1
|
de Oliveira Souza LB, Sicoli JPG, Olalla Saad ST, Benites BD. Modulation of the endocannabinoid system in chronic conditions: a potential therapeutic intervention yet to be explored in sickle cell disease. Expert Rev Hematol 2025; 18:215-224. [PMID: 39992131 DOI: 10.1080/17474086.2025.2471864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Individuals living with Sickle Cell Disease (SCD) are subject to numerous chronic complications, including disabling chronic pain, often dependent on opioids and with important repercussions on the quality of life. The use of Medicinal Cannabis in this scenario may be a promising strategy for mitigating this impact. AREAS COVERED This work compiles current knowledge regarding the endocannabinoid system in humans and the role of this system in various organic functions. Articles were retrieved through a comprehensive search of the PubMed NCBI database, covering relevant studies up to 2024. These data bring important speculations on the potential role of the use of medicinal cannabis in modulating SCD chronic complications, and the preliminary results of clinical trials carried out in this condition are discussed. EXPERT OPINION The search for understanding the role of cannabis-derived products in the management of chronic complications of sickle cell disease could add resources to the serious challenge of dealing with the multiple aspects of the disease faced by patients. They range from the management of chronic pain itself to the risks of opioid dependence, in addition to other difficult scenarios, such as leg ulcers and chronic inflammation and its consequences.
Collapse
Affiliation(s)
| | - Juliana Paiva Gouvea Sicoli
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| | - Bruno Deltreggia Benites
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Trevizani M, Leal LL, Rettore JVP, Macedo GC, Alves CCDS, de Castro SBR, do Carmo AMR, da Silva SA, Maranduba CMDC, Silva FDS. Tumor necrosis factor α, and agonist and antagonists of cannabinoid receptor type 1 and type 2 alter the immunophenotype of stem cells from human exfoliated deciduous teeth. EINSTEIN-SAO PAULO 2023; 21:eAO0405. [PMID: 37970951 PMCID: PMC10631756 DOI: 10.31744/einstein_journal/2023ao0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/19/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE To verify the involvement of the endocannabinoid system in the immunomodulatory profile of stem cells from human exfoliated deciduous teeth, in the presence or absence of TNF-α, and agonist and antagonists of CB1 and CB2. METHODS Stem cells from human exfoliated deciduous teeth were cultured in the presence or absence of an agonist, anandamide, and two antagonists, AM251 and SR144528, of CB1 and CB2 receptors, with or without TNF-α stimulation. For analysis of immunomodulation, surface molecules linked to immunomodulation, namely human leukocyte antigen-DR isotype (HLA-DR), and programmed death ligands 1 (PD-L1) and 2 (PD-L2) were measured using flow cytometry. RESULTS The inhibition of endocannabinoid receptors together with the proinflammatory effect of TNF-α resulted in increased HLA-DR expression in stem cells from human exfoliated deciduous teeth, as well as, in these cells acquiring an anti-inflammatory profile by enhancing the expression of PD-L1 and PD-L2. CONCLUSION Stem cells from human exfoliated deciduous teeth respond to the endocannabinoid system and TNF-α by altering key immune response molecules. Inhibition of endocannabinoid receptors and TNF-α led to an increase in HLA-DR, PD-L1, and PD-L2 levels in stem cells from human exfoliated deciduous teeth. This study shows the interaction between mesenchymal stromal cells and the immune and endocannabinoid systems.
Collapse
Affiliation(s)
- Marizia Trevizani
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Laís Lopardi Leal
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - João Vitor Paes Rettore
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Gilson Costa Macedo
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Caio César de Souza Alves
- Faculdade de Medicina do MucuriUniversidade Federal dos Vales do Jequitinhonha e MucuriTeófilo OtoniMGBrazil Faculdade de Medicina do Mucuri , Universidade Federal dos Vales do Jequitinhonha e Mucuri , Teófilo Otoni , MG , Brazil .
| | - Sandra Bertelli Ribeiro de Castro
- Faculdade de Medicina do MucuriUniversidade Federal dos Vales do Jequitinhonha e MucuriTeófilo OtoniMGBrazil Faculdade de Medicina do Mucuri , Universidade Federal dos Vales do Jequitinhonha e Mucuri , Teófilo Otoni , MG , Brazil .
| | - Antônio Márcio Resende do Carmo
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Silvioney Augusto da Silva
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Carlos Magno da Costa Maranduba
- Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaMGBrazil Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora , Juiz de Fora , MG , Brazil .
| | - Fernando de Sá Silva
- Universidade Federal de Juiz de ForaGovernador ValadaresMGBrazil Universidade Federal de Juiz de Fora , Governador Valadares , MG , Brazil .
| |
Collapse
|
3
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
4
|
Higuchi S, Wood C, Nasiri RH, Giddla LJ, Molina V, Diarra R, DiPatrizio NV, Kawamura A, Haeusler RA. The 16α-hydroxylated Bile Acid, Pythocholic Acid Decreases Food Intake and Increases Oleoylethanolamide in Male Mice. Endocrinology 2023; 164:bqad116. [PMID: 37490843 PMCID: PMC10407715 DOI: 10.1210/endocr/bqad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Modulation of bile acid (BA) structure is a potential strategy for obesity and metabolic disease treatment. BAs act not only as signaling molecules involved in energy expenditure and glucose homeostasis, but also as regulators of food intake. The structure of BAs, particularly the position of the hydroxyl groups of BAs, impacts food intake partly by intestinal effects: (1) modulating the activity of N-acyl phosphatidylethanolamine phospholipase D, which produces the anorexigenic bioactive lipid oleoylethanolamide (OEA) or (2) regulating lipid absorption and the gastric emptying-satiation pathway. We hypothesized that 16α-hydroxylated BAs uniquely regulate food intake because of the long intermeal intervals in snake species in which these BAs are abundant. However, the effects of 16α-hydroxylated BAs in mammals are completely unknown because they are not naturally found in mammals. To test the effect of 16α-hydroxylated BAs on food intake, we isolated the 16α-hydroxylated BA pythocholic acid from ball pythons (Python regius). Pythocholic acid or deoxycholic acid (DCA) was given by oral gavage in mice. DCA is known to increase N-acyl phosphatidylethanolamine phospholipase D activity better than other mammalian BAs. We evaluated food intake, OEA levels, and gastric emptying in mice. We successfully isolated pythocholic acid from ball pythons for experimental use. Pythocholic acid treatment significantly decreased food intake in comparison to DCA treatment, and this was associated with increased jejunal OEA, but resulted in no change in gastric emptying or lipid absorption. The exogenous BA pythocholic acid is a novel regulator of food intake and the satiety signal for OEA in the mouse intestine.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Raidah H Nasiri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Leela J Giddla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Valentina Molina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rokia Diarra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
6
|
Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022; 38:5. [PMID: 35193700 PMCID: PMC8862295 DOI: 10.1186/s42826-022-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
Collapse
|
7
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
8
|
Giorgi V, Marotto D, Batticciotto A, Atzeni F, Bongiovanni S, Sarzi-Puttini P. Cannabis and Autoimmunity: Possible Mechanisms of Action. Immunotargets Ther 2021; 10:261-271. [PMID: 34322454 PMCID: PMC8313508 DOI: 10.2147/itt.s267905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Medical cannabis (MC) describes the usually inhaled or ingested use of a cannabis plant or cannabis extract for medicinal purposes. The action of whole cannabis plants is extremely complex because their large number of active compounds not only bind to a plethora of different receptors but also interact with each other both synergistically and otherwise. Renewed interest in the medicinal properties of cannabis has led to increasing research into the practical uses of cannabis derivatives, and it has been found that the endocannabinoid system (particularly CB2 receptor activation) is a possible target for the treatment of inflammatory and the autoimmune diseases related to immune cell activation. However, in vivo findings still lack, creating difficulties in applying translational cannabinoid research to human immune functions. In this review, we summarized the main mechanisms of action of medical cannabis plant especially regarding the immune system and the endocannabinoid system, looking at preliminary clinical data in three most important autoimmune diseases of three different specialities: rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Valeria Giorgi
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Daniela Marotto
- Rheumatology Unit, ATS Sardegna, P. Dettori Hospital, Tempio Pausania, Italy
| | - Alberto Batticciotto
- Rheumatology Unit, Internal Medicine Department, ASST Settelaghi, Ospedale Di Circolo - Fondazione Macchi, Varese, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sara Bongiovanni
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| |
Collapse
|
9
|
Paland N, Pechkovsky A, Aswad M, Hamza H, Popov T, Shahar E, Louria-Hayon I. The Immunopathology of COVID-19 and the Cannabis Paradigm. Front Immunol 2021; 12:631233. [PMID: 33643316 PMCID: PMC7907157 DOI: 10.3389/fimmu.2021.631233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.
Collapse
Affiliation(s)
- Nicole Paland
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Antonina Pechkovsky
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Miran Aswad
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Haya Hamza
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Tania Popov
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Eduardo Shahar
- Clinical Immunology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Igal Louria-Hayon
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
- Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
10
|
Argueta DA, Aich A, Muqolli F, Cherukury H, Sagi V, DiPatrizio NV, Gupta K. Considerations for Cannabis Use to Treat Pain in Sickle Cell Disease. J Clin Med 2020; 9:E3902. [PMID: 33271850 PMCID: PMC7761429 DOI: 10.3390/jcm9123902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Pain in Sickle Cell Disease (SCD) is a major comorbidity and unique with acute pain due to recurrent and episodic vaso-occlusive crises as well as chronic pain, which can span an individual's entire life. Opioids are the mainstay treatment for pain in SCD. Due to recent health crises raised by adverse effects including deaths from opioid use, pain management in SCD is adversely affected. Cannabis and its products are most widely used for pain in multiple conditions and also by patients with SCD on their own. With the availability of "Medical Cannabis" and approval to use cannabis as medicine across majority of States in the United States as well as over-the-counter preparations, cannabis products are being used increasingly for SCD. The reliability of many of these products remains questionable, which poses a major health risk to the vulnerable individuals seeking pain relief. Therefore, this review provides up to date insights into available categories of cannabis-based treatment strategies, their mechanism of action and pre-clinical and clinical outcomes in SCD. It provides evidence for the benefits and risks of cannabis use in SCD and cautions about the unreliable and unvalidated products that may be adulterated with life-threatening non-cannabis compounds.
Collapse
Affiliation(s)
- Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Fjolla Muqolli
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Hemanth Cherukury
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Varun Sagi
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Twin Cities, MN 55455, USA;
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
- Southern California Institute for Research and Education, Long Beach VA Medical Center, Long Beach, CA 90822, USA
| |
Collapse
|
11
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|
12
|
Hauer D, Toth R, Schelling G. Endocannabinoids, “New-Old” Mediators of Stress Homeostasis. STRESS CHALLENGES AND IMMUNITY IN SPACE 2020:181-204. [DOI: 10.1007/978-3-030-16996-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Host- and Helminth-Derived Endocannabinoids That Have Effects on Host Immunity Are Generated during Infection. Infect Immun 2018; 86:IAI.00441-18. [PMID: 30104215 DOI: 10.1128/iai.00441-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Helminths have coevolved with their hosts, resulting in the development of specialized host immune mechanisms and parasite-specific regulatory products. Identification of new pathways that regulate helminth infection could provide a better understanding of host-helminth interaction and may identify new therapeutic targets for helminth infection. Here we identify the endocannabinoid system as a new mechanism that influences host immunity to helminths. Endocannabinoids are lipid-derived signaling molecules that control important physiologic processes, such as feeding behavior and metabolism. Following murine infection with Nippostrongylus brasiliensis, an intestinal nematode with a life cycle similar to that of hookworms, we observed increased levels of endocannabinoids (2-arachidonoylglycerol [2-AG] or anandamide [AEA]) and the endocannabinoid-like molecule oleoylethanolamine (OEA) in infected lung and intestine. To investigate endocannabinoid function in helminth infection, we employed pharmacological inhibitors of cannabinoid subtype receptors 1 and 2 (CB1R and CB2R). Compared to findings for vehicle-treated mice, inhibition of CB1R but not CB2R resulted in increased N. brasiliensis worm burden and egg output, associated with significantly decreased expression of the T helper type 2 cytokine interleukin 5 (IL-5) in intestinal tissue and splenocyte cultures. Strikingly, bioinformatic analysis of genomic and transcriptome sequencing (RNA-seq) data sets identified putative genes encoding endocannabinoid biosynthetic and degradative enzymes in many parasitic nematodes. To test the novel hypothesis that helminth parasites produce their own endocannabinoids, we measured endocannabinoid levels in N. brasiliensis by mass spectrometry and quantitative PCR and found that N. brasiliensis parasites produced endocannabinoids, especially at the infectious larval stage. To our knowledge, this is the first report of helminth- and host-derived endocannabinoids that promote host immune responses and reduce parasite burden.
Collapse
|
14
|
Perez PA, DiPatrizio NV. Impact of maternal western diet-induced obesity on offspring mortality and peripheral endocannabinoid system in mice. PLoS One 2018; 13:e0205021. [PMID: 30273406 PMCID: PMC6166980 DOI: 10.1371/journal.pone.0205021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Over two-thirds of adults in the United States are obese or overweight, which is largely due to chronic overconsumption of diets high in fats and sugars (i.e., Western diet). Recent studies reveal that maternal obesity may predispose offspring to development of obesity and other metabolic diseases; however, the molecular underpinnings of these outcomes are largely unknown. The endocannabinoid system is an important signaling pathway that controls feeding behavior and energy homeostasis, and its activity becomes upregulated in the upper small intestinal epithelium of Western diet-induced obese mice, which drives overeating. In the current investigation, we examined the impact of chronic maternal consumption of Western diet on the expression and function of the endocannabinoid system in several peripheral organs important for food intake and energy homeostasis in offspring. Female C57BL/6Tac mice were fed a Western diet or low-fat/no-sucrose control chow for 10 weeks, then males were introduced for mating. Dams were maintained on their respective diets through weaning of pups, at which time pups were maintained on low-fat/no-sucrose chow for 10 weeks. Neonates born from dams fed Western diet, when compared to those born from mice fed control chow, unexpectedly displayed increases in mortality that occurred exclusively within six days following birth (greater than 50% mortality). Males comprised a larger fraction of surviving offspring from obese dams. Furthermore, surviving offspring displayed transient increases in body mass for first two days post weaning, and no marked changes in feeding patterns and endocannabinoid levels in upper small intestinal epithelium, pancreas, and plasma, or in expression of key endocannabinoid system genes in the upper small intestinal epithelium and pancreas at 10 weeks post-weaning. Collectively, these results suggest that maternal diet composition greatly influences survival of neonate C57BL/6Tac mice, and that surviving offspring from dams chronically fed a Western diet do not display marked changes in body mass, eating patterns, or expression and function of the endocannabinoid system in several peripheral organs important for feeding behavior and energy homeostasis.
Collapse
Affiliation(s)
- Pedro A. Perez
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| | - Nicholas V. DiPatrizio
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, Riverside CA, United States of America
| |
Collapse
|
15
|
Silencing LAIR-1 in human THP-1 macrophage increases foam cell formation by modulating PPARγ and M2 polarization. Cytokine 2018; 111:194-205. [PMID: 30176557 DOI: 10.1016/j.cyto.2018.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022]
Abstract
Formation of macrophage-derived foam cells may mark the initial stages of atherosclerosis. We investigated the association between the expression of the leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) in macrophages and foam cell formation. A foam cell model was established by incubating THP-1-derived macrophages and bone marrow macrophages (BMMs) with oxidized low-density lipoprotein (ox-LDL). The role of LAIR-1 in foam cell formation was evaluated via Oil Red O staining and Dil-ox-LDL fluorescence intensities. Peroxisome proliferator-activated receptor gamma (PPARγ), cholesterol metabolism-related genes, and the role of LAIR-1 in activating classically activated (M1) and alternatively activated (M2) macrophages were evaluated by qPCR. Additionally, activation of protein-tyrosine phosphatase-1 (SHP-1) and cAMP-response element binding protein (CREB) were detected by western blotting. Results indicated that silencing LAIR-1 in macrophages modulated the SHP-1/CREB/PPARγ pathway, thereby promoting M2 macrophage polarization and increasing foam cell formation. Therefore, Inhibition of LAIR-1 in macrophages may promote foam cell formation and atherosclerosis.
Collapse
|
16
|
Price CA, Argueta DA, Medici V, Bremer AA, Lee V, Nunez MV, Chen GX, Keim NL, Havel PJ, Stanhope KL, DiPatrizio NV. Plasma fatty acid ethanolamides are associated with postprandial triglycerides, ApoCIII, and ApoE in humans consuming a high-fructose corn syrup-sweetened beverage. Am J Physiol Endocrinol Metab 2018; 315:E141-E149. [PMID: 29634315 PMCID: PMC6335011 DOI: 10.1152/ajpendo.00406.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and clinical research studies have provided ample evidence demonstrating that consumption of sugar-sweetened beverages increases risk factors involved in the development of obesity, Type 2 diabetes, and cardiovascular disease (CVD). Our previous study demonstrated that when compared with aspartame (Asp), 2 wk of high-fructose corn syrup (HFCS)-sweetened beverages provided at 25% of daily energy requirement was associated with increased body weight, postprandial (pp) triglycerides (TG), and fasting and pp CVD risk factors in young adults. The fatty acid ethanolamide, anandamide (AEA), and the monoacylglycerol, 2-arachidonoyl- sn-glycerol (2-AG), are two primary endocannabinoids (ECs) that play a role in regulating food intake, increasing adipose storage, and regulating lipid metabolism. Therefore, we measured plasma concentrations of ECs and their analogs, oleoylethanolamide (OEA), docosahexaenoyl ethanolamide (DHEA), and docosahexaenoyl glycerol (DHG), in participants from our previous study who consumed HFCS- or Asp-sweetened beverages to determine associations with weight gain and CVD risk factors. Two-week exposure to either HFCS- or Asp-sweetened beverages resulted in significant differences in the changes in fasting levels of OEA and DHEA between groups after the testing period. Subjects who consumed Asp, but not HFCS, displayed a reduction in AEA, OEA, and DHEA after the testing period. In contrast, there were significant positive relationships between AEA, OEA, and DHEA vs. ppTG, ppApoCIII, and ppApoE in those consuming HFCS, but not in those consuming Asp. Our findings reveal previously unknown associations between circulating ECs and EC-related molecules with markers of lipid metabolism and CVD risk after HFCS consumption.
Collapse
Affiliation(s)
- Candice Allister Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, School of Medicine, University of California, Davis, Davis, California
| | - Andrew A Bremer
- Division of Gastroenterology and Hepatology, School of Medicine, University of California, Davis, Davis, California
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Marinelle V Nunez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Guoxia X Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Nancy L Keim
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
- U.S. Department of Agriculture, Western Human Nutrition Research Center , Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
17
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
18
|
Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep 2017; 7:17410. [PMID: 29234141 PMCID: PMC5727179 DOI: 10.1038/s41598-017-17796-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cannabinoid CB2 receptors (CB2Rs) are expressed in mouse brain dopamine (DA) neurons and are involved in several DA-related disorders. However, the cell type-specific mechanisms are unclear since the CB2R gene knockout mice are constitutive gene knockout. Therefore, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre- recombinase expression is under dopamine transporter gene (DAT) promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2 conditional knockout (cKO) mice. Using a novel sensitive RNAscope in situ hybridization, we detected CB2R mRNA expression in VTA DA neurons in wildtype and DAT-Cnr2 cKO heterozygous but not in the homozygous DAT-Cnr2 cKO mice. Here we report that the deletion of CB2Rs in dopamine neurons enhances motor activities, modulates anxiety and depression-like behaviors and reduces the rewarding properties of alcohol. Our data reveals that CB2Rs are involved in the tetrad assay induced by cannabinoids which had been associated with CB1R agonism. GWAS studies indicates that the CNR2 gene is associated with Parkinson's disease and substance use disorders. These results suggest that CB2Rs in dopaminergic neurons may play important roles in the modulation of psychomotor behaviors, anxiety, depression, and pain sensation and in the rewarding effects of alcohol and cocaine.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA.
- Laboratory of Clinical Investigation, national Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Ana Canseco-Alba
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Hai-Ying Zhang
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Patricia Tagliaferro
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Monika Chung
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Eugene Dennis
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Norman Schanz
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | | | - Hiroki Ishiguro
- Department of Psychiatry, University of Yamanashi, Yamanashi, Japan
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, USA
| | - Susan Sgro
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Claire M Leonard
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | | | - Eliot L Gardner
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, national Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jeung Woon Lee
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Zheng-Xiong Xi
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA.
| |
Collapse
|
19
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|