1
|
Maurat E, Raasch K, Leipold AM, Henrot P, Zysman M, Prevel R, Trian T, Krammer T, Bergeron V, Thumerel M, Nassoy P, Berger P, Saliba AE, Andrique L, Recher G, Dupin I. A novel in vitro tubular model to recapitulate features of distal airways: the bronchioid. Eur Respir J 2024; 64:2400562. [PMID: 39231631 PMCID: PMC11627163 DOI: 10.1183/13993003.00562-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Airflow limitation is the hallmark of obstructive pulmonary diseases, with the distal airways representing a major site of obstruction. Although numerous in vitro models of bronchi already exist, there is currently no culture system for obstructive diseases that reproduces the architecture and function of small airways. Here, we aimed to engineer a model of distal airways to overcome the limitations of current culture systems. METHODS We developed a so-called bronchioid model by encapsulating human bronchial adult stem cells derived from clinical samples in a tubular scaffold made of alginate gel. RESULTS This template drives the spontaneous self-organisation of epithelial cells into a tubular structure. Fine control of the level of contraction is required to establish a model of the bronchiole, which has a physiologically relevant shape and size. Three-dimensional imaging, gene expression and single-cell RNA-sequencing analysis of bronchioids made of bronchial epithelial cells revealed tubular organisation, epithelial junction formation and differentiation into ciliated and goblet cells. Ciliary beating was observed, at a decreased frequency in bronchioids made of cells from COPD patients. The bronchioid could be infected by rhinovirus. An air-liquid interface was introduced that modulated gene expression. CONCLUSION Here, we provide a proof of concept of a perfusable bronchioid with proper mucociliary and contractile functions. The key advantages of our approach, such as the air‒liquid interface, lumen accessibility, recapitulation of pathological features and possible assessment of clinically relevant end-points, will make our pulmonary organoid-like model a powerful tool for preclinical studies.
Collapse
Affiliation(s)
- Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Equal contribution as joint first authors
| | - Katharina Raasch
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Equal contribution as joint first authors
| | - Alexander M Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Maeva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Renaud Prevel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Vanessa Bergeron
- VoxCell Facility, TBMcore UAR CNRS 3427, INSERM US 005, Univ-Bordeaux, Bordeaux, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Pierre Nassoy
- Laboratoire Photonique, Numérique et Nanosciences, UMR 5298 CNRS, Univ-Bordeaux, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Laetitia Andrique
- VoxCell Facility, TBMcore UAR CNRS 3427, INSERM US 005, Univ-Bordeaux, Bordeaux, France
| | - Gaëlle Recher
- Laboratoire Photonique, Numérique et Nanosciences, UMR 5298 CNRS, Univ-Bordeaux, Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Chen H, Lu Y, Rao Y. A self-training interpretable cell type annotation framework using specific marker gene. Bioinformatics 2024; 40:btae569. [PMID: 39312689 PMCID: PMC11488977 DOI: 10.1093/bioinformatics/btae569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
MOTIVATION Recent advances in sequencing technology provide opportunities to study biological processes at a higher resolution. Cell type annotation is an important step in scRNA-seq analysis, which often relies on established marker genes. However, most of the previous methods divide the identification of cell types into two stages, clustering and assignment, whose performances are susceptible to the clustering algorithm, and the marker information cannot effectively guide the clustering process. Furthermore, their linear heuristic-based cell assignment process is often insufficient to capture potential dependencies between cells and types. RESULTS Here, we present Interpretable Cell Type Annotation based on self-training (sICTA), a marker-based cell type annotation method that combines the self-training strategy with pseudo-labeling and the nonlinear association capturing capability of Transformer. In addition, we incorporate biological priori knowledge of genes and pathways into the classifier through an attention mechanism to enhance the transparency of the model. A benchmark analysis on 11 publicly available single-cell datasets demonstrates the superiority of sICTA compared to state-of-the-art methods. The robustness of our method is further validated by evaluating the prediction accuracy of the model on different cell types for each single-cell data. Moreover, ablation studies show that self-training and the ability to capture potential dependencies between cells and cell types, both of which are mutually reinforcing, work together to improve model performance. Finally, we apply sICTA to the pancreatic dataset, exemplifying the interpretable attention matrix captured by sICTA. AVAILABILITY AND IMPLEMENTATION The source code of sICTA is available in public at https://github.com/nbnbhwyy/sICTA. The processed datasets can be found at https://drive.google.com/drive/folders/1jbqSxacL_IDIZ4uPjq220C9Kv024m9eL. The final version of the model will be permanently available at https://doi.org/10.5281/zenodo.13474010.
Collapse
Affiliation(s)
- Hegang Chen
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyin Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanghui Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, Stoltz DA. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest 2024; 134:e181995. [PMID: 39255033 PMCID: PMC11527443 DOI: 10.1172/jci181995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B. McCray
- Department of Internal Medicine
- Department of Pediatrics
- Pappajohn Biomedical Institute, and
| | - Ian M. Thornell
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
| | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Peña-Díaz S, Chao JD, Rens C, Haghdadi H, Zheng X, Flanagan K, Ko M, Shapira T, Richter A, Maestre-Batlle D, Canseco JO, Gutierrez MG, Duc KD, Pelech S, Av-Gay Y. Glycogen synthase kinase 3 inhibition controls Mycobacterium tuberculosis infection. iScience 2024; 27:110555. [PMID: 39175770 PMCID: PMC11340618 DOI: 10.1016/j.isci.2024.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Compounds targeting host control of infectious diseases provide an attractive alternative to antimicrobials. A phenotypic screen of a kinase library identified compounds targeting glycogen synthase kinase 3 as potent inhibitors of Mycobacterium tuberculosis (Mtb) intracellular growth in the human THP-1 cell line and primary human monocytes-derived macrophages (hMDM). CRISPR knockouts and siRNA silencing showed that GSK3 isoforms are needed for the growth of Mtb and that a selected compound, P-4423632 targets GSK3β. GSK3 inhibition was associated with macrophage apoptosis governed by the Mtb secreted protein tyrosine phosphatase A (PtpA). Phospho-proteome analysis of macrophages response to infection revealed a wide array of host signaling and apoptosis pathways controlled by GSK3 and targeted by P-4423632. P-4423632 was additionally found to be active against other intracellular pathogens. Our findings strengthen the notion that targeting host signaling to promote the infected cell's innate antimicrobial capacity is a feasible and attractive host-directed therapy approach.
Collapse
Affiliation(s)
- Sandra Peña-Díaz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joseph D. Chao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Celine Rens
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hasti Haghdadi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xingji Zheng
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Keegan Flanagan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mary Ko
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tirosh Shapira
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adrian Richter
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | - Julio Ortiz Canseco
- Host-pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | | | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Kinexus Bioinformatics Corporation, 8755 Ash Street, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Liu MY, Chen B, Borji M, Garcia de Alba Rivas C, Dost AFM, Moye AL, Movval Abdulla N, Paschini M, Rollins SD, Wang R, Schnapp LM, Khalil HA, Wu CJ, Sharma NS, Kim CF. Human Airway and Alveolar Organoids from BAL Fluid. Am J Respir Crit Care Med 2024; 209:1501-1504. [PMID: 38652140 PMCID: PMC11208964 DOI: 10.1164/rccm.202310-1831le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Monica Yun Liu
- Stem Cell Program, Division of Hematology/Oncology, and
- Division of Pulmonary and Critical Care Medicine and
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Belinda Chen
- Stem Cell Program, Division of Hematology/Oncology, and
| | - Mehdi Borji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Antonella F. M. Dost
- Stem Cell Program, Division of Hematology/Oncology, and
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aaron L. Moye
- Stem Cell Program, Division of Hematology/Oncology, and
| | | | | | - Stuart D. Rollins
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Medicine and
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Medicine and
| | - Lynn M. Schnapp
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hassan A. Khalil
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine and
| | - Nirmal S. Sharma
- Division of Pulmonary and Critical Care Medicine and
- Division of Pulmonary and Critical Care, Veterans Affairs Medical Center, West Roxbury, Boston, Massachusetts; and
| | - Carla F. Kim
- Stem Cell Program, Division of Hematology/Oncology, and
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
6
|
Sputum analysis by flow cytometry; an effective platform to analyze the lung environment. PLoS One 2022; 17:e0272069. [PMID: 35976857 PMCID: PMC9385012 DOI: 10.1371/journal.pone.0272069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose computed tomography (LDCT) is the standard of care for lung cancer screening in the United States (US). LDCT has a sensitivity of 93.8% but its specificity of 73.4% leads to potentially harmful follow-up procedures in patients without lung cancer. Thus, there is a need for additional assays with high accuracy that can be used as an adjunct to LDCT to diagnose lung cancer. Sputum is a biological fluid that can be obtained non-invasively and can be dissociated to release its cellular contents, providing a snapshot of the lung environment. We obtained sputum from current and former smokers with a 30+ pack-year smoking history and who were either confirmed to have lung cancer or at high risk of developing the disease. Dissociated sputum cells were counted, viability determined, and labeled with a panel of markers to separate leukocytes from non-leukocytes. After excluding debris and dead cells, including squamous epithelial cells, we identified reproducible population signatures and confirmed the samples’ lung origin. In addition to leukocyte and epithelial-specific fluorescent antibodies, we used the highly fluorescent meso-tetra(4-carboxyphenyl) porphyrin (TCPP), known to preferentially stain cancer (associated) cells. We looked for differences in cell characteristics, population size and fluorescence intensity that could be useful in distinguishing cancer samples from high-risk samples. We present our data demonstrating the feasibility of a flow cytometry platform to analyze sputum in a high-throughput and standardized matter for the diagnosis of lung cancer.
Collapse
|
7
|
Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun 2022; 13:1246. [PMID: 35273156 PMCID: PMC8913782 DOI: 10.1038/s41467-022-28803-w] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Identification of cell populations often relies on manual annotation of cell clusters using established marker genes. However, the selection of marker genes is a time-consuming process that may lead to sub-optimal annotations as the markers must be informative of both the individual cell clusters and various cell types present in the sample. Here, we developed a computational platform, ScType, which enables a fully-automated and ultra-fast cell-type identification based solely on a given scRNA-seq data, along with a comprehensive cell marker database as background information. Using six scRNA-seq datasets from various human and mouse tissues, we show how ScType provides unbiased and accurate cell type annotations by guaranteeing the specificity of positive and negative marker genes across cell clusters and cell types. We also demonstrate how ScType distinguishes between healthy and malignant cell populations, based on single-cell calling of single-nucleotide variants, making it a versatile tool for anticancer applications. The widely applicable method is deployed both as an interactive web-tool (https://sctype.app), and as an open-source R-package. Cell types are typically identified in single cell transcriptomic data by manual annotation of cell clusters using established marker genes. Here the authors present a fully-automated computational platform that can quickly and accurately distinguish between cell types.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Aalto University, Helsinki, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. .,Helsinki Institute for Information Technology (HIIT), Aalto University, Helsinki, Finland. .,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Rens C, Shapira T, Peña-Diaz S, Chao JD, Pfeifer T, Av-Gay Y. Apoptosis assessment in high-content and high-throughput screening assays. Biotechniques 2021; 70:309-318. [PMID: 34114488 DOI: 10.2144/btn-2020-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here the authors describe the development of AUTOptosis, an economical and rapid apoptosis monitoring method suitable for high-content and high-throughput screening assays. AUTOptosis is based on the quantification of nuclei intensity via staining with Hoechst 33342. First, the authors calibrated the method using standard apoptosis inducers in multiple cell lines. Next, the authors validated the applicability of this approach to high-content screening using a small library of compounds and compared it with the terminal deoxynucleotidyl transferase dUTP nick end labeling gold standard. Finally, the authors demonstrated the specificity of the method by using AUTOposis to detect apoptosis triggered by Mycobacterium tuberculosis intracellular infections.
Collapse
Affiliation(s)
- Céline Rens
- Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Tirosh Shapira
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sandra Peña-Diaz
- Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Tom Pfeifer
- Biofactorial High-Throughput Biology Facility, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
The mystery behind the nostrils - technical clues for successful nasal epithelial cell cultivation. Ann Anat 2021; 238:151748. [PMID: 33940117 DOI: 10.1016/j.aanat.2021.151748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research involving the nose reveals important information regarding the morphology and physiology of the epithelium and its molecular response to agents. The role of nasal epithelial cells and other cell subsets within the nasal epithelium play an interesting translational split between experimental and clinical research studying respiratory disorders or pathogen reactions. With an additional technical manuscript including a detailed description of important technical aspects, tips, tricks, and nuances for a successful culturing of primary, human nasal epithelial cells (NAEPCs), we here aim to improve the process of communication between experimentalists and physicians, supporting the purpose of a fruitful work for future translational projects. METHODS Based on previous work on various complex culture models of subject-derived NAEPCs, this additional manuscript harmonizes previously published facts combined with own experiences for a trouble-free implementation in laboratories. RESULTS A well-designed experimental question is essential prior to the establishment of different NAEPCs culture models. The correct method of cell extraction from the nasal cavity is essential and represent an important basis for successful culture work. Prior enzymatic processing of biopsy specimens, cell culture materials, collagenization procedure, culture conditions, and choice of culture medium are some important practical notes that increase the quality of the culture. Moreover, protocols on imaging techniques including histologic and electron microscopy must be adapted for NAEPC culture. Adapted flow cytometric protocols and transepithelial electrical resistance measurements can add valuable information. OUTLOOK A successful culturing of NAEPCs can provide an important basis for genetic studies and the implementation of omics-science, which is increasingly receiving broad attention in the scientific community. The common aim of in vitro 'mini-noses' will be a breakthrough in laboratories aiming to perform research under in vivo conditions. Here, organoid models are interesting models presenting a basis for translational studies.
Collapse
|
10
|
Bonser LR, Koh KD, Johansson K, Choksi SP, Cheng D, Liu L, Sun DI, Zlock LT, Eckalbar WL, Finkbeiner WE, Erle DJ. Flow-Cytometric Analysis and Purification of Airway Epithelial-Cell Subsets. Am J Respir Cell Mol Biol 2021; 64:308-317. [PMID: 33196316 PMCID: PMC7909335 DOI: 10.1165/rcmb.2020-0149ma] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
The human airway epithelium is essential in homeostasis, and epithelial dysfunction contributes to chronic airway disease. Development of flow-cytometric methods to characterize subsets of airway epithelial cells will enable further dissection of airway epithelial biology. Leveraging single-cell RNA-sequencing data in combination with known cell type-specific markers, we developed panels of antibodies to characterize and isolate the major airway epithelial subsets (basal, ciliated, and secretory cells) from human bronchial epithelial-cell cultures. We also identified molecularly distinct subpopulations of secretory cells and demonstrated cell subset-specific expression of low-abundance transcripts and microRNAs that are challenging to analyze with current single-cell RNA-sequencing methods. These new tools will be valuable for analyzing and separating airway epithelial subsets and interrogating airway epithelial biology.
Collapse
Affiliation(s)
| | - Kyung Duk Koh
- Lung Biology Center
- Cardiovascular Research Institute
| | - Kristina Johansson
- Department of Microbiology and Immunology
- Division of Pulmonary, Critical Care, Sleep, and Allergy
- Sandler Asthma Basic Research Center
| | | | - Dan Cheng
- Lung Biology Center
- Cardiovascular Research Institute
- Department of Respiratory and Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, China
| | - Leqian Liu
- Department of Bioengineering and Therapeutic Sciences
| | | | | | - Walter L. Eckalbar
- Lung Biology Center
- University of California, San Francisco CoLabs, University of California San Francisco, San Francisco, California; and
| | | | - David J. Erle
- Lung Biology Center
- Cardiovascular Research Institute
- University of California, San Francisco CoLabs, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
11
|
From Submerged Cultures to 3D Cell Culture Models: Evolution of Nasal Epithelial Cells in Asthma Research and Virus Infection. Viruses 2021; 13:v13030387. [PMID: 33670992 PMCID: PMC7997270 DOI: 10.3390/v13030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the response to viral infection in the context of respiratory diseases is of significant importance. Recently, there has been more focus on the role of the nasal epithelium in disease modeling. Here, we provide an overview of different submerged, organotypic 3D and spheroid cell culture models of nasal epithelial cells, which were used to study asthma and allergy with a special focus on virus infection. In detail, this review summarizes the importance, benefits, and disadvantages of patient-derived cell culture models of nasal- and bronchial epithelial cells, including a comparison of these cell culture models and a discussion on why investigators should consider using nasal epithelial cells in their research. Exposure experiments, simple virus transduction analyses as well as genetic studies can be performed in these models, which may provide first insights into the complexity of molecular signatures and may open new doors for drug discovery and biomarker research.
Collapse
|
12
|
Middleton LYM, Dou J, Fisher J, Heiss JA, Nguyen VK, Just AC, Faul J, Ware EB, Mitchell C, Colacino JA, M Bakulski K. Saliva cell type DNA methylation reference panel for epidemiological studies in children. Epigenetics 2021; 17:161-177. [PMID: 33588693 DOI: 10.1080/15592294.2021.1890874] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Saliva is a widely used biological sample, especially in pediatric research, containing a heterogenous mixture of immune and epithelial cells. Associations of exposure or disease with saliva DNA methylation can be influenced by cell-type proportions. Here, we developed a saliva cell-type DNA methylation reference panel to estimate interindividual cell-type heterogeneity in whole saliva studies. Saliva was collected from 22 children (7-16 years) and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. We assessed cell-type differences in DNA methylation profiles and tested for enriched biological pathways. Immune and epithelial cells differed at 181,577 (22.8%) DNA methylation sites (t-test p < 6.28 × 10-8). Immune cell hypomethylated sites are mapped to genes enriched for immune pathways (p < 3.2 × 10-5). Epithelial cell hypomethylated sites were enriched for cornification (p = 5.2 × 10-4), a key process for hard palette formation. Saliva immune and epithelial cells have distinct DNA methylation profiles which can drive whole-saliva DNA methylation measures. A primary saliva DNA methylation reference panel, easily implemented with an R package, will allow estimates of cell proportions from whole saliva samples and improve epigenetic epidemiology studies by accounting for measurement heterogeneity by cell-type proportions.
Collapse
Affiliation(s)
- Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jonah Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan A Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, School of Public Health, University of Michigan.,Center for Computational Medicine and Bioinformatics, University of Michigan.,Program in the Environment, College of Literature, Sciences, and the Arts, University of Michigan
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Shanthikumar S, Burton M, Saffery R, Ranganathan SC, Neeland MR. Single-Cell Flow Cytometry Profiling of BAL in Children. Am J Respir Cell Mol Biol 2020; 63:152-159. [PMID: 32207982 DOI: 10.1165/rcmb.2019-0453ma] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Childhood pulmonary diseases not only cause childhood morbidity and mortality but also can cause long-term pulmonary impairment. The clinical management of many childhood pulmonary diseases is hampered by a limited understanding of the underlying pathophysiological mechanisms. Flow cytometry, which can be used to phenotype individual cell populations or isolate cells for downstream analysis, represents a crucial technology that can help to elucidate the pathophysiology of these conditions. Here, we describe a flow cytometry-based method for purification and characterization of cell populations in BAL from children. This includes assessment of the effect of cryopreservation on cell phenotype and frequency, a knowledge gap recently identified by an American Thoracic Society report on flow cytometry in lung samples. To our knowledge, this is the first study to simultaneously quantify alveolar macrophages, T cells (CD4 and CD8), B cells, natural killer cells, dendritic cells, granulocytes, and monocytes (CD16+/CD16-) in the BAL of children. The protocols described can be used to advance investigation of the pathophysiology of childhood pulmonary diseases.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Richard Saffery
- Epigenetics, and.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sarath C Ranganathan
- Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melanie R Neeland
- Population Allergy, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; and.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Aydin M, Naumova EA, Paulsen F, Zhang W, Gopon F, Theis C, Lutz S, Ehrke-Schulz E, Arnold WH, Wirth S, Ehrhardt A. House Dust Mite Exposure Causes Increased Susceptibility of Nasal Epithelial Cells to Adenovirus Infection. Viruses 2020; 12:v12101151. [PMID: 33050625 PMCID: PMC7600414 DOI: 10.3390/v12101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (AdV) infections in the respiratory tract may cause asthma exacerbation and allergic predisposition, and the house dust mite (HDM) may aggravate virus-induced asthma exacerbations. However, the underlying mechanisms of whether and how AdV affects asthmatic patients remains unclear. To address this question, we investigated nasal epithelial cells (NAEPCs) derived from a pediatric exacerbation study cohort for experimental analyses. We analyzed twenty-one different green-fluorescent protein- and luciferase-tagged AdV types in submerged 2D and organotypic 3D cell culture models. Transduction experiments revealed robust transduction of AdV type 5 (AdV5) in NAEPCs, which was associated with an increased uptake of AdV5 in the presence of HDM. In healthy and asthmatic NAEPCs exposed to HDM before infection, we observed a time- and dose-dependent increase of AdV5 uptake associated with upregulation of entry receptors for AdV5. Furthermore, electron microscopic and histologic analyses of 3D cell cultures revealed an impairment of the respiratory cilia after HDM exposition. This ex vivo pilot study shows the impact of AdV infection and HDM exposition in a primary cell culture model for asthma.
Collapse
Affiliation(s)
- Malik Aydin
- Children’s Hospital, Center for Clinical and Translational Research (CCTR), Helios University Medical Center Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (M.A.); (S.W.)
- Laboratory of Clinical Molecular Genetics & Epigenetics, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (E.A.N.); (W.H.A.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Department of Topographic Anatomy and Operative Surgery, Sechenov University, 119146 Moscow, Russia
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
| | - Felix Gopon
- Clinics for Anesthesiology, Helios University Medical Center Wuppertal, Center for Clinical and Translational Research (CCTR), Witten/Herdecke University, 42283 Wuppertal, Germany; (F.G.); (C.T.)
| | - Christian Theis
- Clinics for Anesthesiology, Helios University Medical Center Wuppertal, Center for Clinical and Translational Research (CCTR), Witten/Herdecke University, 42283 Wuppertal, Germany; (F.G.); (C.T.)
| | - Sören Lutz
- Children’s Hospital, Helios Hospital Niederberg, Teaching Hospital of University Hospital Essen, 42549 Velbert, German;
| | - Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
| | - Wolfgang H. Arnold
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (E.A.N.); (W.H.A.)
| | - Stefan Wirth
- Children’s Hospital, Center for Clinical and Translational Research (CCTR), Helios University Medical Center Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (M.A.); (S.W.)
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
- Correspondence:
| |
Collapse
|
15
|
Mohd Isa KN, Hashim Z, Jalaludin J, Lung Than LT, Hashim JH. The Effects of Indoor Pollutants Exposure on Allergy and Lung Inflammation: An Activation State of Neutrophils and Eosinophils in Sputum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5413. [PMID: 32731346 PMCID: PMC7432088 DOI: 10.3390/ijerph17155413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND To explore the inflammation phenotypes following indoor pollutants exposure based on marker expression on eosinophils and neutrophils with the application of chemometric analysis approaches. METHODS A cross-sectional study was undertaken among secondary school students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia. The survey was completed by 96 students at the age of 14 by using the International Study of Asthma and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS) questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick test and sputum induction were performed for all students. Induced sputum samples were analysed for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured inside the classrooms. RESULTS Chemometric and regression results have clustered the expression of CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile, for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a model prediction accuracy of 72.92% and 71.88%, respectively. CONCLUSION The findings indicated that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils, following the activation mechanisms that led to the inflammatory reactions.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
- Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (K.N.M.I.); (J.J.)
| | - Leslie Thian Lung Than
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Jamal Hisham Hashim
- IIGH United Nations University, UKM Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
16
|
Qin L, Gibson PG, Simpson JL, Baines KJ, McDonald VM, Wood LG, Powell H, Fricker M. Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. Clin Exp Allergy 2019; 49:1418-1428. [PMID: 31264263 DOI: 10.1111/cea.13452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dysfunction of the bronchial epithelium plays an important role in asthma; however, its measurement is challenging. Columnar epithelial cells are often quantified, yet rarely analysed, in induced sputum studies. OBJECTIVE We aimed to test whether sputum columnar epithelial cell proportion and count are altered in asthma, and whether they are associated with clinical and inflammatory variables. We aimed to test whether sputum-based measures could provide a relatively non-invasive means through which to monitor airway epithelial activation status. METHODS We examined the relationship of sputum columnar epithelial cells with clinical and inflammatory variables of asthma in a large retrospective cross-sectional cohort (901 participants with asthma and 138 healthy controls). In further studies, we used flow cytometry, microarray, qPCR and ELISA to characterize sputum columnar epithelial cells and their products. RESULTS Multivariate analysis and generation of 90th centile cut-offs (≥11% or ≥18.1 × 104 /mL) to identify columnar epithelial cell "high" asthma revealed a significant relationship between elevated sputum columnar cells and male gender, severe asthma and non-neutrophilic airway inflammation. Flow cytometry showed viable columnar epithelial cells were present in all sputum samples tested. An epithelial gene signature (SCGB3A1, LDLRAD1, FOXJ1, DNALI1, CFAP157, CFAP53) was detected in columnar epithelial cell-high sputum. CLCA1 mRNA and periostin protein, previously identified biomarkers of IL-13-mediated epithelial activation, were elevated in columnar epithelial cell-high sputum samples, but only when accompanied by eosinophilia. CONCLUSIONS & CLINICAL RELEVANCE Sputum columnar epithelial cells are related to important clinical and inflammatory variables in asthma. Measurement of epithelial biomarkers in sputum samples could allow non-invasive assessment of altered bronchial epithelium status in asthma.
Collapse
Affiliation(s)
- Ling Qin
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,Department of Respiratory Medicine (Department of Pulmonary and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, China
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Heather Powell
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, New Lambton Heights, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
17
|
|
18
|
Bonesi M, Brindisi M, Armentano B, Curcio R, Sicari V, Loizzo MR, Cappello MS, Bedini G, Peruzzi L, Tundis R. Exploring the anti-proliferative, pro-apoptotic, and antioxidant properties of Santolina corsica Jord. & Fourr. (Asteraceae). Biomed Pharmacother 2018; 107:967-978. [DOI: 10.1016/j.biopha.2018.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023] Open
|