1
|
Thuy Linh H, Nakade Y, Wada T, Iwata Y. The Potential Mechanism of D-Amino Acids - Mitochondria Axis in the Progression of Diabetic Kidney Disease. Kidney Int Rep 2025; 10:343-354. [PMID: 39990887 PMCID: PMC11843130 DOI: 10.1016/j.ekir.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and stands out as the leading cause of end-stage renal disease worldwide. There is increasing evidence that mitochondrial dysfunction, including impaired mitochondrial biogenesis, dynamics, and oxidative stress, contributes to the development and progression of DKD. D-amino acids (D-AAs), which are enantiomers of L-AAs, have recently been detected in various living organisms and are acknowledged to play important roles in numerous physiological processes in the human body. Accumulating evidence demonstrates that D-AA levels in blood or urine could serve as useful biomarkers for reflecting renal function. The physiological roles of D-AAs are implicated in the regulation of cellular proliferation, oxidative stress, generation of reactive oxygen species (ROS), and innate immunity. This article reviews current evidence relating to D-AAs and mitochondrial dysfunction and proposes a potential interaction and contribution of the D-AAs-mitochondria axis in DKD pathophysiology and progression. This insight could provide novel therapeutic approaches for preventing or ameliorating DKD based on this biological axis.
Collapse
Affiliation(s)
- Hoang Thuy Linh
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yusuke Nakade
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
- Department of Clinical Laboratory, Kanazawa University, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| |
Collapse
|
2
|
Pandey R, Tiziani S. Advances in Chiral Metabolomic Profiling and Biomarker Discovery. Methods Mol Biol 2025; 2855:85-101. [PMID: 39354302 DOI: 10.1007/978-1-0716-4116-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Chiral metabolomics entails the enantioselective measurement of the metabolome present in a biological system. Over recent years, it has garnered significant interest for its potential in discovering disease biomarkers and aiding clinical diagnostics. D-Amino acids and D-hydroxy acids, traditionally overlooked as unnatural, are now emerging as novel signaling molecules and potential biomarkers for a range of metabolic disorders, brain diseases, kidney disease, diabetes, and cancer. Despite their significance, simultaneous measurements of multiple classes of chiral metabolites in a biological system remain challenging. Hence, limited information is available regarding the metabolic pathways responsible for synthesizing D-amino/hydroxy acid and their associated pathophysiological mechanisms in various diseases. Capitalizing on recent advancements in sensitive analytical techniques, researchers have developed various targeted chiral metabolomic methods for the analysis of chiral biomarkers. Here, we highlight the pivotal role of chiral metabolic profiling studies in disease diagnosis, prognosis, and therapeutic interventions. Furthermore, we describe cutting-edge chromatographic and mass spectrometry methods that enable enantioselective analysis of chiral metabolites. These advanced techniques are instrumental in unraveling the complexities of disease biomarkers, contributing to the ongoing efforts in disease biomarker discovery.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Dell Medical School; LIVESTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Sun Y, Hu Q, Zuo J, Wang H, Guo Z, Wang Y, Tang H. Simultaneous Quantification of Carboxylate Enantiomers in Multiple Human Matrices with the Hydrazide-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2024; 96:18141-18149. [PMID: 39475527 DOI: 10.1021/acs.analchem.4c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Many chiral carboxylic acids with α-amino, α-hydroxyl, and α-methyl groups are concurrently present in mammals establishing unique molecular phenotypes and multiple biological functions, especially host-microbiota symbiotic interactions. Their chirality-resolved simultaneous quantification is essential to reveal the biochemical details of physiology and pathophysiology, though challenging with their low abundances in some biological matrices and difficulty in enantiomer resolution. Here, we developed a method of the chirality-resolved metabolomics with sensitivity-enhanced quantitation via probe-promotion (Met-SeqPro) for analyzing these chiral carboxylic acids. We designed and synthesized a hydrazide-based novel chiral probe, (S)-benzoyl-proline-hydrazide (SBPH), to convert carboxylic acids into amide diastereomers to enhance their retention and chiral resolution on common C18 columns. Using the d5-SBPH-labeled enantiomers as internal standards, we then developed an optimized ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantification of 60 enantiomers of 30 chiral carboxylic acids in one run. This enantiomer-resolved method showed excellent sensitivity (LOD < 4 fmol-on-column), linearity (R2 > 0.992), precision (CV < 15%), accuracy (|RE| < 20%), and recovery (80-120%) in multiple biological matrices. With the method, we then quantified 60 chiral carboxylic acids in human urine, plasma, feces, and A549 cells to define their metabolomic phenotypes. This provides basic data for human phenomics and a promising tool for investigating the mammal-microbiome symbiotic interactions.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiali Zuo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhendong Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Monselise EBI, Vyazmensky M, Scherf T, Batushansky A, Fishov I. D-Glutamate production by stressed Escherichia coli gives a clue for the hypothetical induction mechanism of the ALS disease. Sci Rep 2024; 14:18247. [PMID: 39107374 PMCID: PMC11303787 DOI: 10.1038/s41598-024-68645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using NMR and LC-MS techniques, we found for the first time that D-glutamate accumulated in the stressed bacteria but not in control cells. These results together with the existing knowledge, allow us to suggest a new insight into the pathway of ALS development: D-glutamate, produced by the stressed microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. Proving this insight may have great importance in preventive medicine of such MND modern-age diseases as ALS, Alzheimer, and Parkinson.
Collapse
Affiliation(s)
- Edna Ben-Izhak Monselise
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| | - Maria Vyazmensky
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel
| | - Tali Scherf
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Campus, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Mishra N, Gutheil WG. Stereoselective Amine-omics Using Heavy Atom Isotope Labeled l- and d-Marfey's Reagents. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1217-1226. [PMID: 38683793 PMCID: PMC11160435 DOI: 10.1021/jasms.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Biological amines and amino acids play essential roles in many biochemical processes. The chemical complexity of biological samples is challenging, and the selective identification and quantification of amines and amino acid stereoisomers would be very useful for amine-focused "amino-omics" studies. Many amines and amino acids are chiral, and their stereoisomers cannot be resolved on achiral media without chiral derivatization. In prior studies, we demonstrated the use of Marfey's reagent─a chiral derivatization reagent for amines and phenolic OH groups─for the LC-MS/MS resolution and quantification of amines and amino acid stereoisomers. In this study, a heavy atom isotope labeled Marfey's reagent approach for the stereoselective detection and quantification of amines and amino acids was developed. Heavy (13C2) l-Marfey's (Hl-Mar) and heavy (2H3) d-Marfey's (Hd-Mar) were synthesized from 13C2-l-Ala and 2H3-d-Ala, respectively. Both light and heavy Marfey's reagents were used to derivatize standard amine mixtures, which were analyzed by LC-QToF-HRMS. Aligned peak lists were comparatively analyzed by light vs heavy Mar mass differences to identify mono-, di-, and tri-Marfey's adducts and then by the retention time difference between l- and d-Mar derivatives to identify stereoisomers. This approach was then applied to identify achiral and chiral amine and amino acid components in a methicillin-resistant Staphylococcus aureus (MRSA) extract. This approach shows high analytical selectivity and reproducibility.
Collapse
Affiliation(s)
- Nitish
R. Mishra
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| | - William G. Gutheil
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| |
Collapse
|
6
|
Ishii C, Akita T, Kimura T, Sakai S, Mita M, Ide T, Isaka Y, Hamase K. Evaluation of Individual Variation of d-Amino Acids in Human Plasma by a Two-Dimensional LC-MS/MS System and Application to the Early Diagnosis of Chronic Kidney Disease. Anal Chem 2024; 96:4876-4883. [PMID: 38477306 DOI: 10.1021/acs.analchem.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
For the discovery of sensitive biomarkers of kidney function focusing on chiral amino acids, a multiple heart-cutting two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS system has been designed/developed. As the target analytes, alanine (Ala), aspartic acid, glutamic acid (Glu), leucine (Leu), lysine, methionine, phenylalanine (Phe), proline (Pro), serine (Ser), and valine were selected considering the presence of their d-forms in mammals. The 2D LC-MS/MS system consisted of the nonenantioselective reversed-phase separation of the target amino acids, the separations of the d- and l-enantiomers, and detection using MS/MS. Using the method, the plasma chiral amino acids, precolumn derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole, were isolated from other intrinsic substances, then determined without losing sensitivity by the fully automated whole-peak volume transfer operation from first to second dimension. In all of the tested plasma samples obtained from five healthy individuals and 15 patients with chronic kidney disease (CKD), the target chiral amino acids were determined without interference. In healthy individuals, the levels of all the tested d-amino acids were regulated in the low ranges. In contrast, the % d values of Glu, Leu, and Phe significantly increased with the progress of kidney dysfunction, besides the previously reported values of d-Ala, Pro, and Ser. Concerning Phe, the significant increase of the % d values (p < 0.05) was reported for the first time even in the mild CKD group compared to those of the healthy group; d-Phe might be a more sensitive marker than the previously reported d-forms. These results demonstrated the potential of these d-forms as the sensitive biomarkers of kidney function for the early diagnosis of CKD.
Collapse
Affiliation(s)
- Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomonori Kimura
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Sakai
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masashi Mita
- KAGAMI, Inc., 7-7-15 Saito-asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tomomi Ide
- Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshitaka Isaka
- Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
8
|
Pioppi L, Parvan R, Samrend A, Silva GJJ, Paolantoni M, Sassi P, Cataliotti A. Vibrational spectroscopy identifies myocardial chemical modifications in heart failure with preserved ejection fraction. J Transl Med 2023; 21:617. [PMID: 37697391 PMCID: PMC10496315 DOI: 10.1186/s12967-023-04465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Vibrational spectroscopy can be a valuable tool to monitor the markers of cardiovascular diseases. In the present work, we explored the vibrational spectroscopy characteristics of the cardiac tissue in an experimental model of heart failure with preserved ejection fraction (HFpEF). The goal was to detect early cardiac chemical modifications associated with the development of HFpEF. METHODS We used the Fourier-transform infrared (FTIR) and Raman micro-spectroscopic techniques to provide complementary and objective tools for the histological assessment of heart tissues from an animal model of HFpEF. A new sampling technique was adopted (tissue print on a CaF2 disk) to characterize the extracellular matrix. RESULTS Several spectroscopic markers (lipids, carbohydrates, and glutamate bands) were recognized in the cardiac ventricles due to the comorbidities associated with the pathology, such as obesity and diabetes. Besides, abnormal collagen cross-linking and a decrease in tryptophan content were observed and related to the stiffening of ventricles and to the inflammatory state which is a favourable condition for HFpEF. CONCLUSIONS By the analyses of tissues and tissue prints, FTIR and Raman techniques were shown to be highly sensitive and selective in detecting changes in the chemistry of the heart in experimental HFpEF and its related comorbidities. Vibrational spectroscopy is a new approach that can identify novel biomarkers for early detection of HFpEF.
Collapse
Affiliation(s)
- Leonardo Pioppi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Reza Parvan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alan Samrend
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo Jose Justo Silva
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
10
|
Bahnamiri MM, Roller RJ. DISTINCT ROLES OF VIRAL US3 AND UL13 PROTEIN KINASES IN HERPES VIRUS SIMPLEX TYPE 1 (HSV-1) NUCLEAR EGRESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533584. [PMID: 36993506 PMCID: PMC10055267 DOI: 10.1101/2023.03.20.533584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Herpesviruses transport nucleocapsids from the nucleus to the cytoplasm by capsid envelopment into the inner nuclear membrane and de-envelopment from the outer nuclear membrane, a process that is coordinated by nuclear egress complex (NEC) proteins, pUL34, and pUL31. Both pUL31 and pUL34 are phosphorylated by the virus-encoded protein kinase, pUS3, and phosphorylation of pUL31 regulates NEC localization at the nuclear rim. pUS3 also controls apoptosis and many other viral and cellular functions in addition to nuclear egress, and the regulation of these various activities in infected cells is not well understood. It has been previously proposed that pUS3 activity is selectively regulated by another viral protein kinase, pUL13 such that its activity in nuclear egress is pUL13-dependent, but apoptosis regulation is not, suggesting that pUL13 might regulate pUS3 activity on specific substrates. We compared HSV-1 UL13 kinase-dead and US3 kinase-dead mutant infections and found that pUL13 kinase activity does not regulate the substrate choice of pUS3 in any defined classes of pUS3 substrates and that pUL13 kinase activity is not important for promoting de-envelopment during nuclear egress. We also find that mutation of all pUL13 phosphorylation motifs in pUS3, individually or in aggregate, does not affect the localization of the NEC, suggesting that pUL13 regulates NEC localization independent of pUS3. Finally, we show that pUL13 co-localizes with pUL31 inside the nucleus in large aggregates, further suggesting a direct effect of pUL13 on the NEC and suggesting a novel mechanism for both UL31 and UL13 in the DNA damage response pathway. IMPORTANCE Herpes simplex virus infections are regulated by two virus-encoded protein kinases, pUS3 and pUL13, which each regulate multiple processes in the infected cell, including capsid transport from the nucleus to the cytoplasm. Regulation of the activity of these kinases on their various substrates is poorly understood, but importantly, kinases are attractive targets for the generation of inhibitors. It has been previously suggested that pUS3 activity on specific substrates is differentially regulated by pUL13 and, specifically, that pUL13 regulates capsid egress from the nucleus by phosphorylation of pUS3. In this study, we determined that pUL13 and pUS3 have different effects on nuclear egress and that pUL13 may interact directly with the nuclear egress apparatus with implications both for virus assembly and egress and, possibly, the host cell DNA- damage response.
Collapse
|
11
|
Yue T, Tan H, Shi Y, Xu M, Luo S, Weng J, Xu S. Serum Metabolomic Profiling in Aging Mice Using Liquid Chromatography-Mass Spectrometry. Biomolecules 2022; 12:1594. [PMID: 36358944 PMCID: PMC9687663 DOI: 10.3390/biom12111594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce. METHODS Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers. RESULTS In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine. CONCLUSIONS Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianping Weng
- Correspondence: (J.W.); (S.X.); Tel.: +86-0551-63602683 (J.W.)
| | - Suowen Xu
- Correspondence: (J.W.); (S.X.); Tel.: +86-0551-63602683 (J.W.)
| |
Collapse
|
12
|
Lodi A, Pandey R, Chiou J, Bhattacharya A, Huang S, Pan X, Burgman B, Yi SS, Tiziani S, Brenner AJ. Circulating metabolites associated with tumor hypoxia and early response to treatment in bevacizumab-refractory glioblastoma after combined bevacizumab and evofosfamide. Front Oncol 2022; 12:900082. [PMID: 36226069 PMCID: PMC9549210 DOI: 10.3389/fonc.2022.900082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive form of primary malignant brain tumor in the adult population, and, despite modern therapies, patients often develop recurrent disease, and the disease remains incurable with median survival below 2 years. Resistance to bevacizumab is driven by hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which we tested in a phase 2, dual center (University of Texas Health Science Center in San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To identify circulating metabolic biomarkers of tumor hypoxia in patients, we used a high-resolution liquid chromatography-mass spectrometry-based approach to profile blood metabolites and their specific enantiomeric forms using untargeted approaches. Moreover, to evaluate early response to treatment, we characterized changes in circulating metabolite levels during treatment with combined bevacizumab and evofosfamide in recurrent GBM after bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as its enantiomeric form D-glutamic acid all inversely correlated with tumor hypoxia. Intermediates of the serine synthesis pathway, which is known to be modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and serine). Moreover, following treatment, lactic acid was modulated by treatment, likely in response to a hypoxia mediated modulation of oxidative vs glycolytic metabolism. In summary, although our results require further validation in larger patients’ cohorts, we have identified candidate metabolic biomarkers that could evaluate the extent of tumor hypoxia and predict the benefit of combined bevacizumab and evofosfamide treatment in GBM following bevacizumab failure.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| | - Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ayon Bhattacharya
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Shiliang Huang
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xingxin Pan
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Brandon Burgman
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Andrew J. Brenner
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| |
Collapse
|
13
|
Ohshima K, Oi R, Okuzaki D, Motooka D, Shinohara M, Nojima S, Morii E. Mitochondrial matrix protein C14orf159 attenuates colorectal cancer metastasis by suppressing Wnt/β-catenin signalling. Br J Cancer 2021; 125:1699-1711. [PMID: 34689171 PMCID: PMC8651639 DOI: 10.1038/s41416-021-01582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The mechanisms underlying metastasis of colorectal cancer (CRC) remain unclear. C14orf159 is a mitochondrial matrix protein converting D-glutamate to 5-oxo-D-proline. Other metabolic functions of C14orf159, especially on mitochondrial metabolism, and its contribution to CRC metastasis, are not elucidated. METHODS Metabolome analysis by gas chromatography-mass spectrometry, RNA-sequencing analysis, flow cytometry, migration and invasion assay, sphere-formation assay using C14orf159-knockout and -stable expressing cells, immunohistochemistry of C14orf159 in human CRC specimens, and xenograft experiments using Balb/c nude mice were conducted. RESULTS C14orf159 maintained the mitochondrial membrane potential of human CRC cells, and its involvement in amino acid and glutathione metabolism was demonstrated. In human CRC specimens, a decrease in C14orf159 expression at the invasive front of the tumour and in metastasis was determined. C14orf159 was also shown to attenuate the migration, invasion, and spheroid growth of CRC cells in vitro and colorectal tumour growth and metastasis in vivo. Mechanistically, C14orf159 reduced the expression of genes involved in CRC metastasis, including members of the Wnt and MMP family, by maintaining the mitochondrial membrane potential. CONCLUSIONS Our findings link mitochondrial membrane potential to Wnt/β-catenin signalling and reveal a previously unrecognised function of the mitochondrial matrix protein C14orf159 as a suppressor of CRC metastasis.
Collapse
Affiliation(s)
- Kenji Ohshima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Ryo Oi
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
14
|
d-Amino Acids and pLG72 in Alzheimer's Disease and Schizophrenia. Int J Mol Sci 2021; 22:ijms222010917. [PMID: 34681579 PMCID: PMC8535920 DOI: 10.3390/ijms222010917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies over the last several years have shown that d-amino acids, especially d-serine, have been related to brain and neurological disorders. Acknowledged neurological functions of d-amino acids include neurotransmission and learning and memory functions through modulating N-methyl-d-aspartate type glutamate receptors (NMDARs). Aberrant d-amino acids level and polymorphisms of genes related to d-amino acids metabolism are associated with neurodegenerative brain conditions. This review summarizes the roles of d-amino acids and pLG72, also known as d-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s disease (AD). The scope includes the changes in d-amino acids levels, gene polymorphisms of G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD. The clinical diagnostic value of d-amino acids and pLG72 and the therapeutic importance are also reviewed.
Collapse
|
15
|
Katane M, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Sakai-Kato K, Homma H. Glyoxylate reductase/hydroxypyruvate reductase regulates the free d-aspartate level in mammalian cells. J Cell Biochem 2021; 122:1639-1652. [PMID: 34289161 DOI: 10.1002/jcb.30110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Satsuki Matsuda
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yasuaki Saitoh
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Tetsuya Miyamoto
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masae Sekine
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
16
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Hu M, Tang M, Wang H, Zhang M, Zhu S, Yang Z, Zhou S, Zhang H, Hu J, Guo Y, Wei X, Liao Y. Terahertz, infrared and Raman absorption spectra of tyrosine enantiomers and racemic compound. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119611. [PMID: 33689998 DOI: 10.1016/j.saa.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 05/26/2023]
Abstract
The application of terahertz (THz)-based techniques in biomolecule study is very promising but still in its infancy. In the present work, we employed THz time-domain spectroscopy (THz-TDS) and THz time-domain attenuated total reflection (THz-TD-ATR) spectroscopy to investigate the properties of tyrosine (Tyr) enantiomers (L- and D-Tyr) and racemate (DL-Tyr) in solid state and aqueous solutions, respectively. THz absorption spectra of solid L- and D-Tyr show similar absorption spectra with peaks at 0.95, 1.92, 2.06 and 2.60 THz, which are obviously different from the spectrum of DL-Tyr with peaks at 1.5, 2.15 and 2.40 THz. In contrast, although THz absorption spectra of L-Tyr solution and D-Tyr solution are similar and different from the spectrum of DL-Tyr solution, both of them have no observable peaks. Interestingly, it was found that the solution containing equal amounts of L- and D-Tyr has a similar spectrum as that of DL-Tyr solution, as far as the mass concentrations of the two types of solutions are kept the same. On other hand, solid L-, D- and DL-Tyr were also investigated with infrared spectroscopy and Raman spectroscopy, respectively. The results show that the spectra of L- and D-Tyr can be regarded the same but they are slightly different from the spectrum of DL-Tyr. With the aid of principal component analysis (PCA), the difference between L-/D-Tyr and DL-Tyr can be confirmed without any ambiguity. Overall, this work systematically interrogated and evaluated the performance of THz-based techniques in the detection of the chirality of tyrosine.
Collapse
Affiliation(s)
- Meidie Hu
- College of Engineering and Technology, Southwest University, Chongqing 400716, China; Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Mingjie Tang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Huabin Wang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China.
| | - Mingkun Zhang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Shiping Zhu
- College of Engineering and Technology, Southwest University, Chongqing 400716, China.
| | - Zhongbo Yang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Shengling Zhou
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Hua Zhang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Jiao Hu
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuansen Guo
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiao Wei
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Yunsheng Liao
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
18
|
A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nat Commun 2021; 12:2085. [PMID: 33837194 PMCID: PMC8035401 DOI: 10.1038/s41467-021-22317-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen’s adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160’s targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis. Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. Here, Kinoshita-Daitoku et al. show that a small non-coding RNA of H. pylori regulates bacterial adaptation to the stomach environment and bacterial oncoprotein production.
Collapse
|
19
|
Pandey R, Collins M, Lu X, Sweeney SR, Chiou J, Lodi A, Tiziani S. Novel Strategy for Untargeted Chiral Metabolomics using Liquid Chromatography-High Resolution Tandem Mass Spectrometry. Anal Chem 2021; 93:5805-5814. [PMID: 33818082 DOI: 10.1021/acs.analchem.0c05325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stereospecific recognition of metabolites plays a significant role in the detection of potential disease biomarkers thereby providing new insights in diagnosis and prognosis. D-Hdroxy/amino acids are recognized as potential biomarkers in several metabolic disorders. Despite continuous advances in metabolomics technologies, the simultaneous measurement of different classes of enantiomeric metabolites in a single analytical run remains challenging. Here, we develop a novel strategy for untargeted chiral metabolomics of hydroxy/amine groups (-OH/-NH2) containing metabolites, including all hydroxy acids (HAs) and amino acids (AAs), by chiral derivatization coupled with liquid chromatography-high resolution tandem mass spectrometry (LC-HR-MS/MS). Diacetyl-tartaric anhydride (DATAN) was used for the simultaneous derivatization of-OH/-NH2 containing metabolites as well as the resulting diastereomers, and all the derivatized metabolites were resolved in a single analytical run. Data independent MS/MS acquisition (DIA) was applied to positively identify DATAN-labeled metabolites based on reagent specific diagnostic fragment ions. We discriminated chiral from achiral metabolites based on the reversal of elution order of D and L isomers derivatized with the enantiomeric pair (±) of DATAN in an untargeted manner. Using the developed strategy, a library of 301 standards that consisted of 214 chiral and 87 achiral metabolites were separated and detected in a single analytical run. This approach was then applied to investigate the enantioselective metabolic profile of the bone marrow (BM) and peripheral blood (PB) plasma samples from patients with acute myeloid leukemia (AML) at diagnosis and following completion of the induction phase of chemotherapeutic treatment. The sensitivity and selectivity of the developed method enabled the detection of trace levels of the D-enantiomer of HAs and AAs in primary plasma patient samples. Several of these metabolites were significantly altered in response to chemotherapy. The developed LC-HR-MS method entails a valuable step forward in chiral metabolomics.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shannon R Sweeney
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States.,Institute for Cell and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States.,Institute for Cell and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Promiscuous enzymes generating d-amino acids in mammals: Why they may still surprise us? Biochem J 2021; 478:1175-1178. [PMID: 33710333 DOI: 10.1042/bcj20200988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Promiscuous catalysis is a common property of enzymes, particularly those using pyridoxal 5'-phosphate as a cofactor. In a recent issue of this journal, Katane et al. Biochem. J. 477, 4221-4241 demonstrate the synthesis and accumulation of d-glutamate in mammalian cells by promiscuous catalysis mediated by a pyridoxal 5'-phosphate enzyme, the serine/threonine dehydratase-like (SDHL). The mechanism of SDHL resembles that of serine racemase, which synthesizes d-serine, a well-established signaling molecule in the mammalian brain. d-Glutamate is present in body fluids and is degraded by the d-glutamate cyclase at the mitochondria. This study demonstrates a biochemical pathway for d-glutamate synthesis in mammalian cells and advances our knowledge on this little-studied d-amino acid in mammals. d-Amino acids may still surprise us by their unique roles in biochemistry, intercellular signaling, and as potential biomarkers of disease.
Collapse
|
21
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
22
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
23
|
Simultaneous Measurement of Amino Acid Enantiomers in Aged Mouse Brain Samples by LC/MS/MS Combined with Derivatization Using N
α-(5-Fluoro-2,4-dinitrophenyl)-l-leucinamide (l-FDLA). Metabolites 2021; 11:metabo11010057. [PMID: 33467775 PMCID: PMC7829926 DOI: 10.3390/metabo11010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
d-amino acids have distinct roles from their l-enantiomer. In particular, some d-amino acids function as agonists or antagonists of neuronal receptors and are involved in higher brain functions. Thus, it is important to precisely measure the levels of these amino acid enantiomers in cells and tissues. Various quantification methods have been developed for measurements of chiral amino acids. However, each method has advantages and disadvantages. Additionally, measuring the amino acid enantiomers in crude biological samples requires a higher selectivity. In this study, we developed a quantification method for amino acid enantiomers using derivatization with Nα-(5-Fluoro-2,4-dinitrophenyl)-l-leucinamide (l-FDLA) followed by liquid chromatography–tandem mass spectrometry (LC/MS/MS) with a conventional reversed-phase column. We simultaneously identified 10 chiral amino acids. Furthermore, we applied this method to investigate murine tissue samples and examined the effect of aging on the amino acid levels in aged brain regions. We found that aging decreased the levels of both d-serine and d-aspartate in the hippocampus. In addition, d-Phenylalanine in the thalamus significantly increased with age. In conclusion, our method is suitable for the quantification of the d-amino acids in crude biological samples and may contribute to elucidating the biological roles of chiral amino acids.
Collapse
|
24
|
Tian J, Wang Y, Chen Y, Zhao F, Jiang Y, Yu S, Yu X, Pu L. Chemoselective and enantioselective fluorescent recognition of glutamic and aspartic acids. Chem Commun (Camb) 2020; 56:15012-15015. [PMID: 33185210 DOI: 10.1039/d0cc06736a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly chemoselective as well as enantioselective fluorescent probe has been discovered for the recognition of the acidic amino acids, including glutamic acid and aspartic acid. This study has established a novel amino acid recognition mechanism by an aldehyde-based fluorescent probe.
Collapse
Affiliation(s)
- Jun Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Z, Pan Q, Ge H, Xing L, Hong Y, Chen P. Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values. EBioMedicine 2020; 62:103081. [PMID: 33181462 PMCID: PMC7658497 DOI: 10.1016/j.ebiom.2020.103081] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis is a heterogenous syndrome and individualized management strategy is the key to successful treatment. Genome wide expression profiling has been utilized for identifying subclasses of sepsis, but the clinical utility of these subclasses was limited because of the classification instability, and the lack of a robust class prediction model with extensive external validation. The study aimed to develop a parsimonious class model for the prediction of class membership and validate the model for its prognostic and predictive capability in external datasets. METHODS The Gene Expression Omnibus (GEO) and ArrayExpress databases were searched from inception to April 2020. Datasets containing whole blood gene expression profiling in adult sepsis patients were included. Autoencoder was used to extract representative features for k-means clustering. Genetic algorithms (GA) were employed to derive a parsimonious 5-gene class prediction model. The class model was then applied to external datasets (n = 780) to evaluate its prognostic and predictive performance. FINDINGS A total of 12 datasets involving 1613 patients were included. Two classes were identified in the discovery cohort (n = 685). Class 1 was characterized by immunosuppression with higher mortality than class 2 (21.8% [70/321] vs. 12.1% [44/364]; p < 0.01 for Chi-square test). A 5-gene class model (C14orf159, AKNA, PILRA, STOM and USP4) was developed with GA. In external validation cohorts, the 5-gene class model (AUC: 0.707; 95% CI: 0.664 - 0.750) performed better in predicting mortality than sepsis response signature (SRS) endotypes (AUC: 0.610; 95% CI: 0.521 - 0.700), and performed equivalently to the APACHE II score (AUC: 0.681; 95% CI: 0.595 - 0.767). In the dataset E-MTAB-7581, the use of hydrocortisone was associated with increased risk of mortality (OR: 3.15 [1.13, 8.82]; p = 0.029) in class 2. The effect was not statistically significant in class 1 (OR: 1.88 [0.70, 5.09]; p = 0.211). INTERPRETATION Our study identified two classes of sepsis that showed different mortality rates and responses to hydrocortisone therapy. Class 1 was characterized by immunosuppression with higher mortality rate than class 2. We further developed a 5-gene class model to predict class membership. FUNDING The study was funded by the National Natural Science Foundation of China (Grant No. 81,901,929).
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China.
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lifeng Xing
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Pengpeng Chen
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
26
|
Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals. Biochem J 2020; 477:4221-4241. [DOI: 10.1042/bcj20200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.
Collapse
|
27
|
Zhou Y, Li M, Song J, Shi Y, Qin X, Gao Z, Lv Y, Du G. The cardioprotective effects of the new crystal form of puerarin in isoproterenol-induced myocardial ischemia rats based on metabolomics. Sci Rep 2020; 10:17787. [PMID: 33082379 PMCID: PMC7575583 DOI: 10.1038/s41598-020-74246-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Puerarin has shown unique pharmacological effects on myocardial ischemia (MI). Changing the crystal form is an effective approach to improve the cardioprotective effects of puerarin. However, the mechanisms of the new crystal form of puerarin are unclear. In this study, an electrocardiogram, echocardiography, cardiac marker enzymatic activity, oxidative stress indices, and myocardial histology analysis of cardiac tissues were performed to evaluate the cardioprotective effects of the new crystal form of puerarin. Moreover, serum and cardiac tissue metabolomics based on nuclear magnetic resonance (NMR) were used to investigate the potential mechanism of the new crystal form. The results indicated that the new crystal form of puerarin (30 mg/kg) could improve oxidative stress indices, and these improvements were similar to those of the original crystal form of puerarin (120 mg/kg). The new crystal form of puerarin (30 mg/kg) could effectively improve the activities of cardiac marker enzymes, and the improvement effects were better than those of the original crystal form (120 mg/kg). Moreover, metabolomics analysis showed that amino acid metabolism, oxidative stress and energy metabolism were disturbed after MI and could be improved by puerarin. These results demonstrated that the new crystal form of puerarin was effective in treating MI.
Collapse
Affiliation(s)
- Yuzhi Zhou
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.,Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China.,Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Mengru Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Jia Song
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Yongqiang Shi
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Zhaolin Gao
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Yang Lv
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.
| |
Collapse
|
28
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
29
|
Katane M, Motoda R, Ariyoshi M, Tateishi S, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Sakai-Kato K, Homma H. A colorimetric assay method for measuring d-glutamate cyclase activity. Anal Biochem 2020; 605:113838. [PMID: 32702438 DOI: 10.1016/j.ab.2020.113838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Risa Motoda
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo, 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
30
|
Zhao G, Cheng D, Wang Y, Cao Y, Xiang S, Yu Q. A metabolomic study for chronic heart failure patients based on a dried blood spot mass spectrometry approach. RSC Adv 2020; 10:19621-19628. [PMID: 35515477 PMCID: PMC9054045 DOI: 10.1039/c9ra10684g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: a dried blood spot (DBS) method integrated with direct infusion mass spectrometry (MS) focused on a metabolomic analysis was applied to detect and compare the difference of metabolites between the heart failure (HF) patients and non-HF patients in order to facilitate the early detection of heart failures, provide targeted intervention and offer prognostic insights. Methods: the method we used was an untargeted metabolic approach. The dry blood spot mass spectrometry (DBS) was used to analyze 23 types of amino acids and 26 types of carnitine in blood samples. In the current study, 49 metabolites were selected to establish the PLS-DA model to compare the differences between the 117 HF patients and 118 non-HF patients, which inclined to detect the difference between the two groups. Multiple algorithms were run for selecting different metabolites as potential biomarkers. Ten-fold cross validation method was used to verify and evaluate the selected potential biomarkers. Results: through significant analysis of the microarrays (SAM) and analysis of 9 parameters, 8 metabolites showed significant discrepancies between the HF and non-HF groups. Among these metabolites, the levels of 5 metabolites were increased, and the other 3 metabolites were decreased in the HF group compared with the non-HF group. However, 7 metabolites including Asn, C0, C14, C4DC, C5-OH, C6 and Glu were selected to distinguish the HF group from the non-HF group with specificity and sensitivity of 0.8475 and 0.8974, respectively. Conclusion: metabolomic study for chronic heart failure (CHF) patients based on the dried blood spot mass spectrometry approach would be beneficial to understand the metabolic pathway of HF, and probably work as biomarkers to predict the prognosis of HF and provide the basis for an individualized treatment. A dried blood spot method with mass spectrometry focused on metabolomics analysis was applied to detect and compare the difference in metabolites between heart failure (HF) patients and non-HF patients in order to facilitate the early detection and treatment of heart failure.![]()
Collapse
Affiliation(s)
- Gaowa Zhao
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018.,Medical College, Dalian University Dalian 116622 China
| | - Dong Cheng
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018.,Medical College, Dalian University Dalian 116622 China
| | - Yu Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018.,Dalian Medical University Dalian 116044 China
| | - Yalan Cao
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018.,Zunyi Medical University Zunyi 563003 China
| | - Shuting Xiang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018.,Zunyi Medical University Zunyi 563003 China
| | - Qin Yu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University Jiefang Street 6, Zhongshan District Dalian 116001 China +86-411-62893555 +86-411-62887018
| |
Collapse
|
31
|
Biochemical characterization of d-aspartate oxidase from Caenorhabditis elegans: its potential use in the determination of free d-glutamate in biological samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140442. [PMID: 32376478 DOI: 10.1016/j.bbapap.2020.140442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.
Collapse
|
32
|
d-glutamate and Gut Microbiota in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21082676. [PMID: 32290475 PMCID: PMC7215955 DOI: 10.3390/ijms21082676] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background: An increasing number of studies have shown that the brain–gut–microbiota axis may significantly contribute to Alzheimer’s disease (AD) pathogenesis. Moreover, impaired memory and learning involve the dysfunction neurotransmission of glutamate, the agonist of the N-methyl-d-aspartate receptor and a major excitatory neurotransmitter in the brain. This systematic review aimed to summarize the current cutting-edge research on the gut microbiota and glutamate alterations associated with dementia. Methods: PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, and Cochrane Systematic Reviews were reviewed for all studies on glutamate and gut microbiota in dementia published up until Feb 2020. Results: Several pilot studies have reported alterations of gut microbiota and metabolites in AD patients and other forms of dementia. Gut microbiota including Bacteroides vulgatus and Campylobacter jejuni affect glutamate metabolism and decrease the glutamate metabolite 2-keto-glutaramic acid. Meanwhile, gut bacteria with glutamate racemase including Corynebacterium glutamicum, Brevibacterium lactofermentum, and Brevibacterium avium can convert l-glutamate to d-glutamate. N-methyl-d-aspartate glutamate receptor (NMDAR)-enhancing agents have been found to potentially improve cognition in AD or Parkinson’s disease patients. These findings suggest that d-glutamate (d-form glutamate) metabolized by the gut bacteria may influence the glutamate NMDAR and cognitive function in dementia patients. Conclusions: Gut microbiota and glutamate are potential novel interventions to be developed for dementia. Exploring comprehensive cognitive functions in animal and human trials with glutamate-related NMDAR enhancers are warranted to examine d-glutamate signaling efficacy in gut microbiota in patients with AD and other neurodegenerative dementias.
Collapse
|
33
|
d-Aspartate oxidase: distribution, functions, properties, and biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2883-2895. [DOI: 10.1007/s00253-020-10439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
34
|
Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems. Sci Rep 2020; 10:804. [PMID: 31965028 PMCID: PMC6972825 DOI: 10.1038/s41598-020-57878-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of dementia, a clinical symptom characterized by severe cognitive decline, is increasing worldwide. Predictive biomarkers are therefore required for early identification and management. D-amino acids in the brain contribute to cognitive function and are suggested as useful biomarkers for diagnosing dementia risk. To clarify their relationship with human cognitive decline, we developed an identification method of chiral metabolomics for detecting slight differences in chiral amino acid amounts. Chiral tandem liquid chromatography-tandem mass spectrometry systems were applied for sensitive and selective amino acid species along with chiral species determination based on anion and zwitterion exchange mechanisms. In a comprehensive health cohort (cross-sectional study), we measured blood chiral amino acid levels from 305 women (65–80 years old) classified into Control, Mild-cognitive-Impairment (MCI), and Dementia groups using the Mini-Mental State Examination. MCI exhibited higher D-Pro (D-Pro/(D-Pro + L-Pro)) proportion vs the Control group, suggesting this proportion as a useful biomarker for MCI. Biomarker accuracy was improved in combination with D-Ser proportion. Receiver operating characteristics analysis of the Control vs. MCI proportion obtained area under the curve (0.80) with 70% sensitivity and 84% specificity at the optimal cutoff value (0.30). Thus, dementia monitoring can be improved by including trace D-amino acids measurements.
Collapse
|
35
|
Lin CH, Yang HT, Lane HY. D-glutamate, D-serine, and D-alanine differ in their roles in cognitive decline in patients with Alzheimer's disease or mild cognitive impairment. Pharmacol Biochem Behav 2019; 185:172760. [DOI: 10.1016/j.pbb.2019.172760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
|
36
|
Uda K, Ishizuka N, Edashige Y, Kikuchi A, Radkov AD, Moe LA. Cloning and characterization of a novel aspartate/glutamate racemase from the acorn worm Saccoglossus kowalevskii. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:87-92. [DOI: 10.1016/j.cbpb.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
|
37
|
Grishin DV, Zhdanov DD, Pokrovskaya MV, Sokolov NN. D-amino acids in nature, agriculture and biomedicine. ALL LIFE 2019. [DOI: 10.1080/21553769.2019.1622596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - D. D. Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
- Peoples Friendship University of Russia, Moscow, Russia
| | | | | |
Collapse
|
38
|
Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. J Chromatogr A 2019; 1593:91-101. [DOI: 10.1016/j.chroma.2019.01.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
39
|
Takahashi S, Osugi K, Shimekake Y, Shinbo A, Abe K, Kera Y. Characterization and improvement of substrate-binding affinity of D-aspartate oxidase of the thermophilic fungus Thermomyces dupontii. Appl Microbiol Biotechnol 2019; 103:4053-4064. [PMID: 30937498 DOI: 10.1007/s00253-019-09787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
D-Aspartate oxidase (DDO) is a valuable enzyme that can be utilized in the determination of acidic D-amino acids and the optical resolution of a racemic mixture of acidic amino acids, which require its higher stability, higher catalytic activity, and higher substrate-binding affinity. In the present study, we identified DDO gene (TdDDO) of a thermophilic fungus, Thermomyces dupontii, and characterized the recombinant enzyme expressed in Escherichia coli. In addition, we generated a variant that has a higher substrate-binding affinity. The recombinant TdDDO expressed in E. coli exhibited oxidase activity toward acidic D-amino acids and a neutral D-amino acid, D-Gln, with the highest activity toward D-Glu. The Km and kcat values for D-Glu were 2.16 mM and 217 s-1, respectively. The enzyme had an optimum pH and temperature 8.0 and 60 °C, respectively, and was stable between pH 5.0 and 10.0, with a T50 of ca. 51 °C, which was much higher than that in DDOs from other origins. Enzyme stability decreased following a decrease in protein concentration, and externally added FAD could not repress the destabilization. The mutation of Phe248, potentially located in the active site of TdDDO, to Tyr residue, conserved in DDOs and D-amino acid oxidases, markedly increased substrate-binding affinity. The results showed the great potential of TdDDO and the variant for practical applications.
Collapse
Affiliation(s)
- Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| | - Kohei Osugi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Shinbo
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
40
|
Low Electric Treatment activates Rho GTPase via Heat Shock Protein 90 and Protein Kinase C for Intracellular Delivery of siRNA. Sci Rep 2019; 9:4114. [PMID: 30858501 PMCID: PMC6412017 DOI: 10.1038/s41598-019-40904-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/28/2019] [Indexed: 11/08/2022] Open
Abstract
Low electric treatment (LET) promotes intracellular delivery of naked siRNA by altering cellular physiology. However, which signaling molecules and cellular events contribute to LET-mediated siRNA uptake are unclear. Here, we used isobaric tags in relative and absolute quantification (iTRAQ) proteomic analysis to identify changes in the levels of phosphorylated proteins that occur during cellular uptake of siRNA promoted by LET. iTRAQ analysis revealed that heat shock protein 90 (Hsp90)α and myristoylated alanine-rich C-kinase substrate (Marcks) were highly phosphorylated following LET of NIH 3T3 cells, but not untreated cells. Furthermore, the levels of phosphorylated Hsp90α and protein kinase C (PKC)γ were increased by LET both with siRNA and liposomes having various physicochemical properties used as model macromolecules, suggesting that PKCγ activated partly by Ca2+ influx as well as Hsp90 chaperone function were involved in LET-mediated cellular siRNA uptake. Furthermore, LET with siRNA induced activation of Rho GTPase via Hsp90 and PKC, which could contribute to cellular siRNA uptake accompanied by actin cytoskeleton remodeling. Collectively, our results suggested that LET-induced Rho GTPase activation via Hsp90 and PKC would participate in actin-dependent cellular uptake of siRNA.
Collapse
|
41
|
Ayon NJ, Sharma AD, Gutheil WG. LC-MS/MS-Based Separation and Quantification of Marfey's Reagent Derivatized Proteinogenic Amino Acid DL-Stereoisomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:448-458. [PMID: 30421361 PMCID: PMC6417927 DOI: 10.1007/s13361-018-2093-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 05/31/2023]
Abstract
D-Amino acids are important biological molecules. Improved analytical methods for their resolution and quantification remain of keen interest. In this study, we investigated the use of Marfey's reagent (chiral) derivatization coupled with LC-MS/MS-based separation and detection of the resulting diastereomers for quantification of the 19 common L- and D-amino acids and glycine. Standard formic acid (pH 2)-based separations on reverse phase media were unable to separate all 19 amino acid DL pairs. In contrast, a water/acetonitrile/ammonium acetate (pH 6.5) solvent system allowed all 19 amino acid DL pairs to be chromatographically resolved on a 30 min gradient, with negative mode detection at pH 6.5 giving good sensitivity. Derivatization reaction rates between amino acids varied substantially, with overnight derivatization required for some amino acids. Chromatography at pH 6.5 combined with MS/MS quantification in negative mode demonstrated good linearity over a wide concentration range for all 20 amino acids. Matrix effects, assessed with an MRSA extract, were negligible. Marfey's derivatized analytes were stable for 24 h at room temperature. This method was demonstrated by determining the levels of these analytes in mid-log phase MRSA extracts. This approach provides for the chromatographic resolution and MS/MS-based quantification of all 20 common L- and D-amino acids in complex matrices. Graphical Abstract.
Collapse
Affiliation(s)
- Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Amar Deep Sharma
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - William G Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
42
|
Zhu YM, Li Q, Gao XZ, Meng X, Sun LL, Shi Y, Lu ET, Zhang Y. C14orf159 suppresses gastric cancer cells' invasion and proliferation by inactivating ERK signaling. Cancer Manag Res 2019; 11:1717-1723. [PMID: 30863180 PMCID: PMC6388960 DOI: 10.2147/cmar.s176771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background C14orf159, a new protein, has been identified recently. But its expression in tissues and clinicopathologic correlation is still unknown. Patients and methods We carried out immunohistochemistry staining in 144 gastric cancer cases in this study. Then Western blot was used to detect the expression of protein. MTT and matrigel invasion assay were used to assess the biological effects. Results The immunohistochemical results indicated that the expression of C14orf159 in normal gastric mucosa close to cancer tissue was remarkably higher than that in stomach carcinoma samples (63.9% and 34.7%, respectively, P<0.001). Negative C14orf159 expression was dramatically related to high TNM stages (P=0.033) and positive lymph node metastasis (P=0.008). Once C14orf159 was overexpressed, the expression levels of phosphorylated ERK and its regulated downstream molecules, such as Snail, phosphorylated P90RSK and Cyclin D1, were decreased, while the expression level of E-cadherin was increased. Finally, the invasion and proliferation capacity of gastric cancer cells was inhibited. Conclusion In other words, loss of C14orf159 is associated with the progression of gastric cancer. The role of C14orf159 in repression of proliferation and invasion may be due to resuming E-cadherin and abolishing Snail and Cyclin D1 expression through inactivating ERK–P90RSK pathway.
Collapse
Affiliation(s)
- Yan-Mei Zhu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Xiao-Zhuo Gao
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Xiao Meng
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Li-Li Sun
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| | - Yu Shi
- Department of Pathology, People's Hospital of Dawa District, Panjin, Liaoning 124200, P.R. China
| | - En-Tian Lu
- Department of Pathology, Central Hospital of Pulandian District, Dalian, Liaoning 116200, P.R. China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China,
| |
Collapse
|
43
|
Saitoh Y, Katane M, Miyamoto T, Sekine M, Sakamoto T, Imai H, Homma H. Secreted d-aspartate oxidase functions in C. elegans reproduction and development. FEBS J 2018; 286:124-138. [PMID: 30387556 DOI: 10.1111/febs.14691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Abstract
d-Aspartate oxidase (DDO) is a degradative enzyme that acts stereospecifically on free acidic D-amino acids such as d-aspartate and d-glutamate. d-Aspartate plays an important role in regulating neurotransmission, developmental processes, hormone secretion, and reproductive functions in mammals. In contrast, the physiological role of d-glutamate in mammals remains unclear. In Caenorhabditis elegans, the enzyme responsible for in vivo metabolism of d-glutamate is DDO-3, one of the three DDO isoforms, which is also required for normal self-fertility, hatching, and lifespan. In general, eukaryotic DDOs localize to subcellular peroxisomes in a peroxisomal targeting signal type 1 (PTS1)-dependent manner. However, DDO-3 does not contain a PTS1, but instead has a putative N-terminal signal peptide (SP). In this study, we found that DDO-3 is a secreted DDO, the first such enzyme to be described in eukaryotes. In hermaphrodites, DDO-3 was secreted from the proximal gonadal sheath cells in a SP-dependent manner and transferred to the oocyte surface. In males, DDO-3 was secreted from the seminal vesicle into the seminal fluid in a SP-dependent manner during mating with hermaphrodites. In both sexes, DDO-3 was secreted from the cells where it was produced into the body fluid and taken up by scavenger coelomocytes. Full-length DDO-3 transgene rescued all phenotypes elicited by the deletion of ddo-3, whereas a DDO-3 transgene lacking the putative SP did not. Together, these results indicate that secretion of DDO-3 is essential for its physiological functions.
Collapse
Affiliation(s)
- Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Taro Sakamoto
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Japan
| |
Collapse
|
44
|
Nakade Y, Iwata Y, Furuichi K, Mita M, Hamase K, Konno R, Miyake T, Sakai N, Kitajima S, Toyama T, Shinozaki Y, Sagara A, Miyagawa T, Hara A, Shimizu M, Kamikawa Y, Sato K, Oshima M, Yoneda-Nakagawa S, Yamamura Y, Kaneko S, Miyamoto T, Katane M, Homma H, Morita H, Suda W, Hattori M, Wada T. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 2018; 3:97957. [PMID: 30333299 DOI: 10.1172/jci.insight.97957] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota-derived metabolites play important roles in health and disease. D-amino acids and their L-forms are metabolites of gut microbiota with distinct functions. In this study, we show the pathophysiologic role of D-amino acids in association with gut microbiota in humans and mice with acute kidney injury (AKI). In a mouse kidney ischemia/reperfusion model, the gut microbiota protected against tubular injury. AKI-induced gut dysbiosis contributed to the altered metabolism of D-amino acids. Among the D-amino acids, only D-serine was detectable in the kidney. In injured kidneys, the activity of D-amino acid oxidase was decreased. Conversely, the activity of serine racemase was increased. The oral administration of D-serine mitigated the kidney injury in B6 mice and D-serine-depleted mice. D-serine suppressed hypoxia-induced tubular damage and promoted posthypoxic tubular cell proliferation. Finally, the D-serine levels in circulation were significantly correlated with the decrease in kidney function in AKI patients. These results demonstrate the renoprotective effects of gut-derived D-serine in AKI, shed light on the interactions between the gut microbiota and the kidney in both health and AKI, and highlight D-serine as a potential new therapeutic target and biomarker for AKI.
Collapse
Affiliation(s)
| | - Yasunori Iwata
- Division of Infection Control.,Division of Nephrology, and
| | - Kengo Furuichi
- Division of Nephrology, and.,Division of Blood Purification, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Ryuichi Konno
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuichi Kaneko
- Department of System Biology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Shinjyuku-ku, Tokyo, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine.,Division of Nephrology, and
| |
Collapse
|
45
|
Ishii C, Akita T, Mita M, Ide T, Hamase K. Development of an online two-dimensional high-performance liquid chromatographic system in combination with tandem mass spectrometric detection for enantiomeric analysis of free amino acids in human physiological fluid. J Chromatogr A 2018; 1570:91-98. [DOI: 10.1016/j.chroma.2018.07.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
|
46
|
Gil A, van der Pol A, van der Meer P, Bischoff R. LC-MS analysis of key components of the glutathione cycle in tissues and body fluids from mice with myocardial infarction. J Pharm Biomed Anal 2018; 160:289-296. [DOI: 10.1016/j.jpba.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
|
47
|
Katane M, Ariyoshi M, Tateishi S, Koiwai S, Takaku K, Nagai K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Homma H. Structural and enzymatic properties of mammalian d-glutamate cyclase. Arch Biochem Biophys 2018; 654:10-18. [PMID: 30003876 DOI: 10.1016/j.abb.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 07/08/2018] [Indexed: 01/12/2023]
Abstract
d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Sachi Koiwai
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kaoruko Takaku
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
48
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
49
|
Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:743-758. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Laurent Nahon
- L'Orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Takano
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
50
|
Miyamoto T, Homma H. Detection and quantification of d-amino acid residues in peptides and proteins using acid hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:775-782. [PMID: 29292238 DOI: 10.1016/j.bbapap.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Biomolecular homochirality refers to the assumption that amino acids in all living organisms were believed to be of the l-configuration. However, free d-amino acids are present in a wide variety of organisms and d-amino acid residues are also found in various peptides and proteins, being generated by enzymatic or non-enzymatic isomerization. In mammals, peptides and proteins containing d-amino acids have been linked to various diseases, and they act as novel disease biomarkers. Analytical methods capable of precisely detecting and quantifying d-amino acids in peptides and proteins are therefore important and useful, albeit their difficulty and complexity. Herein, we reviewed conventional analytical methods, especially 0h extrapolating method, and the problems of this method. For the solution of these problems, we furthermore described our recently developed, sensitive method, deuterium-hydrogen exchange method, to detect innate d-amino acid residues in peptides and proteins, and its applications to sample ovalbumin. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|