1
|
Torabinavid P, Khosropanah MH, Azimzadeh A, Kajbafzadeh AM. Current strategies on kidney regeneration using tissue engineering approaches: a systematic review. BMC Nephrol 2025; 26:66. [PMID: 39934739 PMCID: PMC11816546 DOI: 10.1186/s12882-025-03968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Over the past two decades, there has been a notable rise in the number of individuals afflicted with End-Stage Renal Disease, resulting in an increased demand for renal replacement therapies. While periodic dialysis is beneficial, it can negatively impact a patient's quality of life and does not fully replicate the secretory functions of the kidneys. Additionally, the scarcity of organ donors and complications associated with organ transplants have underscored the importance of tissue engineering. Regenerative medicine is revolutionized by developing decellularized organs and tissue engineering, which is considered a cutting-edge area of study with enormous potential. Developing bioengineered kidneys using tissue engineering approaches for renal replacement therapy is promising. METHOD AND MATERIALS We aimed to systematically review the essential preclinical data to promote the translation of tissue engineering research for kidney repair from the laboratory to clinical practice. A PubMed search strategy was systematically implemented without any linguistic restrictions. The assessment focused on complete circumferential and inlay procedures, thoroughly evaluating parameters such as cell seeding, decellularization techniques, recellularization protocols, and biomaterial types. RESULTS Of the 1,484 studies retrieved from the following primary searches, 105 were included. Kidneys were harvested from eight different species. Nine studies performed kidney decellularization from discarded human kidneys. Sixty-four studies performed whole organ decellularization. Some studies used acellular scaffolds to produce hydrogels, sheets, and solutions. Decellularization is achieved through physical, chemical, or enzymatic treatment or a combination of them. Sterilization of acellular scaffolds was also thoroughly and comparatively evaluated. Lastly, different recellularization protocols and types of cells used for further cell seeding were demonstrated. CONCLUSION A comprehensive review of the existing literature about kidney tissue engineering was conducted to evaluate its effectiveness in preclinical investigations. Our findings indicate that enhancements in the design of preclinical studies are necessary to facilitate the successful translation of tissue engineering technologies into clinical applications.
Collapse
Affiliation(s)
- Parham Torabinavid
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, No. 62, Dr. Qarib's St, Keshavarz Blvd, Tehran, 14194 33151, Iran.
| |
Collapse
|
2
|
Lee YE, Jeong ES, Kim YM, Gong SP. Investigation of scaffold manufacturing conditions for 3-dimensional culture of myogenic cell line derived from black sea bream ( Acanthopagrus schlegelii). Cytotechnology 2025; 77:18. [PMID: 39676766 PMCID: PMC11635079 DOI: 10.1007/s10616-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024] Open
Abstract
Culturing fish myogenic cells in vitro holds significant potential to revolutionize aquaculture practices and support sustainable food production. However, advancement in in vitro culture technologies for skeletal muscle-derived myogenic cells have predominantly focused on mammals, with limited studies on fish. Scaffold-based three-dimensional (3D) culture systems for fish myogenic cells remain underexplored, highlighting a critical research gap compared to mammalian systems. This study evaluated the effects of scaffold composition and manufacturing methods on cellular growth in the 3D culture of black sea bream (Acanthopagrus schlegelii) myogenic cells. Scaffolds were manufactured using three natural polymers: black sea bream-derived extracellular matrix (ECM), sodium alginate, and gelatin. Two scaffold types were tested: "cell-laden scaffolds" prepared by mixing cells into the pre-scaffold solution followed by gelation, and "cell-seeding scaffolds" produced by freezing, gelation, and lyophilization before cell inoculation. Scaffold characteristics, including pore size, porosity, swelling ratio, and degradation rate, were assessed. Cell-seeding scaffolds exhibited relatively larger pore size, higher porosity, and higher degradation rate, while cell-laden scaffolds had higher swelling ratios. When black sea bream myogenic cells were cultured in these scaffolds, cell-seeding scaffolds supported cellular growth, particularly when composed of 3% sodium alginate and 4% gelatin with any concentration of ECM. In contrast, cell-laden scaffolds did not support cellular growth regardless of their composition. These findings provide fundamental insights for optimizing scaffold properties to develop more optimized conditions for 3D culture of fish muscle lineage cells.
Collapse
Affiliation(s)
- Ye-Eun Lee
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
| | - Eun Soo Jeong
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Seung Pyo Gong
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Korea
| |
Collapse
|
3
|
Roye Y, Miller C, Kalejaiye TD, Musah S. A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury. Matrix Biol Plus 2024; 24:100164. [PMID: 39582511 PMCID: PMC11585791 DOI: 10.1016/j.mbplus.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Carmen Miller
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham NC, USA
| | - Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
- MEDx Investigator, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Luque-Badillo AC, Monjaras-Avila CU, Adomat H, So A, Chavez-Muñoz C. Evaluating different methods for kidney recellularization. Sci Rep 2024; 14:23520. [PMID: 39384961 PMCID: PMC11464767 DOI: 10.1038/s41598-024-74543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
This study explores a potential solution to the shortage of kidneys for transplantation in end-stage renal disease (ESRD). Currently, kidney transplantation stands as the optimal option, yet the scarcity of organs persists. Employing tissue engineering, researchers sought to assess the feasibility of generating kidneys for transplantation. Pig kidneys were utilized since they possess higher similarities to human kidneys. Cells were removed via decellularization, which maintains the organ's microarchitecture. Subsequently, pig kidney cells and human red blood cells were perfused into the vacant kidney structure to reconstitute it. The methodologies employed showed promising results, suggesting a viable approach to increase the recellularization rate in whole pig kidneys. This proof-of-concept establishes a groundwork for potentially extending this technology to human kidneys, tackling the organ shortage, thus positively enhancing outcomes for ESRD patients by increasing the availability of transplantable organs.
Collapse
Affiliation(s)
- Ana C Luque-Badillo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cesar U Monjaras-Avila
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan So
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Claudia Chavez-Muñoz
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- , 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada.
| |
Collapse
|
5
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
6
|
Quinteira R, Gimondi S, Monteiro NO, Sobreiro-Almeida R, Lasagni L, Romagnani P, Neves NM. Decellularized kidney extracellular matrix-based hydrogels for renal tissue engineering. Acta Biomater 2024; 180:295-307. [PMID: 38642787 DOI: 10.1016/j.actbio.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Kidney regeneration is hindered by the limited pool of intrinsic reparative cells. Advanced therapies targeting renal regeneration have the potential to alleviate the clinical and financial burdens associated with kidney disease. Delivery systems for cells, extracellular vesicles, or growth factors aimed at enhancing regeneration can benefit from vehicles enabling targeted delivery and controlled release. Hydrogels, optimized to carry biological cargo while promoting regeneration, have emerged as promising candidates for this purpose. This study aims to develop a hydrogel from decellularized kidney extracellular matrix (DKECM) and explore its biocompatibility as a biomaterial for renal regeneration. The resulting hydrogel crosslinks with temperature and exhibits a high concentration of extracellular matrix. The decellularization process efficiently removes detergent residues, yielding a pathogen-free biomaterial that is non-hemolytic and devoid of α-gal epitope. Upon interaction with macrophages, the hydrogel induces differentiation into both pro-inflammatory and anti-inflammatory phenotypes, suggesting an adequate balance to promote biomaterial functionality in vivo. Renal progenitor cells encapsulated in the DKECM hydrogel demonstrate higher viability and proliferation than in commercial collagen-I hydrogels, while also expressing tubular cells and podocyte markers in long-term culture. Overall, the injectable biomaterial derived from porcine DKECM is anticipated to elicit minimal host reaction while fostering progenitor cell bioactivity, offering a potential avenue for enhancing renal regeneration in clinical settings. STATEMENT OF SIGNIFICANCE: The quest to improve treatments for kidney disease is crucial, given the challenges faced by patients on dialysis or waiting for transplants. Exciting new therapies combining biomaterials with cells can revolutionize kidney repair. In this study, researchers created a hydrogel from pig kidney. This gel could be used to deliver cells and other substances that help in kidney regeneration. Despite coming from pigs, it's safe for use in humans, with no harmful substances and reduced risk of immune reactions. Importantly, it promotes a balanced healing response in the body. This research not only advances our knowledge of kidney repair but also offers hope for more effective treatments for kidney diseases.
Collapse
Affiliation(s)
- Rita Quinteira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nelson O Monteiro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rita Sobreiro-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
8
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
9
|
Nishimura Y. Current status and future prospects of decellularized kidney tissue. J Artif Organs 2023; 26:171-175. [PMID: 36138180 DOI: 10.1007/s10047-022-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
End-stage renal disease (ESRD) is characterized by progressive loss of kidney function, which can result in damage to various tissues and organs. Dialysis therapy and kidney transplantation are currently the only therapeutic options available for patients with ESRD. In the case of kidney transplantation, organ shortage and high organ rejection have increased the need for novel treatment modalities. Therefore, organ regeneration employing decellularization technology has emerged as a viable alternative to conventional organ transplantation. In this technology, organs are decellularized using physical, chemical, or biological means to create a natural scaffold and foundation for cell seeding. After in vivo transplantation, this scaffold can be recellularized using stem cells or adult differentiated cells, resulting in a functional organ devoid of immune response. This review focuses on the primary agents used for renal decellularization and the current status of kidney regeneration using decellularization.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Course of Clinical Engineering, Kitasato Junior College of Health Hygienic Sciences, Minamiuonuma City, Niigata, 500 Kurotsuchishinden 949-7241, Japan.
| |
Collapse
|
10
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
11
|
Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater 2023:S1742-7061(23)00317-3. [PMID: 37295627 DOI: 10.1016/j.actbio.2023.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of the stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3β) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggested the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offered a promising approach as a non-cellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.
Collapse
Affiliation(s)
- Si Hwa Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Heeju Han
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | - Hyunkyung Mo
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - YoungWoo Ryu
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Yeri Alice Rim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; YiPSCELL, Inc., Seoul, South Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Nguyen VL, Misawa A, Obara H. An electrical analog permeability model assessing fluid flow in a decellularized organ. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107595. [PMID: 37192592 DOI: 10.1016/j.cmpb.2023.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND OBJECTIVE In recellularization, cell-seeding efficiency refers to the uniform distribution of cells across the decellularized organ, which should be enhanced to ensure effective functioning. During cell seeding, flow dynamics influence the distribution of cells because the driving force of cell movement is the fluid force. However, after decellularization, because of flow permeability through the vessel wall, the fluid pressure and velocity in the vessels of vascular trees are significantly reduced compared with those in the native organ, which might affect cell seeding efficiency. Therefore, it is necessary to assess the flow characteristics in the vessels of decellularized organs to select appropriate seeding conditions. Although electrical analog models have been widely used to investigate the flow distribution in organs, current models do not reflect the permeable conditions. This study proposes a model to extend the conventional electrical analog model to simulate the flow characteristics in decellularized organs. METHODS A resistor reflecting permeable flow was added to the original electrical analog model to describe the permeable conditions in the decellularized organs. Decellularization and pressure drop measurements of the kidney were also conducted for model development, calibration, and validation. The developed model was then applied to a decellularized kidney to reveal changes in flow characteristics. RESULTS The resistance calculation of permeable flow was determined for each generation of vascular trees. The coefficient of permeability can be indicated by the measured flow exiting through the outlet or the pressure drop across the decellularized organ. The developed permeability model had a qualitative and quantitative agreement with the experimental data without calibration. The results of the permeability model for the decellularized kidney indicated significant reductions of up to 70% in the flow rate and pressure of the organ compared to the native kidney. CONCLUSIONS The developed model can simulate the flow characteristics in each individual vessel of decellularized organs. The results from the model can be used to assess the optimal flow rate condition for the cell seeding process.
Collapse
Affiliation(s)
- Van Lap Nguyen
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; Faculty of Mechanical Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam.
| | - Akari Misawa
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiromichi Obara
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Sauter J, Degenhardt H, Tuebel J, Foehr P, Knoeckel P, Florian K, Charitou F, Burgkart R, Schmitt A. Effect of different decellularization protocols on reendothelialization with human cells for a perfused renal bioscaffold of the rat. BMC Biotechnol 2023; 23:8. [PMID: 36927344 PMCID: PMC10022115 DOI: 10.1186/s12896-022-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Scaffolds for tissue engineering can be received by whole organ decellularization while maintaining the site-specific extracellular matrix and the vascular tree. One among other decellularization techniques is the perfusion-based method using specific agents e.g. SDS for the elimination of cellular components. While SDS can disrupt the composition of the extracellular matrix and impair the adherence and growth of site-specific cells there are indications that xenogeneic cell types may benefit from protein denaturation by using higher detergent concentrations. The aim of this work is to investigate the effect of two different SDS-concentrations (i.e. 0.66% and 3%) on the ability of human endothelial cells to adhere and proliferate in an acellular rat kidney scaffold. MATERIAL AND METHODS Acellular rat kidney scaffold was obtained by perfusion-based decellularization through the renal artery using a standardized protocol including SDS at concentrations of 0.66% or 3%. Subsequently cell seeding was performed with human immortalized endothelial cells EA.hy 926 via the renal artery. Recellularized kidneys were harvested after five days of pressure-controlled dynamic culture followed sectioning, histochemical and immunohistochemical staining as well as semiquantitative analysis. RESULTS Efficacy of decellularization was verified by absence of cellular components as well as preservation of ultrastructure and adhesive proteins of the extracellular matrix. In semiquantitative analysis of recellularization, cell count after five days of dynamic culture more than doubled when using the gentle decellularization protocol with a concentration of SDS at 0.66% compared to 3%. Detectable cells maintained their endothelial phenotype and presented proliferative behavior while only a negligible fraction underwent apoptosis. CONCLUSION Recellularization of acellular kidney scaffold with endothelial cells EA.hy 926 seeded through the renal artery benefits from gentle decellularization procedure. Because of that, decellularization with a SDS concentration at 0.66% should be preferred in further studies and coculture experiments.
Collapse
Affiliation(s)
- Johannes Sauter
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.,Department of Medicine II, LMU Klinikum München, Munich, Germany
| | - Hannes Degenhardt
- Division of Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jutta Tuebel
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter Foehr
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Kira Florian
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Fiona Charitou
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Rainer Burgkart
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.
| | - Andreas Schmitt
- Division of Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.,Orthopädisches Fachzentrum Weilheim, Weilheim, Germany
| |
Collapse
|
14
|
Ma H, Zheng L, Yang S, Cheng YY, Liu T, Wu S, Wang H, Zhang J, Song K. Construction and properties detection of 3D micro-structure scaffolds base on decellularized sheep kidney before and after crosslinking. J Biomater Appl 2023; 37:1593-1604. [PMID: 36919373 DOI: 10.1177/08853282231163758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Decellularized extracellular matrix is one form of natural material in tissue engineering. The process of dECM retains the tissue microstructure, provides good cell adhesion sites, maintains most of biological signals that promotes the survival and differentiation ability of cells. In this study, sheep kidney was decellularized followed by histochemical staining, elemental analysis and scanning electron microscopy characterizations. The dECM scaffold was prepared with different sequences of freeze drying technology, crosslinking and the water absorption, porosity, mechanical strength with subsequent thermogravimetric analysis, Infrared spectroscopy and biocompatibility tests. Our results indicated that these decellularized treatments of sheep kidney can effectively remove DNA and retain uniform pore size distribution. After crosslinking the scaffold's water absorption decreased from 987.56 ± 40.21% to 934.39 ± 39.61%, the porosity decreased from 89.64 ± 3.2% to 85.09 ± 17.63%, and the compression modulus increased from 304.32 ± 25.43 kPa to 459.53 ± 38.92 kPa, with thermal process the percentage of weight loss decreased from 66.57% to 44.731%, in addition, the composition didn't change significantly, crosslinking could also promote the stability. In terms of biocompatibility, the number of viable cells increased significantly with the days. In conclusion, the crosslinked decellularized sheep kidney extracellular matrix scaffold reduced water absorption and porosity slightly, but has a significant increase in mechanical properties, and presented excellent biocompatibility which are beneficial to cell adhesion, growth and differentiation.
Collapse
Affiliation(s)
- Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Le Zheng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Shuangjia Yang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, 1994University of Technology Sydney, Sydney, NSW, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Shuo Wu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, 12399Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Hongfei Wang
- Department of Orthopedics, 36674Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingying Zhang
- The Second Clinical Medical College, 12453Guangdong Medical University, Dongguan, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| |
Collapse
|
15
|
Numerical assessment of recellularization conditions to vessel occlusion. Biomech Model Mechanobiol 2023; 22:1035-1047. [PMID: 36922420 DOI: 10.1007/s10237-023-01699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/01/2023] [Indexed: 03/17/2023]
Abstract
To ensure the functional properties of an organ generated by the process of decellularization and recellularization, the initial density and distribution of seeding cells in the parenchymal space should be maximized. However, achieving a uniform distribution of cells across the entire organ is not straightforward because of vessel occlusion. This study assessed vessel occlusion during recellularization under different conditions. A combination of the electrical analog permeability (EPA) model, computational fluid dynamics (CFD), and discrete element method (DEM) was employed to describe the vessel occlusion phenomenon. In particular, realistic flow distributions in vascular trees of the decellularized organ were indicated by the EPA model. The cell suspension flow was modeled by a coupled CFD-DEM model, whereby living cells were presented as a discrete phase (solved by the DEM solver), and the culture medium was modeled as the fluid phase (solved by CFD solver). The cell suspension velocity was reduced up to 47% after decellularization, which directly affected cell movement. Simulation results also indicate that the occurrence of vessel occlusion was promoted by gravity direction in the asymmetric bifurcation and increased as the cell concentration increased. The assessment of vessel occlusion under different conditions was quantitatively investigated. The model provides insights into the dynamics of cells in the vessel compartment, allowing for the selection of optimum seeding parameters for the recellularization process.
Collapse
|
16
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
17
|
Groth T, Stegmayr BG, Ash SR, Kuchinka J, Wieringa FP, Fissell WH, Roy S. Wearable and implantable artificial kidney devices for end-stage kidney disease treatment-Current status and review. Artif Organs 2022; 47:649-666. [PMID: 36129158 DOI: 10.1111/aor.14396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major cause of early death worldwide. By 2030, 14.5 million people will have end-stage kidney disease (ESKD, or CKD stage 5), yet only 5.4 million will receive kidney replacement therapy (KRT) due to economic, social, and political factors. Even for those who are offered KRT by various means of dialysis, the life expectancy remains far too low. OBSERVATION Researchers from different fields of artificial organs collaborate to overcome the challenges of creating products such as Wearable and/or Implantable Artificial Kidneys capable of providing long-term effective physiologic kidney functions such as removal of uremic toxins, electrolyte homeostasis, and fluid regulation. A focus should be to develop easily accessible, safe, and inexpensive KRT options that enable a good quality of life and will also be available for patients in less-developed regions of the world. CONCLUSIONS Hence, it is required to discuss some of the limits and burdens of transplantation and different techniques of dialysis, including those performed at home. Furthermore, hurdles must be considered and overcome to develop wearable and implantable artificial kidney devices that can help to improve the quality of life and life expectancy of patients with CKD.
Collapse
Affiliation(s)
- Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,International Federation for Artificial Organs, Painesville, Ohio, USA
| | - Bernd G Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | | | - Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fokko P Wieringa
- IMEC, Eindhoven, The Netherlands.,Department of Nephrology, University Medical Centre, Utrecht, The Netherlands.,European Kidney Health Alliance, WG3 "Breakthrough Innovation", Brussels, Belgium
| | | | - Shuvo Roy
- University of California, California, San Francisco, USA
| |
Collapse
|
18
|
Du A, Liu D, Zhang W, Wang X, Chen S. Genipin-crosslinked decellularized scaffold induces regeneration of defective rat kidneys. J Biomater Appl 2022; 37:415-428. [DOI: 10.1177/08853282221104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: The purpose of this study was to improve the performance of decellularized renal scaffolds by the genipin crosslinking method to facilitate the regeneration of tissues and cells and provide better conditions for the regeneration and repair of defective kidneys. Methods: SD rats were randomly divided into three groups: normal group, uncrosslinked scaffold group and genipin-crosslinked scaffold group. Hematoxylin eosin, Masson and immunofluorescence staining was used to observe the histomorphological characteristics of the kidneys in each group. The preservation of the renal vascular structure in the three groups was observed by vascular casting. A collagenase degradation assay was used to detect the antidegradation ability of the kidney in the three groups. CCK8 assays were used to test the in vitro biocompatibility of the scaffolds. The lower 1/3 of the rat left kidney was excised, and the defect was filled with decellularized renal scaffolds to observe the effect of scaffold implantation on the regenerative ability of the defective kidney. Results: Histological images showed that the genipin-crosslinked scaffold did not destroy the structure of the scaffold, and the collagen fibers in the scaffold was more regular, and the outline of the glomerulus was clearer than uncrosslinked scaffold. The results of casting showed that the vascular structure of genipin-crosslinked scaffold was still intact. The anti-degradation ability test showed that the anti-degradation ability of genipin-crosslinked scaffold was significantly higher than that of the uncrosslinked scaffold. Cell culture experiments showed that the genipin-crosslinked scaffold had no cytotoxicity and promoted cell proliferation to some extent. In vivo scaffold transplantation experiments further demonstrated that the genipin-crosslinked scaffold had better anti-degradation and anti-inflammatory ability. Conclusion: Genipin-crosslinked rat kidney scaffold complemented kidney defects in rats can enhance scaffold-induced kidney regeneration and repair.
Collapse
Affiliation(s)
- Aoling Du
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- School of Basic Medicine, Xiangnan University, Chenzhou, China
| | - Wenhui Zhang
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| | | | - Shenghua Chen
- Institute of Clinical Anatomy & Reproductive Medicine, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Yang S, Zheng L, Chen Z, Jiao Z, Liu T, Nie Y, Kang Y, Pan B, Song K. Decellularized Pig Kidney with a Micro-Nano Secondary Structure Contributes to Tumor Progression in 3D Tumor Model. MATERIALS 2022; 15:ma15051935. [PMID: 35269166 PMCID: PMC8911967 DOI: 10.3390/ma15051935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
In spite of many anti-cancer drugs utilized in clinical treatment, cancer is still one of the diseases with the highest morbidity and mortality worldwide, owing to the complexity and heterogeneity of the tumor microenvironment. Compared with conventional 2D tumor models, 3D scaffolds could provide structures and a microenvironment which stimulate native tumor tissues more accurately. The extracellular matrix (ECM) is the main component of the cell in the microenvironment that is mainly composed of three-dimensional nanofibers, which can form nanoscale fiber networks, while the decellularized extracellular matrix (dECM) has been widely applied to engineered scaffolds. In this study, pig kidney was used as the source material to prepare dECM scaffolds. A chemical crosslinking method was used to improve the mechanical properties and other physical characteristics of the decellularized pig kidney-derived scaffold. Furthermore, a human breast cancer cell line (MCF-7) was used to further investigate the biocompatibility of the scaffold to fabricate a tumor model. The results showed that the existence of nanostructures in the scaffold plays an important role in cell adhesion, proliferation, and differentiation. Therefore, the pig kidney-derived matrix scaffold prepared by decellularization could provide more cell attachment sites, which is conducive to cell adhesion and proliferation, physiological activities, and tumor model construction.
Collapse
Affiliation(s)
- Shuangjia Yang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Le Zheng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zilong Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, College Station, Texas A&M University, Texas, TX 77843-3122, USA;
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| |
Collapse
|
20
|
Have we hit a wall with whole kidney decellularization and recellularization: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Hsu CY, Chi PL, Chen HY, Ou SH, Chou KJ, Fang HC, Chen CL, Huang CW, Ho TY, Lee PT. Kidney bioengineering by using decellularized kidney scaffold and renal progenitor cells. Tissue Cell 2021; 74:101699. [PMID: 34891081 DOI: 10.1016/j.tice.2021.101699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023]
Abstract
Patients with end-stage renal disease often need dialysis to maintain their lives because of donor organ shortage. The creation of a transplantable graft to permanently replace kidney function would overcome the organ shortage problem and the morbidity associated with immunosuppression. In the present study, we decellularized rat kidneys by the perfusion of detergent, yielding acellular scaffolds with the vascular, uretic, as well as cortical and medullary architecture. To regenerate the functional organ, we seeded tubular epithelial cells and mouse kidney progenitor cells from the ureter together with endothelial cells and mouse kidney progenitor cells from the renal artery. The renal constructs from seeded cells were cultured in a whole-organ bioreactor. After 3 months of organ culture, the seeded cells formed renal tubules, grew in the glomeruli, and some mouse kidney progenitor cells were also scattered in the interstitium. We tested the function of the bioengineered kidney with standardized perfusate in vitro. The bioengineered kidney not only produced urine but also reabsorbed albumin, glucose, and calcium. We conclude that seeded cell-based bioengineering of kidneys with physiological secreting and reabsorbing properties is possible and holds therapeutic promise.
Collapse
Affiliation(s)
- Chih-Yang Hsu
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Hsin-Yu Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Shih-Hsiang Ou
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Kang-Ju Chou
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Hua-Chang Fang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Chien-Liang Chen
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Chien-Wei Huang
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Tzung-Yo Ho
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Po-Tsang Lee
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, School of Medicine, National Yang Ming Chiao Tung University, Taiwan.
| |
Collapse
|
22
|
Shahraki S, Bideskan AE, Aslzare M, Tavakkoli M, Bahrami AR, Hosseinian S, Matin MM, Rad AK. Renal bioengineering with scaffolds prepared from discarded human kidneys by human mesenchymal stem cells. Life Sci 2021; 295:120167. [PMID: 34822795 DOI: 10.1016/j.lfs.2021.120167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
AIMS Regeneration of discarded human kidneys has been considered as an ideal approach to overcome organ shortage for the end-stage renal diseases (ESRDs). The aim of this study was to develop an effective method for preparation of kidney scaffolds that retain the matrix structure required for proliferation and importantly, differentiation of human adipose-derived mesenchymal stem cells (hAd-MSCs) into renal cells. MAIN METHODS we first compared two different methods using triton X-100 and sodium dodecyl sulfate (SDS) for human kidney decellularization; and characterized developed human renal extracellular matrix (ECM) scaffolds. Then, hAd-MSCs were seeded on human decellularized kidney scaffolds and cultured for up to 3 weeks. Next, viability, proliferation, and migration of seeded hAd-MSCs within the scaffolds, underwent histological and scanning electron microscopy (SEM) assessments. Moreover, differentiation of hAd-MSCs into kidney-specific cell types was examined using immunohistochemistry (IHC) staining and qRT-PCR. KEY FINDINGS Our results indicated that triton X-100 was a more effective detergent for decellularization of human kidneys compared with SDS. Moreover, attachment and proliferation of hAd-MSCs within the recellularized human kidney scaffolds, were confirmed. Seeded cells expressed epithelial and endothelial differentiation markers, and qRT-PCR results indicated increased expression of platelet and endothelial cell adhesion Molecule 1 (PECAM-1), paired box 2 (PAX2), and e-cadherine (E-CDH) as factors required for differentiation of hAd-MSCs into epithelial and endothelial cells. SIGNIFICANCE These observations indicate effectiveness of decellularization by triton X-100 to generate suitable human ECM renal scaffolds, which supported adhesion and proliferation of hAd-MSCs and could induce their differentiation towards a renal lineage.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Aslzare
- Urology and Nephrology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Tavakkoli
- Department of Urology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Nguyen VL, Obara H. Investigation of vessel occlusion during cell seeding process. Biomech Model Mechanobiol 2021; 20:2437-2450. [PMID: 34480225 DOI: 10.1007/s10237-021-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
The seeding of cells into an organ is an important step in cell therapy because the final functional properties of the organ are related to the initial cell distribution throughout the organ. However, vessel occlusion is a serious problem that prevents uniform distribution of the cells in the entire organ. Understanding the mechanism of vessel occlusion can help optimize the seeding process. In this study, the vessel occlusion phenomenon under perfusion conditions during cell seeding was investigated. First, we applied a microfluidic system that enabled the observation of the occlusion events during injection. Second, we applied a multiphase numerical model that can describe the cell-cell interactions and cell-fluid interactions to investigate the vessel occlusion phenomenon during the seeding process. In particular, the effects of cell concentration and flow rate were investigated. The results indicate the importance of cell-cell interactions and cell-vessel interactions for the occurrence of vessel occlusion. In addition, it is found that the probability of occurrence of vessel occlusion increases with the increase in cell concentration and decrease in flow rate. The simulation model can help determine the optimum parameters to enhance cell seeding efficiency.
Collapse
Affiliation(s)
- Van Lap Nguyen
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
- Faculty of Mechanical Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam.
| | - Hiromichi Obara
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
24
|
Decellularization of kidney tissue: comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat. Cell Tissue Res 2021; 386:365-378. [PMID: 34424397 DOI: 10.1007/s00441-021-03517-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
An automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis. Kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin, periodic acid Schiff, Masson's trichrome, and Alcian blue to determine cell removal and glycogen, collagen, and glycosaminoglycan contents, respectively. Moreover, scanning electron microscopy was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility of the decellularized scaffolds, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were seeded on the scaffolds. In addition, the allotransplantation was performed in back muscle and angiogenesis was evaluated. Complete cell removal in both SLES and SDS groups was observed in scanning electron microscopy and DNA quantification assays. Moreover, the extracellular matrix (ECM) architecture of rat kidney in the SLES group was significantly preserved better than the SDS group. The hUC-MSCs were successfully migrated from the cell culture plate surface into the SDS and SLES decellularized scaffolds. The formation of blood vessels was observed in the kidney in both SLES and SDS decellularized kidneys. The better preservation of ECM than SDS introduces SLES as the solvent of choice for kidney decellularization.
Collapse
|
25
|
Mallis P, Oikonomidis C, Dimou Z, Stavropoulos-Giokas C, Michalopoulos E, Katsimpoulas M. Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds. Tissue Eng Regen Med 2021; 18:623-640. [PMID: 34014553 PMCID: PMC8325734 DOI: 10.1007/s13770-021-00339-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society to seek alternative strategies, utilizing mostly the tissue engineering approaches. Unlike to perfusion decellularization of kidneys, we proposed alternative decellularization strategies to obtain acellular kidney scaffolds. The aim of this study was the evaluation of two different decellularization approaches for producing kidney bioscaffolds. METHODS Rat kidneys from Wistar rats, were submitted to decellularization, followed two different strategies. The decellularization solutions used in both approaches were the same and involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate and sodium dodecyl sulfate buffers for 12 h each, followed by incubation in a serum medium. Both approaches involved 3 decellularization cycles. Histological analysis, biochemical and DNA quantification were performed. Cytotoxicity assay and repopulation of acellular kidneys were also applied. RESULTS Histological, biochemical and DNA quantification confirmed that the 2nd approach had the best outcome regarding the kidney composition and cell elimination. Acellular kidneys from both approaches were successfully recellularized. CONCLUSION Based on the above data, the production of kidney scaffolds with the proposed cost- effective decellularization approaches, was efficient.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece.
| | - Charalampos Oikonomidis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| |
Collapse
|
26
|
Sobreiro‐Almeida R, Quinteira R, Neves NM. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv Healthc Mater 2021; 10:e2100160. [PMID: 34137210 DOI: 10.1002/adhm.202100160] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECM) are currently being studied as an alternative source for organ transplantation or as new solutions to treat kidney injuries, which can evolve to end-stage renal disease, a life devastating condition. This paper provides an overview on the current knowledge in kidney ECM and its usefulness on future investigations. The composition and structure of kidney ECM is herein associated with its intrinsic capacity of remodeling and repair after insult. Moreover, it provides a deeper insight on altered ECM components during disease. The use of decellularized kidney matrices is discussed in the second part of the review, with emphasis on how these matrices contribute to tissue-specific differentiation of embryonic, pluripotent, and other stem cells. The evolution on the field toward different uses of xenogeneic ECM as a biological scaffold material is discussed, namely the major outcomes on whole kidney recellularization and its in vivo implantation. At last, the recent literature on the use of processed kidney decellularized ECM to produce diverse biomaterial substrates, such as hydrogels, membranes, and bioinks are reviewed, with emphasis on future perspectives of its translation into the clinic.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Quinteira
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
27
|
Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ-Level Functional 3D Tissue Constructs with Complex Compartments and their Preclinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002096. [PMID: 33103834 DOI: 10.1002/adma.202002096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
There is an increasing interest in organ-level 3D tissue constructs, owing to their mirroring of in vivo-like features. This has resulted in a wide range of preclinical applications to obtain cell- or tissue-specific responses. Additionally, the development and improvement of sophisticated technologies, such as organoid generation, microfluidics, hydrogel engineering, and 3D printing, have enhanced 3D tissue constructs to become more elaborate. In particular, recent studies have focused on including complex compartments, i.e., vascular and innervation structured 3D tissue constructs, which mimic the nature of the human body in that all tissues/organs are interconnected and physiological phenomena are mediated through vascular and neural systems. Here, the strategies are categorized according to the number of dimensions (0D, 1D, 2D, and 3D) of the starting materials for scaling up, and novel approaches to introduce increased complexity in 3D tissue constructs are highlighted. Recent advances in preclinical applications are also investigated to gain insight into the future direction of 3D tissue construct research. Overcoming the challenges in improving organ-level functional 3D tissue constructs both in vitro and in vivo will ultimately become a life-saving tool in the biomedical field.
Collapse
Affiliation(s)
- Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yoojin Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
28
|
Decellularization and Recellularization of Rabbit Kidney Using Adipose-Derived Mesenchymal Stem Cells for Renal Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Zoccali C, Blankestijn PJ, Bruchfeld A, Capasso G, Fliser D, Fouque D, Goumenos D, Massy Z, Rychlık I, Soler MJ, Stevens K, Spasovski G, Wanner C. The nephrology crystal ball: the medium-term future. Nephrol Dial Transplant 2020; 35:222-226. [PMID: 31598700 DOI: 10.1093/ndt/gfz199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
In January 2019, the ERA-EDTA surveyed nephrologists with questions on kidney care and kidney research designed to explore comprehension of the impact of alterations to organization of renal care and of advancements in technology and knowledge of kidney disease. Eight hundred and twenty-five ERA-EDTA members, ∼13% of the whole ERA-EDTA membership, replied to an ad hoc questionnaire. More than half of the respondents argued that kidney centres will be increasingly owned by large dialysis providers, nearly a quarter of respondents felt that many medical aspects of dialysis will be increasingly overseen by non-nephrologists and a quarter (24%) also believed that the care and long-term follow-up of kidney transplant patients will be increasingly under the responsibility of transplant physicians caring for patients with any organ transplant. Nearly half of the participants (45%, n = 367) use fully electronic clinical files integrating the clinical ward, the outpatient clinics, the haemodialysis and peritoneal dialysis units, as well as transplantation. Smartphone-based self-management programmes for the care of chronic kidney disease (CKD) patients are scarcely applied (only 11% of surveyed nephrologists), but a substantial proportion of respondents (74%) are eager to know more about the potential usefulness of these apps. Finally, European nephrologists expressed a cautious optimism about the application of omic sciences to nephrology and on wearable and implantable kidneys, but their expectations for the medium term are limited.
Collapse
Affiliation(s)
| | - Peter J Blankestijn
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - Annette Bruchfeld
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Giovambattista Capasso
- Department of Traslational Medical Sciences, University Campania 'Luigi Vanvitelli', Naples, Italy
| | - Danilo Fliser
- Internal Medicine IV, Renal and Hypertensive Disease, University Medical Center, Homburg/Saar, Germany
| | - Denis Fouque
- Department of Nephrology, Dialysis, Nutrition, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex, France
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Ziad Massy
- Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France West University (UVSQ), Villejuif, France
| | - Ivan Rychlık
- 1st Department of Internal Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Maria J Soler
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Kate Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University of Skopje, Skopje, Northern Republic of Macedonia
| | - Christoph Wanner
- Division of Nephrology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Bombelli S, Meregalli C, Grasselli C, Bolognesi MM, Bruno A, Eriani S, Torsello B, De Marco S, Bernasconi DP, Zucchini N, Mazzola P, Bianchi C, Grasso M, Albini A, Cattoretti G, Perego RA. PKH high/CD133+/CD24- Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency. Cells 2020; 9:cells9081805. [PMID: 32751333 PMCID: PMC7465083 DOI: 10.3390/cells9081805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism upon which human kidneys undergo regeneration is debated, though different lineage-tracing mouse models have tried to explain the cellular types and the mechanisms involved. Different sources of human renal progenitors have been proposed, but it is difficult to argue whether these populations have the same capacities that have been described in mice. Using the nephrosphere (NS) model, we isolated the quiescent population of adult human renal stem-like PKHhigh/CD133+/CD24− cells (RSC). The aim of this study was to deepen the RSC in vitro multipotency capacity. RSC, not expressing endothelial markers, generated secondary nephrospheres containing CD31+/vWf+ cells and cytokeratin positive cells, indicating the coexistence of endothelial and epithelial commitment. RSC cultured on decellularized human renal scaffolds generated endothelial structures together with the proximal and distal tubular structures. CD31+ endothelial committed progenitors sorted from nephrospheres generated spheroids with endothelial-like sprouts in Matrigel. We also demonstrated the double commitment toward endothelial and epithelial lineages of single RSC. The ability of the plastic RSC population to recapitulate the development of tubular epithelial and endothelial renal lineages makes these cells a good tool for the creation of organoids with translational relevance for studying the parenchymal and endothelial cell interactions and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Correspondence: (R.A.P.); (S.B.); Tel.: +39-02-6448-8303 (R.A.P.); +39-02-6448-8326 (S.B.)
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Chiara Grasselli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Maddalena M. Bolognesi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | | | - Stefano Eriani
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Davide P. Bernasconi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Nicola Zucchini
- Pathology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Paolo Mazzola
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Geriatric Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Marco Grasso
- Urology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Adriana Albini
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Giorgio Cattoretti
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Pathology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Roberto A. Perego
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Correspondence: (R.A.P.); (S.B.); Tel.: +39-02-6448-8303 (R.A.P.); +39-02-6448-8326 (S.B.)
| |
Collapse
|
31
|
Peired AJ, Mazzinghi B, De Chiara L, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther 2020; 20:467-480. [DOI: 10.1080/14712598.2020.1709439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Letizia De Chiara
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesco Guzzi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Kidney regeneration approaches for translation. World J Urol 2019; 38:2075-2079. [PMID: 31696256 DOI: 10.1007/s00345-019-02999-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.
Collapse
|
33
|
Extracellular matrix-based hydrogels obtained from human tissues: a work still in progress. Curr Opin Organ Transplant 2019; 24:604-612. [DOI: 10.1097/mot.0000000000000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Abstract
The worldwide increase in the number of patients with end-stage renal disease leads to a growing waiting list for kidney transplantation resulting from the scarcity of kidney donors. Therefore, alternative treatment options for patients with end-stage renal disease are being sought. In vitro differentiation of stem cells into renal tissue is a promising approach to repair nonfunctional kidney tissue. Impressive headway has been made in the use of stem cells with the use of adult renal progenitor cells, embryonic stem cells, and induced pluripotent stem cells for the development toward primitive kidney structures. Currently, efforts are directed at improving long-term maintenance and stability of the cells. This review aims to provide a comprehensive overview of the cell sources used for the generation of kidney cells and strategies used for transplantation in in vivo models. Furthermore, it provides a perspective on stability and safety during future clinical application of in vitro generated kidney cells.
Collapse
|
35
|
Ciampi O, Bonandrini B, Derosas M, Conti S, Rizzo P, Benedetti V, Figliuzzi M, Remuzzi A, Benigni A, Remuzzi G, Tomasoni S. Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Sci Rep 2019; 9:8001. [PMID: 31142801 PMCID: PMC6541625 DOI: 10.1038/s41598-019-44393-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/15/2019] [Indexed: 01/18/2023] Open
Abstract
Generating new kidneys using tissue engineering technologies is an innovative strategy for overcoming the shortage of donor organs for transplantation. Here we report how to efficiently engineer the kidney vasculature of decellularized rat kidney scaffolds by using human induced pluripotent stem cell (hiPSCs)-derived endothelial cells (hiPSC-ECs). In vitro, hiPSC-ECs responded to flow stress by acquiring an alignment orientation, and attached to and proliferated on the acellular kidney sections, maintaining their phenotype. The hiPSC-ECs were able to self-organize into chimeric kidney organoids to form vessel-like structures. Ex vivo infusion of hiPSC-ECs through the renal artery and vein of acellular kidneys resulted in the uniform distribution of the cells in all the vasculature compartments, from glomerular capillaries to peritubular capillaries and small vessels. Ultrastructural analysis of repopulated scaffolds through transmission and scanning electron microscopy demonstrated the presence of continuously distributed cells along the vessel wall, which was also confirmed by 3D reconstruction of z-stack images showing the continuity of endothelial cell coverage inside the vessels. Notably, the detection of fenestrae in the endothelium of glomerular capillaries but not in the vascular capillaries was clear evidence of site-specific endothelial cell specialisation.
Collapse
Affiliation(s)
- Osele Ciampi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Barbara Bonandrini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy.,Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, 20133, Milan, Italy
| | - Manuela Derosas
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Paola Rizzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Valentina Benedetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Marina Figliuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Industrial Engineering, Bergamo University, 24044, Dalmine, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, 20122, Milan, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126, Bergamo, Italy.
| |
Collapse
|
36
|
Mesenchymal Stem Cells-Potential Applications in Kidney Diseases. Int J Mol Sci 2019; 20:ijms20102462. [PMID: 31109047 PMCID: PMC6566143 DOI: 10.3390/ijms20102462] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells constitute a pool of cells present throughout the lifetime in numerous niches, characteristic of unlimited replication potential and the ability to differentiate into mature cells of mesodermal tissues in vitro. The therapeutic potential of these cells is, however, primarily associated with their capabilities of inhibiting inflammation and initiating tissue regeneration. Owing to these properties, mesenchymal stem cells (derived from the bone marrow, subcutaneous adipose tissue, and increasingly urine) are the subject of research in the settings of kidney diseases in which inflammation plays the key role. The most advanced studies, with the first clinical trials, apply to ischemic acute kidney injury, renal transplantation, lupus and diabetic nephropathies, in which beneficial clinical effects of cells themselves, as well as their culture medium, were observed. The study findings imply that mesenchymal stem cells act predominantly through secreted factors, including, above all, microRNAs contained within extracellular vesicles. Research over the coming years will focus on this secretome as a possible therapeutic agent void of the potential carcinogenicity of the cells.
Collapse
|
37
|
Leuning DG, Witjas FMR, Maanaoui M, de Graaf AMA, Lievers E, Geuens T, Avramut CM, Wiersma LE, van den Berg CW, Sol WMPJ, de Boer H, Wang G, LaPointe VLS, van der Vlag J, van Kooten C, van den Berg BM, Little MH, Engelse MA, Rabelink TJ. Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium. Am J Transplant 2019; 19:1328-1343. [PMID: 30506641 PMCID: PMC6590331 DOI: 10.1111/ajt.15200] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023]
Abstract
The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans. Based on the presence of preserved glycosoaminoglycans within the decelullarized kidney scaffold, we show improved localization of delivered endothelial cells after preloading of the vascular matrix with vascular endothelial growth factor and angiopoietin 1. Using a novel simultaneous arteriovenous delivery system, we report the complete re-endothelialization of the kidney vasculature, including the glomerular and peritubular capillaries, using human inducible pluripotent stem cell -derived endothelial cells. Using this source of endothelial cells, it was possible to generate sufficient endothelial cells to recellularize an entire human kidney scaffold, achieving efficient cell delivery, adherence, and endothelial cell proliferation and survival. Moreover, human re-endothelialized scaffold could, in contrast to the non-re-endothelialized human scaffold, be fully perfused with whole blood. These major advances move the field closer to a human bioengineered kidney.
Collapse
Affiliation(s)
- Daniëlle G. Leuning
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Franca M. R. Witjas
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Mehdi Maanaoui
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands,Nephrology DepartmentUniversity of LilleCHU LilleF‐59000LilleFrance
| | | | - Ellen Lievers
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology–Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Christina M. Avramut
- Department of Molecular Cell BiologySection Electron MicroscopyLeiden University Medical CenterLeidenThe Netherlands
| | - Loes E. Wiersma
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Wendy M. P. J. Sol
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Hetty de Boer
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Gangqi Wang
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Vanessa L. S. LaPointe
- MERLN Institute for Technology–Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Johan van der Vlag
- Department of NephrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Cees van Kooten
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Melissa H. Little
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands,Murdoch Childrens Research InstituteMelbourneAustralia,Department of PediatricsThe University of MelbourneMelbourneAustralia
| | - Marten A. Engelse
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ton J. Rabelink
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
38
|
Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation 2019; 103:237-249. [DOI: 10.1097/tp.0000000000002370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
40
|
Recapitulating kidney development: Progress and challenges. Semin Cell Dev Biol 2018; 91:153-168. [PMID: 30184476 DOI: 10.1016/j.semcdb.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Decades of research into the molecular and cellular regulation of kidney morphogenesis in rodent models, particularly the mouse, has provided both an atlas of the mammalian kidney and a roadmap for recreating kidney cell types with potential applications for the treatment of kidney disease. With advances in both our capacity to maintain nephron progenitors in culture, reprogram to kidney cell types and direct the differentiation of human pluripotent stem cells to kidney endpoints, renal regeneration via cellular therapy or tissue engineering may be possible. Human kidney models also have potential for disease modelling and drug screening. Such applications will rely upon the accuracy of the model at the cellular level and the capacity for stem-cell derived kidney tissue to recapitulate both normal and diseased kidney tissue. In this review, we will discuss the available cell sources, how well they model the human kidney and how far we are from application either as models or for tissue engineering.
Collapse
|
41
|
Burton TP, Callanan A. A Non-woven Path: Electrospun Poly(lactic acid) Scaffolds for Kidney Tissue Engineering. Tissue Eng Regen Med 2018; 15:301-310. [PMID: 30603555 PMCID: PMC6171675 DOI: 10.1007/s13770-017-0107-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multi-population of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.
Collapse
Affiliation(s)
- Todd P. Burton
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| | - Anthony Callanan
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| |
Collapse
|
42
|
Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017. Cytotherapy 2018; 20:461-476. [PMID: 29398624 DOI: 10.1016/j.jcyt.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
Collapse
|
43
|
Solez K, Fung KC, Saliba KA, Sheldon VLC, Petrosyan A, Perin L, Burdick JF, Fissell WH, Demetris AJ, Cornell LD. The bridge between transplantation and regenerative medicine: Beginning a new Banff classification of tissue engineering pathology. Am J Transplant 2018; 18:321-327. [PMID: 29194964 PMCID: PMC5817246 DOI: 10.1111/ajt.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
Abstract
The science of regenerative medicine is arguably older than transplantation-the first major textbook was published in 1901-and a major regenerative medicine meeting took place in 1988, three years before the first Banff transplant pathology meeting. However, the subject of regenerative medicine/tissue engineering pathology has never received focused attention. Defining and classifying tissue engineering pathology is long overdue. In the next decades, the field of transplantation will enlarge at least tenfold, through a hybrid of tissue engineering combined with existing approaches to lessening the organ shortage. Gradually, transplantation pathologists will become tissue-(re-) engineering pathologists with enhanced skill sets to address concerns involving the use of bioengineered organs. We outline ways of categorizing abnormalities in tissue-engineered organs through traditional light microscopy or other modalities including biomarkers. We propose creating a new Banff classification of tissue engineering pathology to standardize and assess de novo bioengineered solid organs transplantable success in vivo. We recommend constructing a framework for a classification of tissue engineering pathology now with interdisciplinary consensus discussions to further develop and finalize the classification at future Banff Transplant Pathology meetings, in collaboration with the human cell atlas project. A possible nosology of pathologic abnormalities in tissue-engineered organs is suggested.
Collapse
Affiliation(s)
- K. Solez
- Department of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - K. C. Fung
- Department of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - K. A. Saliba
- Department of Laboratory Medicine and PathologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - V. L. C. Sheldon
- Medical Anthropology ProgramDepartment of AnthropologyFaculty of Arts and SciencesUniversity of TorontoTorontoOntarioCanada
| | - A. Petrosyan
- Division of Urology GOFARR Laboratory for Organ Regenerative Research and Cell TherapeuticsChildren's Hospital Los AngelesSaban Research InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - L. Perin
- Division of Urology GOFARR Laboratory for Organ Regenerative Research and Cell TherapeuticsChildren's Hospital Los AngelesSaban Research InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - J. F. Burdick
- Department of SurgeryJohns Hopkins School of MedicineBaltimoreMDUSA
| | - W. H. Fissell
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - A. J. Demetris
- Department of PathologyUniversity of PittsburghUPMC‐MontefiorePittsburghPAUSA
| | - L. D. Cornell
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| |
Collapse
|
44
|
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater 2017; 13:015006. [PMID: 29165317 DOI: 10.1088/1748-605x/aa8dde] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a pressing need for further advancement in tissue engineering of functional organs with a view to providing a more clinically relevant model for drug development and reduce the dependence on organ donation. Polymer-based scaffolds, such as polycaprolactone (PCL), have been highlighted as a potential avenue for tissue engineered kidneys, but there is little investigation down this stream. Focus within kidney tissue engineering has been on two-dimensional cell culture and decellularised tissue. Electrospun polymer scaffolds can be created with a variety of fibre diameters and have shown a great potential in many areas. The variation in morphology of tissue engineering scaffold has been shown to effect the way cells behave and integrate. In this study we examined the cellular response to scaffold architecture of novel electrospun scaffold for kidney tissue engineering. Fibre diameters of 1.10 ± 0.16 μm and 4.49 ± 0.47 μm were used with three distinct scaffold architectures. Traditional random fibres were spun onto a mandrel rotating at 250 rpm, aligned at 1800 rpm with novel cryogenic fibres spun onto a mandrel loaded with dry ice rotating at 250 rpm. Human kidney epithelial cells were grown for 1 and 2 weeks. Fibre morphology had no effect of cell viability in scaffolds with a large fibre diameter but significant differences were seen in smaller fibres. Fibre diameter had a significant effect in aligned and cryogenic scaffold. Imaging detailed the differences in cell attachment due to scaffold differences. These results show that architecture of the scaffold has a profound effect on kidney cells; whether that is effects of fibre diameter on the cell attachment and viability or the effect of fibre arrangement on the distribution of cells and their alignment with fibres. Results demonstrate that PCL scaffolds have the capability to maintain kidney cells life and should be investigated further as a potential scaffold in kidney tissue engineering.
Collapse
Affiliation(s)
- Todd P Burton
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | | | |
Collapse
|
45
|
Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 2017; 15:e326-e333. [PMID: 29131298 DOI: 10.5301/jabfm.5000393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Renal transplantation is currently the most effective treatment for end-stage renal disease, which represents one of the major current public health problems. However, the number of available donor kidneys is drastically insufficient to meet the demand, causing prolonged waiting lists. For this reason, tissue engineering offers great potential to increase the pool of donated organs for kidney transplantation, by way of seeding cells on supporting scaffolding material. Biological scaffolds are prepared by removing cellular components from the donor organs using a decellularization process with detergents, enzymes or other cell lysing solutions. Extracellular matrix which makes up the scaffold is critical to directing the cell attachment and to creating a suitable environment for cell survival, proliferation and differentiation. Researchers are now studying whole intact scaffolds produced from the kidneys of animals or humans without adversely affecting extracellular matrix, biological activity and mechanical integrity. The process of recellularization includes cell seeding strategies and the choice of the cell source to repopulate the scaffold. This is the most difficult phase, due to the complexity of the kidney. Indeed, no studies have provided sufficient results of complete renal scaffold repopulation and differentiation. This review summarizes the research that has been conducted to obtain decellularized kidney scaffolds and to repopulate the scaffolds, evaluating the best cell sources, the cell seeding methods and the cell differentiation in kidney scaffolds.
Collapse
|
46
|
Abstract
OBJECTIVE During the last decade, face allotransplantation has been shown to be a revolutionary reconstructive procedure for severe disfigurements. However, offer to patients remains limited due to lifelong immunosuppression. To move forward in the field, a new pathway in tissue engineering is proposed. BACKGROUND Our previously reported technique of matrix production of a porcine auricular subunit graft has been translated to a human face model. METHODS 5 partial and 1 total face grafts were procured from human fresh cadavers. After arterial cannulation, the specimens were perfused using a combined detergent/polar solvent decellularization protocol. Preservation of vascular patency was assessed by imaging, cell and antigen removal by DNA quantification and histology. The main extracellular matrix proteins and associated cytokines were evaluated. Lip scaffolds were cultivated with dermal, muscle progenitor and endothelial cells, either on discs or in a bioreactor. RESULTS Decellularization was successful in all facial grafts within 12 days revealing acellular scaffolds with full preservation of innate morphology. Imaging demonstrated a preservation of the entire vascular tree patency. Removal of cells and antigens was confirmed by reduction of DNA and antigen markers negativation. Microscopic evaluation revealed preservation of tissue structures as well as of major proteins. Seeded cells were viable and well distributed within all scaffolds. CONCLUSIONS Complex acellular facial scaffolds were obtained, preserving simultaneously a cell-friendly extracellular matrix and a perfusable vascular tree. This step will enable further engineering of postmortem facial grafts, thereby offering new perspectives in composite tissue allotransplantation.
Collapse
|