1
|
Arriero-País EM, Bajo-Rubio MA, Arrojo-García R, Sandoval P, González-Mateo GT, Albar-Vizcaíno P, Del Peso-Gilsanz G, Ossorio-González M, Majano P, López-Cabrera M. Biomarker and clinical data-based predictor tool (MAUXI) for ultrafiltration failure and cardiovascular outcome in peritoneal dialysis patients: a retrospective and longitudinal study. BMJ Health Care Inform 2025; 32:e101138. [PMID: 40021191 PMCID: PMC11873327 DOI: 10.1136/bmjhci-2024-101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVES To develop a machine learning-based software as a medical device to predict the endurance and outcomes of peritoneal dialysis (PD) patients in real time using effluent-measured biomarkers of the mesothelial-to-mesenchymal transition (MMT). METHODS Retrospective, longitudinal, triple blind study in two independent hospitals (Spain), designed under information-theoretical approaches for feature selection and machine learning-based modelling techniques. A total of 151 (train set) and 32 (validation) PD patients in 1979-2022 were included. PD outcomes were analysed in four categories (endurance, exit from PD, cause of PD end, technical failure) by using MMT biomarkers in effluents and clinical databases. RESULTS MMT biomarkers and clinical data can predict PD with a mean absolute error of 16.99 months by using an Extra Tree (ET) regressor. Linear discriminant analysis (LDA) discerns among transfer to haemodialysis or death, predicts whether the cause of PD end is ultrafiltration failure (UFF) or cardiovascular disease (CVD) and anticipates the type of CVD (receiver operating characteristic curve under the area>0.71). DISCUSSION Our combination of longitudinal PD datasets, attribute shrinkage and gold-standard algorithms with overfitting testing and class imbalance ensures robust predictions in PD. Biomarkers displayed proper mutual information and SHapley values, indicating that MMT processes may have a causal relationship in the development of UFF and CVD. CONCLUSIONS MMT biomarkers and clinical data may be associated in a causal manner with ultrafiltration failure (local effect) and cardiovascular events (systemic effect) in PD. The machine learning-based software MAUXI provides applicability of ET-LDA models with ≤38 variables to predict PD endurance and type of PD technique failure related to peritoneal membrane deterioration.
Collapse
Affiliation(s)
- Eva María Arriero-País
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Fundacion General CSIC, Madrid, Spain
| | - María Auxiliadora Bajo-Rubio
- Servicio de Nefrología, Hospital Universitario de la Princesa & Instituto de Investigación la Princesa (IP), Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
| | - Roberto Arrojo-García
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Fundacion General CSIC, Madrid, Spain
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Fundacion General CSIC, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
| | - Guadalupe Tirma González-Mateo
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
- Premium Research, S.L, Guadalajara, Spain
| | - Patricia Albar-Vizcaíno
- Servicio de Nefrología, Hospital Universitario La Paz & Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Gloria Del Peso-Gilsanz
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
- Servicio de Nefrología, Hospital Universitario La Paz & Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Marta Ossorio-González
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
- Servicio de Nefrología, Hospital Universitario La Paz & Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Pedro Majano
- Unidad de Biología Molecular, Hospital Universitario de la Princesa & Instituto de Investigación la Princesa (IP), Madrid, Spain
| | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Fundacion General CSIC, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS 2040-Renal), Madrid, Spain
| |
Collapse
|
2
|
Kawka E, Herzog R, Ruciński M, Malińska A, Unterwurzacher M, Sacnun JM, Wagner A, Kowalska K, Jopek K, Kucz-Chrostowska A, Kratochwill K, Witowski J. Effect of cellular senescence on the response of human peritoneal mesothelial cells to TGF-β. Sci Rep 2024; 14:12744. [PMID: 38830931 PMCID: PMC11148043 DOI: 10.1038/s41598-024-63250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is implicated in both mesothelial-to-mesenchymal transition (MMT) and cellular senescence of human peritoneal mesothelial cells (HPMCs). We previously showed that senescent HPMCs could spontaneously acquire some phenotypic features of MMT, which in young HPMCs were induced by TGF-β. Here, we used electron microscopy, as well as global gene and protein profiling to assess in detail how exposure to TGF-β impacts on young and senescent HPMCs in vitro. We found that TGF-β induced structural changes consistent with MMT in young, but not in senescent HPMCs. Of all genes and proteins identified reliably in HPMCs across all treatments and states, 4,656 targets represented overlapping genes and proteins. Following exposure to TGF-β, 137 proteins and 46 transcripts were significantly changed in young cells, compared to 225 proteins and only 2 transcripts in senescent cells. Identified differences between young and senescent HPMCs were related predominantly to wound healing, integrin-mediated signalling, production of proteases and extracellular matrix components, and cytoskeleton structure. Thus, the response of senescent HPMCs to TGF-β differs or is less pronounced compared to young cells. As a result, the character and magnitude of the postulated contribution of HPMCs to TGF-β-induced peritoneal remodelling may change with cell senescence.
Collapse
Affiliation(s)
- Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Juan Manuel Sacnun
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Zhong W, Fu J, Liao J, Ouyang S, Yin W, Liang Y, Liu K. A protective role of nintedanib in peritoneal fibrosis through H19-EZH2-KLF2 axis via impeding mesothelial-to-mesenchymal transition. Int Urol Nephrol 2024; 56:1987-1999. [PMID: 38097887 DOI: 10.1007/s11255-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/16/2023] [Indexed: 05/14/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-β/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-β/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, Hunan, People's Republic of China
| | - Jin Liao
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Shaxi Ouyang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Wei Yin
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Yumei Liang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Kanghan Liu
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Ge Z, Dai S, Yu H, Zhao J, Yang W, Tan W, Sun J, Gan Q, Liu L, Wang Z. Nanomechanical Analysis of Living Small Extracellular Vesicles to Identify Gastric Cancer Cell Malignancy Based on a Biomimetic Peritoneum. ACS NANO 2024; 18:6130-6146. [PMID: 38349890 PMCID: PMC10906078 DOI: 10.1021/acsnano.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Gastric cancer is one of the most prevalent digestive malignancies. The lack of effective in vitro peritoneal models has hindered the exploration of the potential mechanisms behind gastric cancer's peritoneal metastasis. An accumulating body of research indicates that small extracellular vesicles (sEVs) play an indispensable role in peritoneal metastasis of gastric cancer cells. In this study, a biomimetic peritoneum was constructed. The biomimetic model is similar to real peritoneum in internal microstructure, composition, and primary function, and it enables the recurrence of peritoneal metastasis process in vitro. Based on this model, the association between the mechanical properties of sEVs and the invasiveness of gastric cancer was identified. By performing nanomechanical analysis on sEVs, we found that the Young's modulus of sEVs can be utilized to differentiate between malignant clinical samples (ascites) and nonmalignant clinical samples (peritoneal lavage). Furthermore, patients' ascites-derived sEVs were verified to stimulate the mesothelial-to-mesenchymal transition, thereby promoting peritoneal metastasis. In summary, nanomechanical analysis of living sEVs could be utilized for the noninvasive diagnosis of malignant degree and peritoneal metastasis of gastric cancer. This finding is expected to contribute future treatments.
Collapse
Affiliation(s)
- Zhixing Ge
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songchen Dai
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Haibo Yu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Junhua Zhao
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Wenguang Yang
- School of
Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Wenjun Tan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxu Sun
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Quan Gan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianqing Liu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhenning Wang
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
5
|
Pascual-Antón L, Sandoval P, González-Mateo GT, Kopytina V, Tomero-Sanz H, Arriero-País EM, Jiménez-Heffernan JA, Fabre M, Egaña I, Ferrer C, Simón L, González-Cortijo L, Sainz de la Cuesta R, López-Cabrera M. Targeting carcinoma-associated mesothelial cells with antibody-drug conjugates in ovarian carcinomatosis. J Pathol 2023; 261:238-251. [PMID: 37555348 DOI: 10.1002/path.6170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Guadalupe T González-Mateo
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Valeria Kopytina
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Henar Tomero-Sanz
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Eva María Arriero-País
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | | | | | | | | | | | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| |
Collapse
|
6
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
7
|
Kopytina V, Pascual-Antón L, Toggweiler N, Arriero-País EM, Strahl L, Albar-Vizcaíno P, Sucunza D, Vaquero JJ, Steppan S, Piecha D, López-Cabrera M, González-Mateo GT. Steviol glycosides as an alternative osmotic agent for peritoneal dialysis fluid. Front Pharmacol 2022; 13:868374. [PMID: 36052133 PMCID: PMC9424724 DOI: 10.3389/fphar.2022.868374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Peritoneal dialysis (PD) is a renal replacement technique that requires repeated exposure of the peritoneum to hyperosmolar PD fluids (PDFs). Unfortunately, it promotes alterations of the peritoneal membrane (PM) that affects its functionality, including mesothelial-mesenchymal transition (MMT) of mesothelial cells (MCs), inflammation, angiogenesis, and fibrosis. Glucose is the most used osmotic agent, but it is known to be at least partially responsible, together with its degradation products (GDP), for those changes. Therefore, there is a need for more biocompatible osmotic agents to better maintain the PM. Herein we evaluated the biocompatibility of Steviol glycosides (SG)-based fluids. Methods: The ultrafiltration and transport capacities of SG-containing and glucose-based fluids were analyzed using artificial membranes and an in vivo mouse model, respectively. To investigate the biocompatibility of the fluids, Met-5A and human omental peritoneal MCs (HOMCs) were exposed in vitro to different types of glucose-based PDFs (conventional 4.25% glucose solution with high-GDP level and biocompatible 2.3% glucose solution with low-GDP level), SG-based fluids or treated with TGF-β1. Mice submitted to surgery of intraperitoneal catheter insertion were treated for 40 days with SG- or glucose-based fluids. Peritoneal tissues were collected to determine thickness, MMT, angiogenesis, as well as peritoneal washings to analyze inflammation. Results: Dialysis membrane experiments demonstrated that SG-based fluids at 1.5%, 1%, and 0.75% had a similar trend in weight gain, based on curve slope, as glucose-based fluids. Analyzing transport capacity in vivo, 1% and 0.75% SG-based fluid-exposed nephrectomized mice extracted a similar amount of urea as the glucose 2.3% group. In vitro, PDF with high-glucose (4.25%) and high-GDP content induced mesenchymal markers and angiogenic factors (Snail1, Fibronectin, VEGF-A, FGF-2) and downregulates the epithelial marker E-Cadherin. In contrast, exposition to low-glucose-based fluids with low-GDP content or SG-based fluids showed higher viability and had less MMT. In vivo, SG-based fluids preserved MC monolayer, induced less PM thickness, angiogenesis, leukocyte infiltration, inflammatory cytokines release, and MMT compared with glucose-based fluids. Conclusion: SG showed better biocompatibility as an osmotic agent than glucose in vitro and in vivo, therefore, it could alternatively substitute glucose in PDF.
Collapse
Affiliation(s)
- Valeria Kopytina
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lucía Pascual-Antón
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Nora Toggweiler
- Fresenius Medical Care Deutschland GmbH, Frankfurter, St. Wendel, Germany
| | - Eva-María Arriero-País
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lisa Strahl
- Fresenius Medical Care Deutschland GmbH, Frankfurter, St. Wendel, Germany
| | - Patricia Albar-Vizcaíno
- Department of Nephrology, IdiPAZ Research Institute, La Paz University Hospital, Madrid, Spain
| | - David Sucunza
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, University of Alcalá (IRYCIS), Madrid, Spain
| | - Juan J. Vaquero
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, University of Alcalá (IRYCIS), Madrid, Spain
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, St. Wendel, Germany
| | - Dorothea Piecha
- Fresenius Medical Care Deutschland GmbH, St. Wendel, Germany
| | - Manuel López-Cabrera
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Manuel López-Cabrera, ; Guadalupe-Tirma González-Mateo,
| | - Guadalupe-Tirma González-Mateo
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
- Department of Nephrology, IdiPAZ Research Institute, La Paz University Hospital, Madrid, Spain
- *Correspondence: Manuel López-Cabrera, ; Guadalupe-Tirma González-Mateo,
| |
Collapse
|
8
|
Impact of Metabolomics Technologies on the Assessment of Peritoneal Membrane Profiles in Peritoneal Dialysis Patients: A Systematic Review. Metabolites 2022; 12:metabo12020145. [PMID: 35208219 PMCID: PMC8879920 DOI: 10.3390/metabo12020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective and frequent dialysis modality in adults, particularly preferred in infants and young children with end-stage renal disease (ESRD). Long-term exposure of the peritoneal membrane to dialysis solutions results in severe morphologic and functional alterations. Peritoneal dialysis effluent biomarkers are based on omics technologies, which could predict the onset or confirm the diagnosis of peritoneal membrane dysfunction, would allow the development of accurate early prognostic tools and, potentially, the identification of future therapeutic targets. The purpose of our study was to critically review the literature on the impact and the effectiveness of metabolomics technologies in peritoneal health. The main search was performed in electronic databases (PubMed/MEDLINE, Embase and Cochrane Central Register of Controlled Trials) from inception to December 2020, using various combinations of Medical Subject Headings (MeSH). The main search highlighted nine studies, of which seven were evaluated in detail. Metabolomics technologies may provide significant input in the recognition of peritoneal membrane dysfunction in PD patients and provide evidence of early intervention strategies that could protect peritoneum health and function.
Collapse
|
9
|
Matusali G, Trionfetti F, Bordoni V, Nardacci R, Falasca L, Colombo D, Terri M, Montaldo C, Castilletti C, Mariotti D, Del Nonno F, Capobianchi MR, Agrati C, Tripodi M, Strippoli R. Pleural Mesothelial Cells Modulate the Inflammatory/Profibrotic Response During SARS-CoV-2 Infection. Front Mol Biosci 2021; 8:752616. [PMID: 34901152 PMCID: PMC8662383 DOI: 10.3389/fmolb.2021.752616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Although lung fibrosis has a major impact in COVID-19 disease, its pathogenesis is incompletely understood. In particular, no direct evidence of pleura implication in COVID-19-related fibrotic damage has been reported so far. In this study, the expression of epithelial cytokeratins and Wilms tumor 1 (WT1), specific markers of mesothelial cells (MCs), was analyzed in COVID-19 and unrelated pleura autoptic samples. SARS-CoV-2 replication was analyzed by RT-PCR and confocal microscopy in MeT5A, a pleura MC line. SARS-CoV-2 receptors were analyzed by RT-PCR and western blot. Inflammatory cytokines from the supernatants of SARS-CoV-2-infected MeT5A cells were analysed by Luminex and ELLA assays. Immunohistochemistry of COVID-19 pleura patients highlighted disruption of pleura monolayer and fibrosis of the sub-mesothelial stroma, with the presence of MCs with fibroblastoid morphology in the sub-mesothelial stroma, but no evidence of direct infection in vivo. Interestingly, we found evidence of ACE2 expression in MCs from pleura of COVID-19 patients. In vitro analysis shown that MeT5A cells expressed ACE2, TMPRSS2, ADAM17 and NRP1, plasma membrane receptors implicated in SARS-CoV-2 cell entry and infectivity. Moreover, MeT5A cells sustained SARS-CoV-2 replication and productive infection. Infected MeT5A cells produced interferons, inflammatory cytokines and metalloproteases. Overall, our data highlight the potential role of pleura MCs as promoters of the fibrotic reaction and regulators of the immune response upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Veronica Bordoni
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy.,UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Daniele Colombo
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Davide Mariotti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Franca Del Nonno
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
10
|
Evgeniou M, Sacnun JM, Kratochwill K, Perco P. A Meta-Analysis of Human Transcriptomics Data in the Context of Peritoneal Dialysis Identifies Novel Receptor-Ligand Interactions as Potential Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413277. [PMID: 34948074 PMCID: PMC8703997 DOI: 10.3390/ijms222413277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD. We set out to perform a meta-analysis of TX datasets to identify dysregulated receptor-ligand interactions in the context of PD-associated complications. We consolidated transcriptomics profiles from twelve untargeted genome-wide gene expression studies focusing on human cell cultures or samples from human PD patients. Gene set enrichment analysis was used to identify enriched biological processes. Receptor-ligand interactions were identified using data from CellPhoneDB. We identified 2591 unique differentially expressed genes in the twelve PD studies. Key enriched biological processes included angiogenesis, cell adhesion, extracellular matrix organization, and inflammatory response. We identified 70 receptor-ligand interaction pairs, with both interaction partners being dysregulated on the transcriptional level in one of the investigated tissues in the context of PD. Novel receptor-ligand interactions without prior annotation in the context of PD included BMPR2-GDF6, FZD4-WNT7B, ACKR2-CCL2, or the binding of EPGN and EREG to the EGFR, as well as the binding of SEMA6D to the receptors KDR and TYROBP. In summary, we have consolidated human transcriptomics datasets from twelve studies in the context of PD and identified sets of novel receptor-ligand pairs being dysregulated in the context of PD that warrant investigation in future functional studies.
Collapse
Affiliation(s)
- Michail Evgeniou
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Paul Perco
- Department of Internal Medicine IV, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
11
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
12
|
Herzog R, Sacnun JM, González-Mateo G, Bartosova M, Bialas K, Wagner A, Unterwurzacher M, Sobieszek IJ, Daniel-Fischer L, Rusai K, Pascual-Antón L, Kaczirek K, Vychytil A, Schmitt CP, López-Cabrera M, Alper SL, Aufricht C, Kratochwill K. Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell αB-crystallin. Sci Transl Med 2021; 13:13/608/eaaz9705. [PMID: 34433641 DOI: 10.1126/scitranslmed.aaz9705] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 01/18/2023]
Abstract
Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-β-independent activation of TGF-β-regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.
Collapse
Affiliation(s)
- Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Juan Manuel Sacnun
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria.,Zytoprotec GmbH, 1090 Vienna, Austria
| | - Guadalupe González-Mateo
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katarzyna Bialas
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabel J Sobieszek
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Daniel-Fischer
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Krisztina Rusai
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lucía Pascual-Antón
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Klaus Kaczirek
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Vychytil
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Manuel López-Cabrera
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria. .,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
14
|
Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules 2021; 11:biom11050692. [PMID: 34063089 PMCID: PMC8147932 DOI: 10.3390/biom11050692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.
Collapse
|
15
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
17
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
18
|
Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. Int J Mol Sci 2020; 21:ijms21165824. [PMID: 32823722 PMCID: PMC7461593 DOI: 10.3390/ijms21165824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Peritoneal hyalinizing vasculopathy (PHV) represents the cornerstone of long-term peritoneal dialysis (PD), and especially characterizes patients associated with encapsulating peritoneal sclerosis. However, the mechanisms of PHV development remain unknown. A cross sectional study was performed in 100 non-selected peritoneal biopsies of PD patients. Clinical data were collected and lesions were evaluated by immunohistochemistry. In selected biopsies a microRNA (miRNA)-sequencing analysis was performed. Only fifteen patients (15%) showed PHV at different degrees. PHV prevalence was significantly lower among patients using PD fluids containing low glucose degradation products (GDP) (5.9% vs. 24.5%), angiotensin converting enzyme inhibitors (ACEIs) (7.5% vs. 23.4%), statins (6.5% vs. 22.6%) or presenting residual renal function, suggesting the existence of several PHV protective factors. Peritoneal biopsies from PHV samples showed loss of endothelial markers and induction of mesenchymal proteins, associated with collagen IV accumulation and wide reduplication of the basement membrane. Moreover, co-expression of endothelial and mesenchymal markers, as well as TGF-β1/Smad3 signaling activation were found in PHV biopsies. These findings suggest that an endothelial-to-mesenchymal transition (EndMT) process was taking place. Additionally, significantly higher levels of miR-7641 were observed in severe PHV compared to non-PHV peritoneal biopsies. Peritoneal damage by GDPs induce miRNA deregulation and an EndMT process in submesothelial vessels, which could contribute to collagen IV accumulation and PHV.
Collapse
|
19
|
Strippoli R, Sandoval P, Moreno-Vicente R, Rossi L, Battistelli C, Terri M, Pascual-Antón L, Loureiro M, Matteini F, Calvo E, Jiménez-Heffernan JA, Gómez MJ, Jiménez-Jiménez V, Sánchez-Cabo F, Vázquez J, Tripodi M, López-Cabrera M, Del Pozo MÁ. Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death Dis 2020; 11:647. [PMID: 32811813 PMCID: PMC7435273 DOI: 10.1038/s41419-020-02822-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-β1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-β1 signaling. Importantly, TGF-β1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-β1 inhibition. Conversely, CAV1 depletion enhanced both TGF-β1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-β1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy. .,Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| | - Pilar Sandoval
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Roberto Moreno-Vicente
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Lucia Rossi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Lucía Pascual-Antón
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Marta Loureiro
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francesca Matteini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrique Calvo
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Departamento de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006, Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Victor Jiménez-Jiménez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Manuel López-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain.
| | - Miguel Ángel Del Pozo
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| |
Collapse
|
20
|
Bonomini M, Borras FE, Troya-Saborido M, Carreras-Planella L, Di Liberato L, Arduini A. Proteomic Research in Peritoneal Dialysis. Int J Mol Sci 2020; 21:ijms21155489. [PMID: 32752018 PMCID: PMC7432538 DOI: 10.3390/ijms21155489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Peritoneal dialysis (PD) is an established home care, cost-effective renal replacement therapy (RRT), which offers several advantages over the most used dialysis modality, hemodialysis. Despite its potential benefits, however, PD is an under-prescribed method of treating uremic patients. Infectious complications (primarily peritonitis) and bio-incompatibility of PD solutions are the main contributors to PD drop-out, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. To improve the clinical outcome of PD, there is a need for biomarkers to identify patients at risk of PD-related complications and to guide personalized interventions. Several recent studies have shown that proteomic investigation may be a powerful tool in the prediction, early diagnosis, prognostic assessment, and therapeutic monitoring of patients on PD. Indeed, analysis of the proteome present in PD effluent has uncovered several proteins involved in inflammation and pro-fibrotic insult, in encapsulating peritoneal sclerosis, or even in detecting early changes before any measurable modifications occur in the traditional clinical parameters used to evaluate PD efficacy. We here review the proteomic studies conducted thus far, addressing the potential use of such omics methodology in identifying potential new biomarkers of the peritoneal membrane welfare in relation to dialytic prescription and adequacy.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy;
- Correspondence:
| | - Francesc E. Borras
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Maribel Troya-Saborido
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Laura Carreras-Planella
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy;
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland;
| |
Collapse
|
21
|
Si M, Wang Q, Li Y, Lin H, Luo D, Zhao W, Dou X, Liu J, Zhang H, Huang Y, Lou T, Hu Z, Peng H. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci Transl Med 2020; 11:11/495/eaav5341. [PMID: 31167927 DOI: 10.1126/scitranslmed.aav5341] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Progressive peritoneal fibrosis affects patients receiving peritoneal dialysis (PD) and has no reliable treatment. The mechanisms that initiate and sustain peritoneal fibrosis remain incompletely elucidated. To overcome these problems, we developed a strategy that prevents peritoneal fibrosis by suppressing PD-stimulated mesothelial-to-mesenchymal transition (MMT). We evaluated single-cell transcriptomes of mesothelial cells obtained from normal peritoneal biopsy and effluent from PD-treated patients. In cells undergoing MMT, we found cellular heterogeneity and intermediate transition states associated with up-regulation of enzymes involved in glycolysis. The expression of glycolytic enzymes was correlated with the development of MMT. Using gene expression profiling and metabolomics analyses, we confirmed that PD fluid induces metabolic reprogramming, characterized as hyperglycolysis, in mouse peritoneum. We found that transforming growth factor β1 (TGF-β1) can substitute for PD fluid to stimulate hyperglycolysis, suppressing mitochondrial respiration in mesothelial cells. Blockade of hyperglycolysis with 2-deoxyglucose (2-DG) inhibited TGF-β1-induced profibrotic cellular phenotype and peritoneal fibrosis in mice. We developed a triad of adeno-associated viruses that overexpressed microRNA-26a and microRNA-200a while inhibiting microRNA-21a to target hyperglycolysis and fibrotic signaling. Intraperitoneal injection of the viral triad inhibited the development of peritoneal fibrosis induced by PD fluid in mice. We conclude that hyperglycolysis is responsible for MMT and peritoneal fibrogenesis, and this aberrant metabolic state can be corrected by modulating microRNAs in the peritoneum. These results could provide a therapeutic strategy to combat peritoneal fibrosis.
Collapse
Affiliation(s)
- Meijun Si
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qianqian Wang
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Nephrology Division, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yin Li
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongchun Lin
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dan Luo
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenbo Zhao
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xianrui Dou
- Nephrology Division, Shunde Hospital of Southern Medical University, Foshan 528300, China
| | - Jun Liu
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Huang
- Division of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tanqi Lou
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Peng
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Gordillo CH, Sandoval P, Muñoz-Hernández P, Pascual-Antón L, López-Cabrera M, Jiménez-Heffernan JA. Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers (Basel) 2020; 12:cancers12020499. [PMID: 32098058 PMCID: PMC7072259 DOI: 10.3390/cancers12020499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
During peritoneal metastasis, cancer cells spread from abdominal solid tumors, disseminate through the peritoneal fluid and attach to and invade through mesothelial cells (MCs) that line the peritoneum. Intestinal adenocarcinomas originating in the mucosa infiltrate the submucosa, muscle layer, and serosa in order to finally colonize the peritoneal cavity. However, the mechanism by which metastatic cells leave the primary tumor and reach the peritoneal cavity has not been previously described. Hence, we investigate whether MCs lining visceral peritoneum, through a mesothelial-to-mesenchymal transition (MMT), are a source of carcinoma-associated fibroblasts (CAFs), which could contribute to cancer progression toward the peritoneal cavity. CAFs detected in biopsies from patients with superficially invasive colorectal cancer differed from locally advanced tumors. An aberrant accumulation of myofibroblasts expressing mesothelial markers was found in the stroma of deeply infiltrative tumors located in the neighborhood of a frequently activated mesothelium. We suggest that MMT is a key event in the early stages of peritoneal dissemination.
Collapse
Affiliation(s)
- Carlos H. Gordillo
- Servicio de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006 Madrid, Spain (P.M.-H.)
| | - Pilar Sandoval
- Centro de Biología Molecular “Severo Ochoa”—CSIC, 28049 Madrid, Spain; (P.S.); (L.P.-A.)
| | - Patricia Muñoz-Hernández
- Servicio de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006 Madrid, Spain (P.M.-H.)
| | - Lucía Pascual-Antón
- Centro de Biología Molecular “Severo Ochoa”—CSIC, 28049 Madrid, Spain; (P.S.); (L.P.-A.)
| | - Manuel López-Cabrera
- Centro de Biología Molecular “Severo Ochoa”—CSIC, 28049 Madrid, Spain; (P.S.); (L.P.-A.)
- Correspondence: (M.L.-C.); (J.A.J.-H.)
| | - José A. Jiménez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006 Madrid, Spain (P.M.-H.)
- Correspondence: (M.L.-C.); (J.A.J.-H.)
| |
Collapse
|
23
|
Avila-Carrasco L, Pavone MA, González E, Aguilera-Baca Á, Selgas R, Del Peso G, Cigarran S, López-Cabrera M, Aguilera A. Abnormalities in Glucose Metabolism, Appetite-Related Peptide Release, and Pro- inflammatory Cytokines Play a Central Role in Appetite Disorders in Peritoneal Dialysis. Front Physiol 2019; 10:630. [PMID: 31191339 PMCID: PMC6547940 DOI: 10.3389/fphys.2019.00630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/03/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Appetite disorders are frequent and scantly studied in peritoneal dialysis (PD) patients and are associated with malnutrition and cardiovascular complications. Objective: We investigated the relationship between uremic insulin resistance, pro-inflammatory cytokines, and appetite-related peptides release (ARPr) with eating-behavior disorders in PD patients. Methods: We included 42 PD patients (12 suffering anorexia, 12 obese with high food-intake, and 18 asymptomatic) and 10 controls. We measured blood levels of ARPr including orexigens [neuropeptide-Y (NPY), ghrelin, and nitric-oxide], anorexigens [cholecystokinin, insulin, corticotropin-releasing factor, leptin, and adiponectin (Ad)], and cytokines (TNF-α, sTNFα-R2, and IL-6) both at baseline and after administering a standard-food stimulus (SFS). We also measured the expression of TNF-α, leptin and Ad-encoding mRNAs in abdominal adipose tissue. We compared these markers with eating motivation measured by a Visual Analog Scale (VAS). Results: Anorexics showed both little appetite, measured by a VAS, and low levels of orexigens that remained constant after SFS, coupled with high levels of anorexigens at baseline and after SFS. Obeses showed higher appetite, increased baseline levels of orexigens, lower baseline levels of anorexigens and cytokines and two peaks of NPY after SFS. The different patterns of ARPr and cytokines pointed to a close relationship with uremic insulin resistance. In fact, the euglycemic-hyperglycemic clamp reproduced these disorders. In anorexics, TNF-α fat expression was increased. In obese patients, leptin expression in fat tissue was down-regulated and showed correlation with the appetite. Conclusion: In PD, appetite is governed by substances that are altered at baseline and abnormally released. Such modulators are controlled by insulin metabolism and cytokines and, while anorexics display inflammatory predominance, obese patients predominantly display insulin resistance.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Mario A Pavone
- Servicio de Nefrología Hospital Can Misses, Ibiza, Spain
| | - Elena González
- Servicio de Nefrología, Instituto de Investigación Biomédica Princesa, Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Álvaro Aguilera-Baca
- Facultad de Ciencias Médicas, Hospital Escuela, Universidad Nacional Autónoma de Honduras, Honduras, Honduras
| | - Rafael Selgas
- Servicio de Nefrología, Instituto de Investigación Biomédica Princesa, Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gloria Del Peso
- Servicio de Nefrología, Instituto de Investigación Biomédica Princesa, Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Abelardo Aguilera
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
24
|
Raby AC, Labéta MO. Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity. Front Physiol 2018; 9:1692. [PMID: 30538643 PMCID: PMC6277495 DOI: 10.3389/fphys.2018.01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) is an essential daily life-saving treatment for end-stage renal failure. PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure as a result of progressive fibrosis. Peritoneal infections, with the concomitant acute inflammatory response and membrane fibrosis development, worsen PD patient outcomes. Patients who remain infection-free, however, also show evidence of inflammation-induced membrane damage and fibrosis, leading to PD cessation. In this case, uraemia, prolonged exposure to bio-incompatible PD solutions and surgical catheter insertion have been reported to induce sterile peritoneal inflammation and fibrosis as a result of cellular stress or tissue injury. Attempts to reduce inflammation (either infection-induced or sterile) and, thus, minimize fibrosis development in PD have been hampered because the immunological mechanisms underlying this PD-associated pathology remain to be fully defined. Toll-like receptors (TLRs) are central to mediating inflammatory responses by recognizing a wide variety of microorganisms and endogenous components released following cellular stress or generated as a consequence of extracellular matrix degradation during tissue injury. Given the close link between inflammation and fibrosis, recent investigations have evaluated the role that TLRs play in infection-induced and sterile peritoneal fibrosis development during PD. Here, we review the findings and discuss the potential of reducing peritoneal TLR activity by using a TLR inhibitor, soluble TLR2, as a therapeutic strategy to prevent PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Anne-Catherine Raby
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mario O Labéta
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
25
|
Namvar S, Woolf AS, Zeef LA, Wilm T, Wilm B, Herrick SE. Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol 2018; 245:491-501. [PMID: 29774544 PMCID: PMC6055603 DOI: 10.1002/path.5101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial‐to‐mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well‐known mediator of MMT, transforming growth factor (TGF)‐β1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early‐phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin‐like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF‐binding protein 4 (IGFBP4) ameliorated TGF‐β1‐induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF‐β1‐induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury‐induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sara Namvar
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leo Ah Zeef
- The Bioinformatics Core Facility, The University of Manchester, Manchester, UK
| | - Thomas Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sarah E Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Padwal M, Cheng G, Liu L, Boivin F, Gangji AS, Brimble KS, Bridgewater D, Margetts PJ. WNT signaling is required for peritoneal membrane angiogenesis. Am J Physiol Renal Physiol 2018; 314:F1036-F1045. [DOI: 10.1152/ajprenal.00497.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The wingless-type mouse mammary tumor virus integration site family (WNT) signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor-β (TGF-β)-mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGF-β-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal β-catenin protein was significantly upregulated after infection with adenovirus expressing TGF-β (AdTGF-β) along with elements of the WNT signaling pathway. Treatment with a β-catenin inhibitor (ICG-001) in mice with AdTGF-β-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf-related protein (DKK)-1. In addition to this, DKK-1 blocked epithelial-mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.
Collapse
Affiliation(s)
- Manreet Padwal
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Genyang Cheng
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Felix Boivin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Azim S. Gangji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Peter J. Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution-induced fibrosis. Kidney Int 2018; 94:346-362. [PMID: 29861057 DOI: 10.1016/j.kint.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal membrane failure due to fibrosis limits the use of peritoneal dialysis (PD). Peritoneal fibrosis may potentially be induced by sterile inflammation caused by ongoing cellular stress due to prolonged exposure to PD solutions (PDS). Effective therapies to prevent this process remain to be developed. Toll-like receptors (TLRs) mediate sterile inflammation by recognizing damage-associated molecular patterns (DAMPs) released by cellular stress. We evaluated the involvement of TLRs and DAMPs in PDS-induced fibrosis models and the therapeutic potential of TLR-DAMP targeting for preventing fibrosis. A range of PDS elicited pro-inflammatory and fibrotic responses from PD patient peritoneal leukocytes, mesothelial cells and mouse peritoneal leukocytes. TLR2/4 blockade of human peritoneal cells or TLR2/4 knockouts inhibited these effects. PDS did not induce rapid ERK phosphorylation or IκB-α degradation, suggesting that they do not contain components capable of direct TLR activation. However, PDS increased the release of Hsp70 and hyaluronan, both TLR2/4 DAMP ligands, by human and mouse peritoneal cells, and their blockade decreased PDS-driven inflammation. Soluble TLR2, a TLR inhibitor, reduced PDS-induced pro-inflammatory and fibrotic cytokine release ex vivo. Daily catheter infusion of PDS in mice caused peritoneal fibrosis, but co-administration of soluble TLR2 prevented fibrosis, suppressed pro-fibrotic gene expression and pro-inflammatory cytokine production, reduced leukocyte/neutrophil recruitment, recovered Treg cell levels and increased the Treg:Th17 ratio. Thus, TLR2/4, Hsp70 and hyaluronan showed major roles in PDS-induced peritoneal inflammation and fibrosis. The study demonstrates the therapeutic potential of a TLR-DAMP targeting strategy to prevent PDS-induced fibrosis.
Collapse
|
28
|
Herzog R, Boehm M, Unterwurzacher M, Wagner A, Parapatics K, Májek P, Mueller AC, Lichtenauer A, Bennett KL, Alper SL, Vychytil A, Aufricht C, Kratochwill K. Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism-Associated Molecular Signatures. Mol Cell Proteomics 2017; 17:516-532. [PMID: 29208752 PMCID: PMC5836375 DOI: 10.1074/mcp.ra117.000186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Peritoneal dialysis (PD) is a modality of renal replacement therapy in which the high volumes of available PD effluent (PDE) represents a rich source of biomarkers for monitoring disease and therapy. Although this information could help guide the management of PD patients, little is known about the potential of PDE to define pathomechanism-associated molecular signatures in PD. We therefore subjected PDE to a high-performance multiplex proteomic analysis after depletion of highly-abundant plasma proteins and enrichment of low-abundance proteins. A combination of label-free and isobaric labeling strategies was applied to PDE samples from PD patients (n = 20) treated in an open-label, randomized, two-period, cross-over clinical trial with standard PD fluid or with a novel PD fluid supplemented with alanyl-glutamine (AlaGln). With this workflow we identified 2506 unique proteins in the PDE proteome, greatly increasing coverage beyond the 171 previously-reported proteins. The proteins identified range from high abundance plasma proteins to low abundance cellular proteins, and are linked to larger numbers of biological processes and pathways, some of which are novel for PDE. Interestingly, proteins linked to membrane remodeling and fibrosis are overrepresented in PDE compared with plasma, whereas the proteins underrepresented in PDE suggest decreases in host defense, immune-competence and response to stress. Treatment with AlaGln-supplemented PD fluid is associated with reduced activity of membrane injury-associated mechanisms and with restoration of biological processes involved in stress responses and host defense. Our study represents the first application of the PDE proteome in a randomized controlled prospective clinical trial of PD. This novel proteomic workflow allowed detection of low abundance biomarkers to define pathomechanism-associated molecular signatures in PD and their alterations by a novel therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Herzog
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,§Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Boehm
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Unterwurzacher
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,§Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,§Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Katja Parapatics
- ¶CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Májek
- ¶CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Mueller
- ¶CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anton Lichtenauer
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Keiryn L Bennett
- ¶CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Seth L Alper
- ‖Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,**Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andreas Vychytil
- ‡‡Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Christoph Aufricht
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Kratochwill
- From the ‡Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; .,§Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma. Oncotarget 2017; 8:98280-98297. [PMID: 29228689 PMCID: PMC5716729 DOI: 10.18632/oncotarget.21550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma originates from mesothelial cells and is a cancer type that aggressively invades into the surrounding tissue, has poor prognosis and no effective treatment. Gremlin-1 is a cysteine knot protein that functions by inhibiting BMP-pathway activity during development. BMP-independent functions have also been described for gremlin-1. We have previously shown high gremlin-1 expression in mesothelioma tumor tissue. Here, we investigated the functions of gremlin-1 in mesothelioma cell migration and invasive growth. Gremlin-1 promoted mesothelioma cell sprouting and invasion into three dimensional collagen and Matrigel matrices. The expression level of gremlin-1 was linked to changes in the expression of SNAI2, integrins, matrix metalloproteinases (MMP) and TGF-β family signaling - all previously associated with a mesenchymal invasive phenotype. Small molecule inhibitors of MMPs completely blocked mesothelioma cell invasive growth. In addition, inhibitors of TGF-β receptors significantly reduced invasive growth. This was associated with reduced expression of MMP2 but not SNAI2, indicating that gremlin-1 has both TGF-β pathway dependent and independent mechanisms of action. Results of in vivo mesothelioma xenograft experiments indicated that gremlin-1 overexpressing tumors were more vascular and had a tendency to send metastases. This suggests that by inducing a mesenchymal invasive cell phenotype together with enhanced tumor vascularization, gremlin-1 drives mesothelioma invasion and metastasis. These data identify gremlin-1 as a potential therapeutic target in mesothelioma.
Collapse
|
30
|
Lopez-Anton M, Lambie M, Lopez-Cabrera M, Schmitt CP, Ruiz-Carpio V, Bartosova M, Schaefer B, Davies S, Stone T, Jenkins R, Taylor PR, Topley N, Bowen T, Fraser D. miR-21 Promotes Fibrogenesis in Peritoneal Dialysis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1537-1550. [PMID: 28495592 DOI: 10.1016/j.ajpath.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Peritoneal dialysis (PD) is a life-saving form of renal replacement therapy for those with end-stage kidney disease. Mesothelial cells (MCs) line the peritoneal cavity and help define peritoneal response to treatment-associated injury, a major reason for treatment failure. miRNAs are important regulators, but their roles in peritoneal fibrosis are largely unknown. In this study, miR-21 was one of the most abundant miRNAs in primary MCs, and was up-regulated by the profibrotic cytokine transforming growth factor-β1 and in PD effluent-derived MCs exhibiting mesenchymal phenotypic change. Increased miR-21 was found in peritoneal membrane biopsy specimens from PD patients compared to healthy controls (PD biocompatible, 5.86×, P = 0.0001; PD conventional, 7.09×, P < 0.0001, n = 11 per group). In PD effluent from a cohort of 230 patients, miR-21 was higher in those receiving the therapy long-term compared to new starters (n = 230, miR-21 3.26×, P = 0.001) and associated with icodextrin use (R = 0.52; 95% CI, 0.20-0.84), peritonitis count (R = 0.16; 95% CI, 0.03-0.29), and dialysate cytokines. miR-21 down-regulated programmed cell death 4 and programmed cell death 4 protein was decreased in peritoneal membrane biopsy specimens from PD patients compared to healthy controls. New miR-21 targets were identified that may be important during PD fibrogenesis. These data identify miR-21 as an important effector of fibrosis in the peritoneal membrane, and a promising biomarker in the dialysis effluent for membrane change in patients receiving PD.
Collapse
Affiliation(s)
- Melisa Lopez-Anton
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Manuel Lopez-Cabrera
- Centro de Biología Molecular Severo Ochoa, the Spanish National Research Council, Madrid, Spain
| | | | - Vicente Ruiz-Carpio
- Centro de Biología Molecular Severo Ochoa, the Spanish National Research Council, Madrid, Spain
| | | | | | | | - Timothy Stone
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert Jenkins
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Philip R Taylor
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Nicholas Topley
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Donald Fraser
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|