular lung matrixes to provide a biocompatible multicompartment scaffold with an intact hierarchical vascular tree as a backbone for islet engraftment. Over seven days of culture, islets anatomically and functionally integrated into the surrounding bio-engineered vasculature, generating a functional perfusable endocrine organ. When exposed to supra-physiologic arterial glucose levels in vivo and ex vivo, mature VIOs responded with a physiologic insulin release from the vein and provided more efficient reduction of hyperglycemia compared to intraportally transplanted fresh islets. In long-term transplants in diabetic mice, subcutaneously implanted VIOs achieved normoglycemia significantly faster and more efficiently compared to islets that were transplanted in deviceless fashion. We conclude that ex vivo bio-fabrication of VIOs enables islet engraftment and vascularization before transplantation, and thereby helps to overcome limited islet survival and function observed in conventional islet transplantation. Given recent progress in stem cells, this technology may enable assembly of functional personalized endocrine organs.
Collapse
|
37
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Vishwakarma SK, Lakkireddy C, Bardia A, Raju N, Paspala SAB, Habeeb MA, Khan AA. Molecular dynamics of pancreatic transcription factors in bioengineered humanized insulin producing neoorgan. Gene 2018; 675:165-175. [PMID: 30180963 DOI: 10.1016/j.gene.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The present study has been aimed to identify molecular dynamics of pancreatic transcription factors (pTFs) during events of directed trans-differentiation of human hepatic progenitor cells (hHPCs) into insulin producing cells (InPCs) within bioengineered humanized neoorgan. The study demonstrates applicability of acellularized whole splenic scaffold (ASOS) to generate insulin producing humanized transplantable neoorgan through activation of pancreatic transcription factors. METHODS An efficient acellularization process was developed for xenogeneic rat spleen using change in different gradients of reagents perfusion through splenic artery for varying time points. The acellularized xenogeneic spleen scaffold was characterized thoroughly for preservation of extra-cellular matrix and retention of organ specific vasculature and mechanical properties. Further scaffolds were sterilized and repopulated with hHPCs which were triggered using a stage wise induction with growth factors and hyperglycemic challenge for trans-differentiation into InPCs. Dynamics of pTFs alone or simultaneously during induction process was identified using gene expression analysis and immunological staining. RESULTS The cells within the engineered neoorgan respond to growth factors and extrinsic hyperglycemic challenge and generate large number of InPCs under controlled dynamic regulation of pTFs. Highly controlled regulation of pTFs generates higher percentage of Nkx-6.1+/C-peptide+ cells within the engineered splenic scaffolds. Generation of high percentage of insulin and C-peptide positive cells in three-dimensional organ architecture responded better to hyperglycemic stimuli and produced higher quantity of insulin than 2D-culture system. CONCLUSION The present study provides a novel platform for designing effective regenerative strategies using whole organ scaffolds to control hyperglycemia under tight regulation of pTFs using humanized neoorgan system.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research & Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India; Dr. Habeebullah Life Sciences, Attapur, Hyderabad 500030, Telangana, India.
| |
Collapse
|
39
|
Guruswamy Damodaran R, Vermette P. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog 2018; 34:1494-1505. [PMID: 30294883 DOI: 10.1002/btpr.2699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Indexed: 12/22/2022]
Abstract
The advancement and improvement in decellularization methods can be attributed to the increasing demand for tissues and organs for transplantation. Decellularized tissues and organs, which are free of cells and genetic materials while retaining the complex ultrastructure of the extracellular matrix (ECM), can serve as scaffolds to subsequently embed cells for transplantation. They have the potential to mimic the native physiology of the targeted anatomic site. ECM from different tissues and organs harvested from various sources have been applied. Many techniques are currently involved in the decellularization process, which come along with their own advantages and disadvantages. This review focuses on recent developments in decellularization methods, the importance and nature of detergents used for decellularization, as well as on the role of the ECM either as merely a physical support or as a scaffold in retaining and providing cues for cell survival, differentiation and homeostasis. In addition, application, status, and perspectives on commercialization of bioproducts derived from decellularized tissues and organs are addressed. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1494-1505, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| |
Collapse
|
40
|
Abstract
Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.
Collapse
Affiliation(s)
- Daniel M Tremmel
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| | - Jon S Odorico
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| |
Collapse
|
41
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
42
|
Peloso A, Citro A, Zoro T, Cobianchi L, Kahler-Quesada A, Bianchi CM, Andres A, Berishvili E, Piemonti L, Berney T, Toso C, Oldani G. Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology. Front Endocrinol (Lausanne) 2018; 9:445. [PMID: 30233489 PMCID: PMC6127205 DOI: 10.3389/fendo.2018.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
According to the Juvenile Diabetes Research Foundation (JDRF), almost 1. 25 million people in the United States (US) have type 1 diabetes, which makes them dependent on insulin injections. Nationwide, type 2 diabetes rates have nearly doubled in the past 20 years resulting in more than 29 million American adults with diabetes and another 86 million in a pre-diabetic state. The International Diabetes Ferderation (IDF) has estimated that there will be almost 650 million adult diabetic patients worldwide at the end of the next 20 years (excluding patients over the age of 80). At this time, pancreas transplantation is the only available cure for selected patients, but it is offered only to a small percentage of them due to organ shortage and the risks linked to immunosuppressive regimes. Currently, exogenous insulin therapy is still considered to be the gold standard when managing diabetes, though stem cell biology is recognized as one of the most promising strategies for restoring endocrine pancreatic function. However, many issues remain to be solved, and there are currently no recognized treatments for diabetes based on stem cells. In addition to stem cell resesarch, several β-cell substitutive therapies have been explored in the recent era, including the use of acellular extracellular matrix scaffolding as a template for cellular seeding, thus providing an empty template to be repopulated with β-cells. Although this bioengineering approach still has to overcome important hurdles in regards to clinical application (including the origin of insulin producing cells as well as immune-related limitations), it could theoretically provide an inexhaustible source of bio-engineered pancreases.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Zoro
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Arianna Kahler-Quesada
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlo M. Bianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Axel Andres
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
43
|
Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME, Zhou Y, Li X, O'Brien C, Li L, Burlingham WJ, Odorico JS. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep 2018; 8:10452. [PMID: 29993013 PMCID: PMC6041318 DOI: 10.1038/s41598-018-28857-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) plays an important developmental role by regulating cell behaviour through structural and biochemical stimulation. Tissue-specific ECM, attained through decellularization, has been proposed in several strategies for tissue and organ replacement. Decellularization of animal pancreata has been reported, but the same methods applied to human pancreas are less effective due to higher lipid content. Moreover, ECM-derived hydrogels can be obtained from many decellularized tissues, but methods have not been reported to obtain human pancreas-derived hydrogel. Using novel decellularization methods with human pancreas we produced an acellular, 3D biological scaffold (hP-ECM) and hydrogel (hP-HG) amenable to tissue culture, transplantation and proteomic applications. The inclusion of a homogenization step in the decellularization protocol significantly improved lipid removal and gelation capability of the resulting ECM, which was capable of gelation at 37 °C in vitro and in vivo, and is cytocompatible with a variety of cell types and islet-like tissues in vitro. Overall, this study demonstrates the characterisation of a novel protocol for the decellularization and delipidization of human pancreatic tissue for the production of acellular ECM and ECM hydrogel suitable for cell culture and transplantation applications. We also report a list of 120 proteins present within the human pancreatic matrisome.
Collapse
Affiliation(s)
- Sara Dutton Sackett
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.
| | - Daniel M Tremmel
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Austin K Feeney
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Rachel M Maguire
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Matthew E Brown
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Ying Zhou
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Xiang Li
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Cori O'Brien
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA
| |
Collapse
|
44
|
Smink AM, de Vos P. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation. Curr Diab Rep 2018; 18:39. [PMID: 29779190 PMCID: PMC5960477 DOI: 10.1007/s11892-018-1014-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSES OF REVIEW Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival. Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current therapeutic strategies to modulate ECM components to improve islet engraftment. RECENT FINDINGS Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival. However, the same experiments show that caution should be taken as some ECM components may negatively impact islet function and engraftment. ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components and strategies is warranted.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9713 GZ, Groningen, The Netherlands.
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Guruswamy Damodaran R, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med 2018; 12:1230-1237. [PMID: 29499099 DOI: 10.1002/term.2655] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus involves the loss of function and/or absolute numbers of insulin-producing β cells in pancreatic islets. Islet transplantation is currently being investigated as a potential cure, and advances in tissue engineering methods can be used to improve pancreatic islets survival and functionality. Transplanted islets experience anoikis, hypoxia, and inflammation-mediated immune response, leading to early damage and subsequent failure of the graft. Recent development in tissue engineering enables the use of decellularized organs as scaffolds for cell therapies. Decellularized pancreas could be a suitable scaffold as it can retain the native extracellular matrix and vasculature. In this study, mouse pancreata were decellularized by perfusion using 0.5% sodium dodecyl sulfate. Different characterizations revealed that the resulting matrix was free of cells and retained part of the pancreas extracellular matrix including the vasculature and its internal elastic basal lamina, the ducts with their basal membrane, and the glycosaminoglycan and collagen structures. Islets were infused into the ductal system of decellularized pancreata, and glucose-stimulated insulin secretion results confirmed their functionality after 48 hr. Also, recellularizing the decellularized pancreas with green fluorescent protein-tagged INS-1 cells and culturing the system over 120 days confirmed the biocompatibility and non-toxic nature of the scaffold. Green fluorescent protein-tagged INS-1 cells formed pseudoislets that were, over time, budding out of the decellularized pancreata. Decellularized pancreatic scaffolds seeded with endocrine pancreatic tissue could be a potential bioengineered organ for transplantation.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
46
|
Pereira LX, Viana CTR, Orellano LAA, de Almeida SA, de Lazari MGT, Couto LC, Vasconcelos AC, Andrade SP, Campos PP. Kinetics of pancreatic tissue proliferation in a polymeric platform in mice. Pancreatology 2018; 18:221-229. [PMID: 29289464 DOI: 10.1016/j.pan.2017.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreas regenerative capacity after injury is not always sufficient to comply with the body's requirement of digestive enzymes and hormones. We present an alternative system to induce pancreas parenchyma proliferation (exocrine and endocrine components), rather than regeneration or remodeling in normoglycemic mice. METHODS Porous discs of polyether-polyurethane were surgically placed adjacent to the native pancreas and removed at days 15, 30 and 45 after implantation. No exogenous growth factors or extracellular matrix components were added to the platform. The synthetic matrix provided a platform that was filled with parenchymal and non-parenchymal pancreas tissue as detected by histological analysis. Immunohistochemistry analysis were performed to identify insulin positive cells in the newly formed tissue. In addition, angiogenic, inflammatory and metabolic parameters were carried out in those mice. RESULTS At day 15, the pores of the platform were filled with inflammatory cells, spindled-shaped like fibroblasts, extracellular matrix components, blood vessels and clusters of pancreatic parenchyma (acini, ducts and islet-like structures). At days 30 and 45 the pancreas features remained well organized; its organization resembled that of a native pancreas. Interestingly, besides islet-like structures that showed positive cells to insulin, some ductal cells were also positive for insulin immunostaining. No significant differences in serum glucose and c-peptide concentrations during the experimental period were detected. CONCLUSIONS The plain synthetic porous platform (without addition of exogenous molecules) placed adjacent to the native organ exhibits potential to restore and/or expand exocrine (acini, ducts) and endocrine (β-cell mass) components in pancreatic injuries and in high metabolic demand.
Collapse
Affiliation(s)
- Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Letícia Chinait Couto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Zhu H, Li W, Liu Z, Li W, Chen N, Lu L, Zhang W, Wang Z, Wang B, Pan K, Zhang X, Chen G. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:191-214. [PMID: 29048258 DOI: 10.1089/ten.teb.2017.0311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation has been validated as a valuable therapy for type 1 diabetes mellitus patients with exhausted insulin treatment. However, this therapy remains limited by the shortage of donor and the requirement of lifelong immunosuppression. Islet encapsulation, as an available bioartificial pancreas (BAP), represents a promising approach to enable protecting islet grafts without or with minimal immunosuppression and possibly expanding the donor pool. To develop a clinically implantable BAP, some key aspects need to be taken into account: encapsulation material, capsule design, and implant site. Among them, the implant site exerts an important influence on the engraftment, stability, and biocompatibility of implanted BAP. Currently, an optimal site for encapsulated islet transplantation may include sufficient capacity to host large graft volumes, portal drainage, ease of access using safe and reproducible procedure, adequate blood/oxygen supply, minimal immune/inflammatory reaction, pliable for noninvasive imaging and biopsy, and potential of local microenvironment manipulation or bioengineering. Varying degrees of success have been confirmed with the utilization of liver or extrahepatic sites in an experimental or preclinical setting. However, the ideal implant site remains to be further engineered or selected for the widespread application of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China .,2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China
| | - Wenjing Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhongwei Liu
- 3 Department of Cardiology, Shaanxi Provincial People's Hospital , Xi'an, China
| | - Wenliang Li
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Niuniu Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Linlin Lu
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Wei Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Zhen Wang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Bo Wang
- 2 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University , Xi'an, China .,4 Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University , Xi'an, China
| | - Kaili Pan
- 5 Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Xiaoge Zhang
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| | - Guoqiang Chen
- 1 Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital , Xi'an, China
| |
Collapse
|
48
|
Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue. Cell Mol Gastroenterol Hepatol 2017; 5:1-13. [PMID: 29276748 PMCID: PMC5736871 DOI: 10.1016/j.jcmgh.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence Address correspondence to: Stephen F. Badylak, DVM, PhD, MD, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219-3110. fax: (412) 624-5256.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh450 Technology Drive, Suite 300PittsburghPennsylvania15219-3110
| |
Collapse
|
49
|
Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|