1
|
Pawar R, Sankapall A, Samal M, Sadaphal V, Mohiudin S, Sangale M. Recent developments in 3D printing pharmaceutical, bioprinting and implant for tissue engineering formulations. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-48. [PMID: 40402634 DOI: 10.1080/09205063.2025.2505350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
This review article explores how 3D printing has the diversity in the drug development and the delivery of personalized medicine. The paradigm shift is from conventional methods to tailormade dosages and exploring the intricate interplay of drug selection, polymer compatibility alongwith technological advancements within the pharmaceutical arena. 3D printing is positioned as a crucial tool for catering to the specific requirements of patient-focused fields like pediatrics and geriatrics, ranging from addressing individual needs to improving dosage precision. By harnessing genetic profiles, physiological nuances, and disease conditions, this technology enables the creation of bespoke medications with unique drug loading and release profiles. In developing the newer implants the 3D printing has to be developed alongwith consideration of biological aspects as well as technical aspects. It has to be aligned with multifunctional aspects to cater one optimized product. Furthermore, this paper elucidates the regulatory considerations and industrial implications surrounding 3D printing in pharmaceuticals. Emphasizing compliance with current Good Manufacturing Practices (CGMP) and its potential for streamlined production in regulated markets, the paper underscores the transformative power of 3D printing in reshaping clinical practice and optimizing patient outcomes.
Collapse
Affiliation(s)
- Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Ankeeta Sankapall
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mayur Samal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Vaishnavi Sadaphal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Sabeeha Mohiudin
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mangesh Sangale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Sinha P, Lahare P, Sahu M, Cimler R, Schnitzer M, Hlubenova J, Hudak R, Singh N, Gupta B, Kuca K. Concept and Evolution in 3D Printing for Excellence in Healthcare. Curr Med Chem 2025; 32:831-879. [PMID: 38265395 DOI: 10.2174/0109298673262300231129102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/05/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
Three-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.
Collapse
Affiliation(s)
- Priyank Sinha
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Preeti Lahare
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Meena Sahu
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Richard Cimler
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
| | - Marek Schnitzer
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Jana Hlubenova
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Radovan Hudak
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Namrata Singh
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
- Department of Engineering Sciences, Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai, Maharashtra 400706, India
| | - Bhanushree Gupta
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
3
|
Zhu H, Kuang H, Huang X, Li X, Zhao R, Shang G, Wang Z, Liao Y, He J, Li D. 3D printing of drug delivery systems enhanced with micro/nano-technology. Adv Drug Deliv Rev 2025; 216:115479. [PMID: 39603388 DOI: 10.1016/j.addr.2024.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huijuan Kuang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruosen Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziyu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yucheng Liao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
4
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
5
|
Singh AK, Choubey A, Srivastava RK, Bahga SS. Physics of moderately stretched electrified jets in electrohydrodynamic jet printing. Phys Rev E 2023; 107:045103. [PMID: 37198839 DOI: 10.1103/physreve.107.045103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/23/2023] [Indexed: 05/19/2023]
Abstract
Electrohydrodynamic (EHD) jet printing involves the deposition of a liquid jet issuing from a needle stretched under the effect of a strong electric field between the needle and a collector plate. Unlike the geometrically independent classical cone-jet observed at low flow rates and high applied electric fields, at a relatively high flow rate and moderate electric field, EHD jets are moderately stretched. Jetting characteristics of such moderately stretched EHD jets differ from the typical cone-jet due to the nonlocalized cone-to-jet transition. Hence, we describe the physics of the moderately stretched EHD jet applicable to the EHD jet printing process through numerical solutions of a quasi-one-dimensional model of the EHD jet and experiments. Through comparison with experimental measurements, we show that our simulations correctly predict the jet shape for varying flow rates and applied potential difference. We present the physical mechanism of inertia-dominated slender EHD jets based on the dominant driving and resisting forces and relevant dimensionless numbers. We show that the slender EHD jet stretches and accelerates primarily due to the balance of driving tangential electric shear and resisting inertia forces in the developed jet region, whereas in the vicinity of the needle, driving charge repulsion and resisting surface tension forces govern the cone shape. The findings of this study can help in operational understanding and better control of the EHD jet printing process.
Collapse
Affiliation(s)
- Abhishek K Singh
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anupam Choubey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rajiv K Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Supreet Singh Bahga
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Muldoon K, Ahmad Z, Su YC, Tseng FG, Chen X, McLaughlin JAD, Chang MW. A Refined Hot Melt Printing Technique with Real-Time CT Imaging Capability. MICROMACHINES 2022; 13:1794. [PMID: 36296147 PMCID: PMC9609882 DOI: 10.3390/mi13101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Personalised drug delivery systems with the ability to offer real-time imaging and control release are an advancement in diagnostic and therapeutic applications. This allows for a tailored drug dosage specific to the patient with a release profile that offers the optimum therapeutic effect. Coupling this application with medical imaging capabilities, real-time contrast can be viewed to display the interaction with the host. Current approaches towards such novelty produce a drug burst release profile and contrasting agents associated with side effects as a result of poor encapsulation of these components. In this study, a 3D-printed drug delivery matrix with real-time imaging is engineered. Polycaprolactone (PCL) forms the bulk structure and encapsulates tetracycline hydrochloride (TH), an antibiotic drug and Iron Oxide Nanoparticles (IONP, Fe3O4), a superparamagnetic contrasting agent. Hot melt extrusion (HME) coupled with fused deposition modelling (FDM) is utilised to promote the encapsulation of TH and IONP. The effect of additives on the formation of micropores (10-20 µm) on the 3D-printed surface was investigated. The high-resolution process demonstrated successful encapsulation of both bioactive and nano components to present promising applications in drug delivery systems, medical imaging and targeted therapy.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystem, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China
| | - James A. D. McLaughlin
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| |
Collapse
|
7
|
Veerapandian S, Kim W, Kim J, Jo Y, Jung S, Jeong U. Printable inks and deformable electronic array devices. NANOSCALE HORIZONS 2022; 7:663-681. [PMID: 35660837 DOI: 10.1039/d2nh00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deformable printed electronic array devices are expected to revolutionize next-generation electronics. However, although remarkable technological advances in printable inks and deformable electronic array devices have recently been achieved, technical challenges remain to commercialize these technologies. In this review article a brief introduction to printing methods highlighting significant research studies on ink formation for conductors, semiconductors, and insulators is provided, and the structural design and successful printing strategies of deformable electronic array devices are described. Successful device demonstrations are presented in the applications of passive- and active-matrix array devices. Finally, perspectives and technological challenges to be achieved are pointed out to print practically available deformable devices.
Collapse
Affiliation(s)
- Selvaraj Veerapandian
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Woojo Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Youngmin Jo
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
8
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
10
|
The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields. MICROMACHINES 2022; 13:mi13040580. [PMID: 35457884 PMCID: PMC9029302 DOI: 10.3390/mi13040580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
The effects of surface wettability and viscoelasticity on the dynamics of liquid droplets under an electric field are studied experimentally. A needle-plate electrode system is used as the power source to polarize a dielectric plate by the corona discharge emitted at the needle electrode, creating a new type of steerable electric field realized. The dynamics of droplets between the dielectric plate and a conductive substrate include three different phenomena: equilibrium to a stationary shape on substrates with higher wettability, deformation to form a bridge between the top acrylic plate and take-off on the substrates with lower wettability. Viscoelastic droplets differ from water in the liquid bridge and takeoff phenomena in that thin liquid filaments appear in viscoelastic droplets, not observed for Newtonian droplets. The equilibrated droplet exhibits more pronounced heights for Newtonian droplets compared to viscoelastic droplets, with a decrease in height with the increase in the concentration of the elastic constituent in the aqueous solution. In the take-off phenomenon, the time required for the droplet to contact the upper plate decreases with the concentration of the elastic constituent increases. It is also found that the critical voltage required for the take-off phenomenon to occur decreases as the elasticity increases.
Collapse
|
11
|
Anticancer and antimicrobial evaluation of novel conductive ZnO2 doped polymer patches for cancer treatment and tissue engineering applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hosseinian H, Hosseini S, Martinez-Chapa SO, Sher M. A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery. Polymers (Basel) 2022; 14:185. [PMID: 35012207 PMCID: PMC8747307 DOI: 10.3390/polym14010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Mazhar Sher
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Izgordu MS, Uzgur EI, Ulag S, Sahin A, Karademir Yilmaz B, Kilic B, Ekren N, Oktar FN, Gunduz O. Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs. Cartilage 2021; 13:626S-635S. [PMID: 31893944 PMCID: PMC8804864 DOI: 10.1177/1947603519897302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to evaluate the mechanical and biological performance of cartilage-like constructs produced by 3D printing. During the investigation, poly(ε-caprolactone) (PCL) and polyvinylpyrrolidone (PVP) were used as a matrix polymer and low-molecular-weight chitosan (CS), hyaluronic acid (HA), and alginic acid sodium salt (SA) were integrated separately with the polymer matrix to fabricate the constructs. Thermal, mechanical, morphology, and chemical properties and swelling, degradation, and biocompatibility behaviors were evaluated in detail. With the addition of 3 fillers, the melting temperature of the matrix increased with the addition of fillers, and PCL/3wt.%PVP/1wt.%HA had the highest melting temperature value. Mechanical characterization results demonstrated that the printed PCL/3wt.%PVP/1wt.%CS displayed the highest compressive strength of around 9.51 MPa. The compressive strength difference between the PCL/3wt.%PVP and PCL/3wt.%PVP/1wt.%CS was 5.38 MPa. Biocompatibility properties of the constructs were tested by mitochondrial dehydrogenase activity, and in vitro studies showed that the PCL/3wt.%PVP/1wt.%HA composite construct had more cell viability than the other constructs by making use of the mesenchymal stem cell line.
Collapse
Affiliation(s)
- Muhammet Sefa Izgordu
- Department of Bioengineering, Faculty of
Engineering, Marmara University, Istanbul, Turkey
| | - Evren Isa Uzgur
- Department of Bioengineering, Faculty of
Engineering, Marmara University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology &
Biomaterials Application and Research (NBUAM), Marmara University, Istanbul,
Turkey,Metallurgical and Materials Engineering,
Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Ali Sahin
- Genetic and Metabolic Diseases Research
Center (GEMHAM), Marmara University, Istanbul, Turkey,Department of Biochemistry, Faculty of
Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research
Center (GEMHAM), Marmara University, Istanbul, Turkey,Department of Biochemistry, Faculty of
Medicine, Marmara University, Istanbul, Turkey
| | - Beyhan Kilic
- Center for Nanotechnology &
Biomaterials Application and Research (NBUAM), Marmara University, Istanbul,
Turkey,Department of Electrical Engineering,
Faculty of Electrical and Electronics, Yildiz Technical University, Istanbul,
Turkey
| | - Nazmi Ekren
- Center for Nanotechnology &
Biomaterials Application and Research (NBUAM), Marmara University, Istanbul,
Turkey,Department of Electrical and Electronics
Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Faik Nuzhet Oktar
- Department of Bioengineering, Faculty of
Engineering, Marmara University, Istanbul, Turkey,Center for Nanotechnology &
Biomaterials Application and Research (NBUAM), Marmara University, Istanbul,
Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology &
Biomaterials Application and Research (NBUAM), Marmara University, Istanbul,
Turkey,Department of Metallurgical and
Materials Engineering, Faculty of Technology, Marmara University, Istanbul,
Turkey,Oguzhan Gunduz, Department of Metallurgical
and Materials Engineering, Faculty of Technology, Marmara University, Metalurji
ve Malzeme Müh. Göztepe Kampüsü, Kadıköy, Istanbul, 34722, Turkey.
| |
Collapse
|
14
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|
15
|
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021; 12:2428-2462. [PMID: 34613595 DOI: 10.1007/s13346-021-01074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
The concept of "one size fits all" followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating "personalized medicine" to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India.
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Berhampur-7600010, Odisha, India
| |
Collapse
|
16
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
17
|
Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B 2021; 11:2488-2504. [PMID: 34567958 PMCID: PMC8447232 DOI: 10.1016/j.apsb.2021.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.
Collapse
|
18
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
19
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|
20
|
Goreninskii S, Danilenko N, Bolbasov E, Evtina A, Buldakov M, Cherdyntseva N, Saqib M, Beshchasna N, Opitz J, Filimonov V, Tverdokhlebov S. Enhanced properties of poly(ε‐caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3‐hexafluoro‐2‐propanol. J Appl Polym Sci 2021. [DOI: 10.1002/app.50535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Semen Goreninskii
- N.M. Kizhner Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
| | - Nadezhda Danilenko
- N.M. Kizhner Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
- B.P. Veinberg Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
| | - Evgeniy Bolbasov
- B.P. Veinberg Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
- V.E. Zuev Institute of Atmospheric Optics Siberian Branch of the Russian Academy of Sciences Tomsk Russian Federation
| | - Anastasia Evtina
- Biological Institute Tomsk State University Tomsk Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Сеntеr Russian Academy of Sciences Tomsk Russian Federation
| | - Mikhail Buldakov
- Biological Institute Tomsk State University Tomsk Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Сеntеr Russian Academy of Sciences Tomsk Russian Federation
- Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences Tomsk Russian Federation
| | - Nadezhda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Сеntеr Russian Academy of Sciences Tomsk Russian Federation
| | - Muhammad Saqib
- Department of Bio‐ and Nanotechnology Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden Germany
| | - Natalia Beshchasna
- Department of Bio‐ and Nanotechnology Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden Germany
| | - Joerg Opitz
- Department of Bio‐ and Nanotechnology Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden Germany
| | - Victor Filimonov
- N.M. Kizhner Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
| | - Sergei Tverdokhlebov
- B.P. Veinberg Research and Educational Center Tomsk Polytechnic University Tomsk Russian Federation
| |
Collapse
|
21
|
Bom S, Martins AM, Ribeiro HM, Marto J. Diving into 3D (bio)printing: A revolutionary tool to customize the production of drug and cell-based systems for skin delivery. Int J Pharm 2021; 605:120794. [PMID: 34119578 DOI: 10.1016/j.ijpharm.2021.120794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
The incorporation of 3D printing technologies in the pharmaceutical industry can revolutionize its R&D, by providing a simple and rapid method to produce tailored one-off batches, each with customized dosages, different compounds, shapes, sizes, and adjusted release rates. Particularly, this type of technology can be advantageous for the development of topical and transdermal drug delivery systems, including patches and microneedles. The use of both systems as drug carriers offers advantages over the oral administration, but the possibility of skin irritation and sensitization, and the high production costs, may hinder the expansion of this market. In this context, 3D printing, a high-resolution technique, allows the design of high quality, personalized, complex and sophisticated structures, thus reducing the production costs and improving the patient compliance. This review covers the 3D printing concept and discusses the relevance of this technology to the pharmaceutical industry, with a special focus on the development of topical and transdermal products - patches and microneedles. The potential of 3D bioprinting for skin applications is also presented, highlighting the development of patch-like skin constructs for wound and burn treatment, and skin equivalents for in vitro research and drug development. Several recent studies were selected to support the relevance of the subjects addressed herein. Additionally, the limitations of these printing technologies are discussed, including regulatory, quality and safety issues.
Collapse
Affiliation(s)
- Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Ana M Martins
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Helena M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
22
|
In-vitro and antibacterial activities of novel POT/TiO2/PCL composites for tissue engineering and biomedical applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Altun E, Yuca E, Ekren N, Kalaskar DM, Ficai D, Dolete G, Ficai A, Gunduz O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics 2021; 13:pharmaceutics13050613. [PMID: 33922739 PMCID: PMC8145298 DOI: 10.3390/pharmaceutics13050613] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick’s diffusion law by the Korsmeyer–Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients.
Collapse
Affiliation(s)
- Esra Altun
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
| | - Esra Yuca
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Davutpasa Campus, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Nazmi Ekren
- Centre for Nanotechnology & Biomaterials Research, Department of Electrical-Electronics Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
| | - Deepak M. Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Anton Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 060042 Bucharest, Romania
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| | - Oguzhan Gunduz
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| |
Collapse
|
24
|
Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym 2021; 260:117774. [PMID: 33712131 DOI: 10.1016/j.carbpol.2021.117774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
3D printing, one of its kinds has been a recent technological trend to fabricate complex and patterned biomaterial with controlled precision. With the conventional kick-start of printing metals and plastics, advancements in printing viable cells, polysaccharides or microbes themselves have been achieved. The additive antimicrobial properties in bioinks sourced from organic and inorganic materials have profound implications in tissue engineering. Cellulose, alginate, exopolysaccharides, ceramics and synthetic polymers are integrated as a viable component in inks and used for bio-printing. To date, bacterial infection and immunogenicity pose a potential health risk during a tissue implant or bone substitution. In order to mitigate microbial infection, antimicrobial bioinks with significant antimicrobial potential have been the much sought after strategies. This approach could be an effective frontline defense against microbial interference in tissue engineering and biomedical applications. An overview on the antimicrobial potential of polysaccharides as bioinks for 3D bioprinting has been critically reviewed.
Collapse
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
25
|
Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:420. [PMID: 33562310 PMCID: PMC7914812 DOI: 10.3390/nano11020420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing is gaining numerous advances in manufacturing approaches both at macro- and nanoscales. Three-dimensional printing is being explored for various biomedical applications and fabrication of nanomedicines using additive manufacturing techniques, and shows promising potential in fulfilling the need for patient-centric personalized treatment. Initial reports attributed this to availability of novel natural biomaterials and precisely engineered polymeric materials, which could be fabricated into exclusive 3D printed nanomaterials for various biomedical applications as nanomedicines. Nanomedicine is defined as the application of nanotechnology in designing nanomaterials for different medicinal applications, including diagnosis, treatment, monitoring, prevention, and control of diseases. Nanomedicine is also showing great impact in the design and development of precision medicine. In contrast to the "one-size-fits-all" criterion of the conventional medicine system, personalized or precision medicines consider the differences in various traits, including pharmacokinetics and genetics of different patients, which have shown improved results over conventional treatment. In the last few years, much literature has been published on the application of 3D printing for the fabrication of nanomedicine. This article deals with progress made in the development and design of tailor-made nanomedicine using 3D printing technology.
Collapse
Affiliation(s)
- Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Rewati Raman Ujjwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| |
Collapse
|
26
|
Arshad MS, Zahra AT, Zafar S, Zaman H, Akhtar A, Ayaz MM, Kucuk I, Maniruzzaman M, Chang MW, Ahmad Z. Antibiofilm Effects of Macrolide Loaded Microneedle Patches: Prospects in Healing Infected Wounds. Pharm Res 2021; 38:165-177. [PMID: 33534130 DOI: 10.1007/s11095-021-02995-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to fabricate polymeric microneedles, loaded with macrolides (erythromycin, azithromycin), using hyaluronic acid and polyvinyl pyrollidone. METHODS These microneedles were fabricated using a vacuum micromolding technique. The integrity of the microneedle patches was studied by recording their morphologic features, folding endurance, swelling and micro-piercing. Physicochemical characteristics were studied by differential scanning calorimetry, thermogravimetric analysis and fourier transform infrared spectroscopy. In-vitro drug release, antibiofilm and effect of microneedle patch on wound healing were also studied to confirm the efficacy of the formulations. RESULTS Formulated patches displayed acceptable folding endurance (>100) and uniform distribution of microneedles (10 × 10) that can penetrate parafilm. Differential scanning calorimetry results depict a decrease in the crystallinity of macrolides following their incorporation in to a polymer matrix. Percentage release of azithromycin and erythromycin from the polymeric patch formulations (over 30 min) was 90% and 63% respectively. Broadly, the zone of bacterial growth inhibition follows the same order for Staphylococcus aureus, Escherichia coli and Salmonella enterica. After 5 days of treatment with azithromycin patches, the wound healing was complete and skin structure (e.g. hair follicles and dermis) was regenerated. CONCLUSION It was concluded that azithromycin loaded microneedle patches can be used to treat biofilms in the infected wounds.
Collapse
Affiliation(s)
| | | | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussain Zaman
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ambreen Akhtar
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Muhammad Mazhar Ayaz
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkey
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Belfast, Northern Ireland, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
27
|
Abstract
The objective of this article is to provide an overview on the current development of micro- and nanoporous fiber processing and manufacturing technologies. Various methods for making micro- and nanoporous fibers including co-electrospinning, melt spinning, dry jet-wet quenching spinning, vapor deposition, template assisted deposition, electrochemical oxidization, and hydrothermal oxidization are presented. Comparison is made in terms of advantages and disadvantages of different routes for porous fiber processing. Characterization of the pore size, porosity, and specific area is introduced as well. Applications of porous fibers in various fields are discussed. The emphasis is put on their uses for energy storage components and devices including rechargeable batteries and supercapacitors.
Collapse
|
28
|
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 2020; 156:20-39. [DOI: 10.1016/j.ejpb.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
|
29
|
Cam ME, Ertas B, Alenezi H, Hazar-Yavuz AN, Cesur S, Ozcan GS, Ekentok C, Guler E, Katsakouli C, Demirbas Z, Akakin D, Eroglu MS, Kabasakal L, Gunduz O, Edirisinghe M. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111586. [PMID: 33321632 DOI: 10.1016/j.msec.2020.111586] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey.
| | - Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gul Sinemcan Ozcan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Ceyda Ekentok
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul 34722, Turkey
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Christina Katsakouli
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Zehra Demirbas
- Department of Clinical Microbiology and Infectious Diseases, School of Medicine, Gazi University, Ankara 06510, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Mehmet Sayip Eroglu
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey; Chemistry Group Laboratories, TUBITAK-UME, Kocaeli 41470, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
30
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
31
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Cam ME, Yildiz S, Alenezi H, Cesur S, Ozcan GS, Erdemir G, Edirisinghe U, Akakin D, Kuruca DS, Kabasakal L, Gunduz O, Edirisinghe M. Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study. J R Soc Interface 2020; 17:20190712. [PMID: 31964272 DOI: 10.1098/rsif.2019.0712] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-γ agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Sila Yildiz
- Centre for Discovery Brain Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gul Sinemcan Ozcan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Gokce Erdemir
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Ursula Edirisinghe
- Accident and Emergency Department, Hillingdon Hospital, NHS Foundation Trust, Pield Heath Road, Uxbridge UB8 3NN, UK
| | - Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Durdane Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
33
|
Eleftheriadis GK, Katsiotis CS, Bouropoulos N, Koutsopoulos S, Fatouros DG. FDM-printed pH-responsive capsules for the oral delivery of a model macromolecular dye. Pharm Dev Technol 2020; 25:517-523. [PMID: 31903821 DOI: 10.1080/10837450.2019.1711396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Katsiotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Arshad MS, Shahzad A, Abbas N, AlAsiri A, Hussain A, Kucuk I, Chang MW, Bukhari NI, Ahmad Z. Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approach. Pharm Dev Technol 2019; 25:197-205. [DOI: 10.1080/10837450.2019.1684520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Sohail Arshad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Aqeel Shahzad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasir Abbas
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Amjad Hussain
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkey
| | - M.-W. Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Northern Ireland, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
35
|
Rohani Shirvan A, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019; 24:1187-1199. [PMID: 31424308 DOI: 10.1080/10837450.2019.1656238] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology has attracted increasing interest in different aspects of biotechnology. The fabrication of electrospun nanofibers (NFs) containing antibacterial agents for antimicrobial applications has been significantly enhanced in recent years. In the current review, various electrospun NFs with antimicrobial properties were introduced and evaluated. The main focus was on the recent developments and applications of antimicrobial electrospun NFs incorporated with different antimicrobial agents, including metal nanoparticles (NPs), antibiotics, quaternized ammonium compounds, triclosan, herbal extracts, carbon nanomaterials, and antimicrobial biopolymers with inherent antimicrobial properties. The search results revealed that antimicrobial containing electrospun NFs had enhanced antimicrobial performance with various biomedical applications compared to the traditional antimicrobial materials. According to the reported results, most of the studies were of an investigative nature and were mostly based on in vitro tests. Hence, further examination on in vivo clinical performance of these antimicrobial NFs seems necessary. However, these antimicrobial NFs appear to have the potential to achieve clinical usefulness and commercial production in the near future.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
37
|
Zhang H, Liu Y, Cui K, Zhao Q, Huang J, Mao S, Jiang T, Ma Z. Electrospun Ribbon‐Like Microfiber Films of a Novel Guanidine‐Based ABA Triblock Copolymer: Fabrication, Antibacterial Activity, and Cytotoxicity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hao Zhang
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
- College of Chemical Engineering and Materials ScienceTianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Yanna Liu
- College of BiotechnologyTianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Kun Cui
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Qiaoling Zhao
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Jin Huang
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Shuhong Mao
- College of BiotechnologyTianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Tao Jiang
- College of Chemical Engineering and Materials ScienceTianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Zhi Ma
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
38
|
Yao ZC, Wang JC, Ahmad Z, Li JS, Chang MW. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:776-783. [DOI: 10.1016/j.msec.2018.12.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023]
|
39
|
|
40
|
Mehta P, Al-Kinani AA, Arshad MS, Singh N, van der Merwe SM, Chang MW, Alany RG, Ahmad Z. Engineering and Development of Chitosan-Based Nanocoatings for Ocular Contact Lenses. J Pharm Sci 2019; 108:1540-1551. [DOI: 10.1016/j.xphs.2018.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|
41
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez Hernandez J. Antimicrobial Polymers for Additive Manufacturing. Int J Mol Sci 2019; 20:E1210. [PMID: 30857355 PMCID: PMC6429148 DOI: 10.3390/ijms20051210] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) printing technologies can be widely used for producing detailed geometries based on individual and particular demands. Some applications are related to the production of personalized devices, implants (orthopedic and dental), drug dosage forms (antibacterial, immunosuppressive, anti-inflammatory, etc.), or 3D implants that contain active pharmaceutical treatments, which favor cellular proliferation and tissue regeneration. This review is focused on the generation of 3D printed polymer-based objects that present antibacterial properties. Two main different alternatives of obtaining these 3D printed objects are fully described, which employ different polymer sources. The first one uses natural polymers that, in some cases, already exhibit intrinsic antibacterial capacities. The second alternative involves the use of synthetic polymers, and thus takes advantage of polymers with antimicrobial functional groups, as well as alternative strategies based on the modification of the surface of polymers or the elaboration of composite materials through adding certain antibacterial agents or incorporating different drugs into the polymeric matrix.
Collapse
Affiliation(s)
- Carmen Mabel González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 7800003, Chile.
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago 8940577, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - Juan Rodríguez Hernandez
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
42
|
Zhang C, Li Y, Hu Y, Peng Y, Ahmad Z, Li JS, Chang MW. Porous Yolk-Shell Particle Engineering via Nonsolvent-Assisted Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7823-7835. [PMID: 30730130 DOI: 10.1021/acsami.8b22112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yolk-shell particles (YSPs) have attracted increasing attention from various research fields because of their low density, large surface area, and excellent loading capacity. However, the fabrication of polymer-based porous YSPs remains a great challenge. In this work, multifunctional polycaprolactone YSPs were produced using trineedle coaxial electrospraying with a simple nonsolvent process. TiO2-Ag nanoparticles and Ganoderma lucidum polysaccharides (GLPs) were encapsulated into the outer shell of the YSPs as the major antibacterial and antioxidant components, whereas iron oxide (Fe3O4) nanoparticles were incorporated into the inner core to act as a photothermal agent. The morphology and structure, chemical composition, biocompatibility, antioxidant, and antibacterial effects of the fabricated YSPs, photothermal effects, and the release profile of the encapsulated GLP were studied in vitro. Furthermore, the in vivo wound healing effects of the YSPs and the laser-assisted therapy were explored based on a burn wound model on c57 mice.
Collapse
Affiliation(s)
| | | | | | | | - Zeeshan Ahmad
- Leicester School of Pharmacy , De Montfort University , The Gateway, Leicester LE1 9BH , U.K
| | | | | |
Collapse
|
43
|
Zhang C, Ding Q, He H, Peng Y, Li C, Mai J, Li JS, Zhong J, Chang MW. Nanoporous hollow fibers as a phantom material for the validation of diffusion magnetic resonance imaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Qiuping Ding
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Hongjian He
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Yu Peng
- College of Civil Engineering and Architecture; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Chen Li
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering; University of Southern California; California Los Angeles 90089
| | - Jing-Song Li
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jianhui Zhong
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China; Zhejiang University; Hangzhou 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
44
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
45
|
Dual rotation centrifugal electrospinning: a novel approach to engineer multi-directional and layered fiber composite matrices. Drug Deliv Transl Res 2018; 9:204-214. [DOI: 10.1007/s13346-018-00594-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Bourdon L, Maurin JC, Gritsch K, Brioude A, Salles V. Improvements in Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques. ACS Biomater Sci Eng 2018; 4:3927-3938. [DOI: 10.1021/acsbiomaterials.8b00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laura Bourdon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Jean-Christophe Maurin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Kerstin Gritsch
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Arnaud Brioude
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Vincent Salles
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| |
Collapse
|
47
|
Li Y, Zhang C, Zhu L, Ahmad Z, Li J, Chang M. Elastic antibacterial membranes comprising particulate laden fibers for wound healing applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.47105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Y. Li
- Key Laboratory for Biomedical Engineering of Education Ministry of ChinaZhejiang University Hangzhou 310027 People's Republic of China
| | - C. Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of ChinaZhejiang University Hangzhou 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 People's Republic of China
| | - L.‐F. Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of ChinaZhejiang University Hangzhou 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 People's Republic of China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University, The Gateway Leicester LE1 9BH United Kingdom
| | - J.‐S. Li
- Key Laboratory for Biomedical Engineering of Education Ministry of ChinaZhejiang University Hangzhou 310027 People's Republic of China
| | - M.‐W. Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of ChinaZhejiang University Hangzhou 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
48
|
Wu S, Li JS, Mai J, Chang MW. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24876-24885. [PMID: 29953813 DOI: 10.1021/acsami.8b08880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method to rapidly customize and to also mass produce oral dosage forms is arguably a current bottleneck in the development of modern personalized medicine. Specifically, delayed-release mechanisms with well-controlled dosage profiles for combinations of traditional Chinese herbal extracts and Western medications are not well established. Herein, we demonstrate a novel multidrug-loaded membrane sandwich with structures infused with ibuprofen (IBU) and Ganoderma lucidum polysaccharide (GLP) using three-dimensional electrohydrodynamic printing and electrospinning techniques. The resulting flexible membrane consists of microscaled, multilayered cellulose acetate (CA) membranes loaded with IBU in the shape of either concentric squares or circles, as the top and bottom layers of a sandwich structure. In between the CA-IBU layers are randomly electrospun polyvinyl pyrrolidone (PVP) layers loaded with GLP. The complete fibrous membrane sandwich can be folded and embedded into a 0-size capsule to achieve oral compliance. Simulated in vitro testing of gastric and intestinal fluids demonstrated a triphasic release profile. There was an immediate release of GLP after gastric juices dissolved the capsule shell and the PVP, followed by the short-term release of 60% of the IBU within an hour afterward, and the remaining IBU was released in a sustained manner following a Fickian diffusion profile. In summary, this multidrug (both hydrophilic and/or hydrophobic) oral system with precision-designed structures should enable personalized therapeutic dosing.
Collapse
Affiliation(s)
| | | | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California , Los Angeles 90007 , California , United States
| | | |
Collapse
|
49
|
Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev 2018; 132:139-168. [PMID: 29778901 DOI: 10.1016/j.addr.2018.05.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Justin Jia Yao Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|