1
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
2
|
Abstract
Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.
Collapse
|
3
|
Amarilla AA, Santos-Junior NN, Figueiredo ML, Luiz JPM, Fumagalli MJ, Colón DF, Lippi V, Alfonso HL, Lima-Junior DS, Trabuco AC, Spinieli RL, Desidera AC, Leite-Panissi CRA, Lauretti F, Mendoza SES, Silva CLA, Rego EM, Galvao-Lima LJ, Bassi GS, Penharvel Martíns SLB, Manrique WG, Alves-Filho JC, Cunha FQ, Peng NYG, Modhiran N, Setoh YX, Khromykh AA, Figueiredo LTM, Aquino VH. CCR2 Plays a Protective Role in Rocio Virus-Induced Encephalitis by Promoting Macrophage Infiltration Into the Brain. J Infect Dis 2020; 219:2015-2025. [PMID: 30715407 PMCID: PMC7107438 DOI: 10.1093/infdis/jiz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975–1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.
Collapse
Affiliation(s)
- Alberto A Amarilla
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | | | - Mario Luis Figueiredo
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto, SP, Brazil
| | | | - David F Colón
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto, SP, Brazil
| | - Veronica Lippi
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Helda Liz Alfonso
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Djalma S Lima-Junior
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil
| | - Amanda C Trabuco
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirao Preto of the University of Sao Paulo, Ribeirao Preto, SP, Brazil.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Amanda C Desidera
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirao Preto of the University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirao Preto of the University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Silvia Elena Sánchez Mendoza
- Division of Hematology, Department of Internal Medicine, Ribeirao Preto, SP, Brazil.,Division of Clinical Oncology, Department of Internal Medicine, Ribeirao Preto, SP, Brazil
| | | | - Eduardo Magalhaes Rego
- Division of Hematology, Department of Internal Medicine, Ribeirao Preto, SP, Brazil.,Division of Clinical Oncology, Department of Internal Medicine, Ribeirao Preto, SP, Brazil
| | - Leonardo J Galvao-Lima
- Department of Immunology, Ribeirão Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriel S Bassi
- Department of Pharmacology, Ribeirão Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sandra L B Penharvel Martíns
- Department of Surgery and Anatomy, Ribeirão Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Wilson Gomez Manrique
- Animal Health Laboratory, Veterinary Medicine Course, Federal University of Rondonia - UNIR, Rolim de Moura, RO, Brazil
| | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto, SP, Brazil
| | - Nias Y G Peng
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Luiz T M Figueiredo
- Virology Research Center, Ribeirao Preto, SP, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Victor H Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
5
|
Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nat Microbiol 2019; 4:876-887. [PMID: 30886357 DOI: 10.1038/s41564-019-0399-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates1. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy2-5 whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.
Collapse
|
6
|
Amarilla AA, Fumagalli MJ, Figueiredo ML, Lima-Junior DS, Santos-Junior NN, Alfonso HL, Lippi V, Trabuco AC, Lauretti F, Muller VD, Colón DF, Luiz JPM, Suhrbier A, Setoh YX, Khromykh AA, Figueiredo LTM, Aquino VH. Ilheus and Saint Louis encephalitis viruses elicit cross-protection against a lethal Rocio virus challenge in mice. PLoS One 2018; 13:e0199071. [PMID: 29897990 PMCID: PMC5999289 DOI: 10.1371/journal.pone.0199071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022] Open
Abstract
Rocio virus (ROCV) was the causative agent of an unprecedented outbreak of encephalitis during the 1970s in the Vale do Ribeira, Sao Paulo State, in the Southeast region of Brazil. Surprisingly, no further cases of ROCV infection were identified after this outbreak; however, serological surveys have suggested the circulation of ROCV among humans and animals in different regions of Brazil. Cross-protective immunity among flaviviruses is well documented; consequently, immunity induced by infections with other flaviviruses endemic to Brazil could potentially be responsible for the lack of ROCV infections. Herein, we evaluated the cross-protection mediated by other flaviviruses against ROCV infection using an experimental C57BL/6 mouse model. Cross-protection against ROCV infection was observed when animals had prior exposure to Ilheus virus or Saint Louis encephalitis virus, suggesting that cross-reactive anti-flavivirus antibodies may limit ROCV disease outbreaks.
Collapse
Affiliation(s)
- Alberto Anastacio Amarilla
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcilio Jorge Fumagalli
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Mario Luis Figueiredo
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Djalma S. Lima-Junior
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Nilton Nascimento Santos-Junior
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Helda Liz Alfonso
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Veronica Lippi
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Amanda Cristina Trabuco
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Flavio Lauretti
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Vanessa Danielle Muller
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - David F. Colón
- Laboratory of Inflammation and Pain, Department of Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - João P. M. Luiz
- Laboratory of Inflammation and Pain, Department of Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Alexander A. Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling. Viruses 2017; 9:v9110326. [PMID: 29099073 PMCID: PMC5707533 DOI: 10.3390/v9110326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Collapse
|
8
|
Full genome sequence of Rocio virus reveal substantial variations from the prototype Rocio virus SPH 34675 sequence. Arch Virol 2017; 163:255-258. [PMID: 28939977 DOI: 10.1007/s00705-017-3561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).
Collapse
|
9
|
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. mSphere 2017; 2:mSphere00190-17. [PMID: 28529976 PMCID: PMC5437134 DOI: 10.1128/mspheredirect.00190-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.
Collapse
|