1
|
Orlandi G, Li J, Kenny SD, Martinez E. Atomic Structure of the Lithium-Lithium Oxide Interface from First Principles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21958-21964. [PMID: 40153606 DOI: 10.1021/acsami.4c22106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
While lithium-ion batteries (LIBs) have been largely commercialized as the rechargeable battery of choice, their liquid electrolyte limits the theoretical energy density of the battery and poses serious safety threats. Solid-state lithium batteries (SSLBs) use a solid electrolyte, which can provide much higher energy densities and better safety than LIBs. The adoption of SSLBs is held back by interactions that occur between the electrolyte and anode, such as high resistance to lithium (Li) ion flow and the growth of Li dendrites that lead to short circuits. This paper focuses on understanding the interface between oxide electrolytes and Li metal anodes with the goal of predicting the structure and properties dictated by the interface. By comparing interface energies for different orientations of Li and lithium oxide (Li2O), a primary component of the solid electrolyte interphase, the Li2O(110) surface was found to be the most energetically favorable. Furthermore, bonding between the metallic Li and the oxygen atoms on the Li2O(110) plane was observed to be more impactful on stability than the lattice strain. As a consequence, the lowest energy interface was obtained by introducing FCC Li between Li2O and BCC Li.
Collapse
Affiliation(s)
- Giovanni Orlandi
- School of Mechanical and Automotive Engineering, Clemson University, Clemson, South Carolina 29623, United States
| | - Jun Li
- Department of Materials, Loughborough University, Loughborough LE11 3TU, U.K
| | - Steven D Kenny
- Department of Materials, Loughborough University, Loughborough LE11 3TU, U.K
| | - Enrique Martinez
- School of Mechanical and Automotive Engineering, Clemson University, Clemson, South Carolina 29623, United States
- Material Science and Engineering, Clemson University, Clemson, South Carolina 29623, United States
| |
Collapse
|
2
|
Kityk A, Pavlik V, Hnatko M. Breaking barriers in electrodeposition: Novel eco-friendly approach based on utilization of deep eutectic solvents. Adv Colloid Interface Sci 2024; 334:103310. [PMID: 39393255 DOI: 10.1016/j.cis.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
This review article provides a comprehensive examination of the innovative approaches emerging from using deep eutectic solvents (DESs) in electrodeposition techniques. Through an in-depth exploration of fundamental principles, the study highlights the advantages of DESs as electrolytes, including reduced toxicity, enhanced control over deposition parameters, and specific influences on morphology. By showcasing specific studies and experimental findings, the article offers tangible evidence of the superior performance of DES-based electrodeposition methods. Key findings reveal that DESs utilization enables eco-friendly electrodeposition of noble metal and transition metal coatings, coatings of their alloys and composites, as well as electrodeposition of semiconductor and photovoltaic alloy coatings; while also addressing challenges such as hydrogen evolution in conventional electrolytes. Notably, DES-based electrolytes facilitate the formation of electrodeposits with unique nanostructures and improve the stability of colloidal systems for composite coatings. The article contains invaluable tables detailing electrolyte compositions, electrodeposition conditions, and deposition results for a diverse array of metals, alloys, and composites, serving as a practical handbook for researchers and industry practitioners. In conclusion, the review underscores the transformative impact of DESs on electrodeposition techniques and emphasizes the prospects for future advancements in surface modification and material synthesis.
Collapse
Affiliation(s)
- A Kityk
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic.
| | - V Pavlik
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic
| | - M Hnatko
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic
| |
Collapse
|
3
|
Ganesan V, Begum Kadhar Mohamed MS, Naina Mohammed S. Effective chromium mitigation using phosphorous doped bio carbon electrode via capacitive deionisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:6011-6023. [PMID: 38362611 DOI: 10.1080/09593330.2024.2318669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Capacitive deionisation (CDI) is an emerging eco-economic water reclamation technology that can remove inorganic salts and heavy metals. Biomass-derived carbon electrodes have attracted the scientific communities in recent years due to their economic feasibility and sustainability. However, electrochemical performance needs to be improved to achieve durability and reusability. Hence, the present study develops rice straw-derived phosphorous-doped (P-doped) carbon as an electrode for mitigating Cr(VI) ions. Phosphorus doping of biocarbon electrodes enhances their electrochemical properties, including increased electrical conductivity, improved charge storage capacity, and enhanced ion adsorption capabilities. Here, Phosphoric acid plays a dual role of activation and doping that enhances the physico-electrochemical properties. The synthesised material was found to be P-doped carbon with better pore distribution, which was confirmed through FESEM-EDX analysis. Further, the physicochemical properties of the electrode material are enriched with carbon and possess an enhanced surface area of 753 m2/g. The cyclic voltammetry shows the specific capacitance of 67 F/g for the Cr(VI) ions, which was found to be 15 times more than the non-doped carbon. CDI studies were performed with optimisation of operational parameters and found that mitigation of Cr(VI) ions was efficient at pH 2 for the applied voltage of 2V. The electrode's performance with real-time chrome wash effluent confirms its potentiality and has better scope upon optimisation. The experimental data fits well with pseudo first-order kinetics, which ensures the nature of electrosorption is physisorption.
Collapse
Affiliation(s)
- Vigneshhwaran Ganesan
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, India
| | | | | |
Collapse
|
4
|
Ding C, Chen Z, Cao C, Liu Y, Gao Y. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries. NANO-MICRO LETTERS 2023; 15:192. [PMID: 37555908 PMCID: PMC10412524 DOI: 10.1007/s40820-023-01162-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
Collapse
Affiliation(s)
- Changsheng Ding
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chuanxiang Cao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 81000, People's Republic of China.
| |
Collapse
|
5
|
Kim JS, Kim J, Lim JW, Kim DJ, Lee JI, Choi H, Kweon H, Lee J, Yee H, Kim JH, Kim B, Kang MS, Jeong JH, Park SM, Kim DH. Implantable Multi-Cross-Linked Membrane-Ionogel Assembly for Reversible Non-Faradaic Neurostimulation. ACS NANO 2023; 17:14706-14717. [PMID: 37498185 DOI: 10.1021/acsnano.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Neural interfaces play a major role in modulating neural signals for therapeutic purposes. To meet the demand of conformable neural interfaces for developing bioelectronic medicine, recent studies have focused on the performance of electrical neurostimulators employing soft conductors such as conducting polymers and electronic or ionic conductive hydrogels. However, faradaic charge injection at the interface of the electrode and nerve tissue causes irreversible gas evolution, oxidation of electrodes, and reduction of biological ions, thus causing undesired tissue damage and electrode degradation. Here we report a conformable neural interface engineering based on multicross-linked membrane-ionogel assembly (termed McMiA), which enables nonfaradaic neurostimulation without irreversible charge transfer reaction. The McMiA consists of a genipin-cross-linked biopolymeric ionogel coupled with a dopamine-cross-linked graphene oxide membrane to prevent ion exchange between biological and synthetic McMiA ions and to function as a bioadhesive forming covalent bonds with the target tissues. In addition, the demonstration of bioelectronic medicine via the McMiA-based neurostimulation of sciatic nerves shows the enhanced clinical utility in treating the overactive bladder syndrome. As the McMiA-based neural interface is soft, robust for bioadhesion, and stable in a physiological environment, it can offer significant advancement in biocompatibility and long-term operability for neural interface engineering.
Collapse
Affiliation(s)
- Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bokyung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Mohammed NB, Batoo KM, Hussain S, Subramaniam R, Kasi R, Bhuyan M, Imran A, Muthuramamoorthy M. Natural Solid-State Hydrogel Electrolytes Based on 3D Pure Cotton/Graphene for Supercapacitor Application. MICROMACHINES 2023; 14:1379. [PMID: 37512690 PMCID: PMC10384327 DOI: 10.3390/mi14071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
A conductive cotton hydrogel with graphene and ions can come into contact with electrodes in solid electrolytes at the molecular level, leading to a more efficient electrochemical process in supercapacitors. The inherently soft nature of cotton mixed with hydrogel provides superior flexibility of the electrolyte, which benefits the devices in gaining high flexibility. Herein, we report on the current progress in solid-state hydrogel electrolytes based on 3D pure cotton/graphene and present an overview of the future direction of research. The ionic conductivity of a complex hydrogel significantly increased by up to 13.9 × 10-3 S/cm at 25 °C, due to the presence of graphene, which increases ionic conductivity by providing a smooth pathway for the transport of charge carriers and the polymer. Furthermore, the highest specific capacitance of 327 F/g at 3 mV/s was achieved with cyclic voltammetry measurement and a galvanostatic charge-discharge measurement showed a peak value of 385.4 F/g at 100 mA/g current density. Furthermore, an electrochemical analysis demonstrated that a composite cotton/graphene-based hydrogel electrolyte is electrically stable and could be used for the design of next-generation supercapacitors.
Collapse
Affiliation(s)
- Nujud Badawi Mohammed
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Physics, Faculty of Science, University of Hafr Al-Batin College of Science, Hafer Al-Batin 39921, Saudi Arabia
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sajjad Hussain
- Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea
- Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Ramesh Subramaniam
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ramesh Kasi
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mrutunjaya Bhuyan
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center of Theoretical and Computational Physics, Department of Physics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
7
|
Lamprecht X, Zellner P, Yesilbas G, Hromadko L, Moser P, Marzak P, Hou S, Haid R, Steinberger F, Steeger T, Macak JM, Bandarenka AS. Fast-Charging Capability of Thin-Film Prussian Blue Analogue Electrodes for Aqueous Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23951-23962. [PMID: 37145973 DOI: 10.1021/acsami.3c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Prussian blue analogues are considered as promising candidates for aqueous sodium-ion batteries providing a decently high energy density for stationary energy storage. However, suppose the operation of such materials under high-power conditions could be facilitated. In that case, their application might involve fast-response power grid stabilization and enable short-distance urban mobility due to fast re-charging. In this work, sodium nickel hexacyanoferrate thin-film electrodes are synthesized via a facile electrochemical deposition approach to form a model system for a robust investigation. Their fast-charging capability is systematically elaborated with regard to the electroactive material thickness in comparison to a ″traditional″ composite-type electrode. It is found that quasi-equilibrium kinetics allow extremely fast (dis)charging within a few seconds for sub-micron film thicknesses. Specifically, for a thickness below ≈ 500 nm, 90% of the capacity can be retained at a rate of 60C (1 min for full (dis)charge). A transition toward mass transport control is observed when further increasing the rate, with thicker films being dominated by this mode earlier than thinner films. This can be entirely attributed to the limiting effects of solid-state diffusion of Na+ within the electrode material. By presenting a PBA model cell yielding 25 Wh kg-1 at up to 10 kW kg-1, this work highlights a possible pathway toward the guided design of hybrid battery-supercapacitor systems. Furthermore, open challenges associated with thin-film electrodes are discussed, such as the role of parasitic side reactions, as well as increasing the mass loading.
Collapse
Affiliation(s)
- Xaver Lamprecht
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Philipp Zellner
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Göktug Yesilbas
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Ludek Hromadko
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam.Cs.Legii 565, 53002 Pardubice, Czech Republic
| | - Philipp Moser
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Philipp Marzak
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Richard Haid
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Florian Steinberger
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Tim Steeger
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| | - Jan M Macak
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam.Cs.Legii 565, 53002 Pardubice, Czech Republic
| | - Aliaksandr S Bandarenka
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching bei München, Germany
| |
Collapse
|
8
|
Takao K. How does chemistry contribute to circular economy in nuclear energy systems to make them more sustainable and ecological? Dalton Trans 2023. [PMID: 37128944 DOI: 10.1039/d3dt01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While one should be aware that its zero CO2 emission is actually achievable only when electric power is generated, nuclear power is one of the most viable and proven "carbon-free" energy sources to provide baseload electricity to the current energy-demanding society. Even after the power generation, the major part of spent nuclear fuels still consists of recyclable nuclear fuel materials such as U and Pu, promising circular economy of nuclear energy systems in principle. However, actual situations are not very simple due to the following issues: (1) resource security of nuclear fuel materials, (2) issues of depleted uranium, and (3) treatment and disposal of high-level radioactive wastes. In this Perspective, I discussed how chemistry can contribute to resolving these problems and what task academic research in fundamental chemistry should take on there.
Collapse
Affiliation(s)
- Koichiro Takao
- Laboratory for Zero-carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
9
|
Gharouel S, Béguin F. Revisiting the performance of electrical double-layer capacitors implementing a sodium perchlorate water-in-salt electrolyte. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Gavilán-Arriazu EM, Rodriguez SA. Elucidating the complete oxidation mechanism of betanidin in an aqueous solution. Phys Chem Chem Phys 2023; 25:6891-6901. [PMID: 36799657 DOI: 10.1039/d2cp05708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An important point to take advantage of the use of antioxidants in industrial applications in a more efficient way is to know in depth their oxidation mechanism. This is not always a simple task and requires an in-depth study that is often insufficient to precisely describe all the structures and processes involved. This is the case of betanidin, a natural pigment employed in the drug, food, and cosmetic industries. In the present work, we seek to unravel the complete oxidation mechanism of betanidin with the use of computational techniques, supported by experimental data. For this aim, the pKas and oxidation potentials of the reactions involved at different pHs were analyzed using density functional theory (DFT) with the B3LYP/6-31+G(d,p)/SMD approach. Moreover, the decomposition mechanism of the intermediate products (decarboxylation reactions) was studied deeply. The analysis of DFT results allowed the proposal of a tentative mechanism that was put to test using the digital simulations of cyclic voltammetry by comparing the results of these simulations with an experimental case. Based on the rigorous experimental analysis, DFT, and simulations of cyclic voltammetry, the complete mechanism of the oxidation of betanidin in an aqueous medium was proposed. The dimerization of the oxidation products was also considered to explain the voltammetric response of betanidin.
Collapse
Affiliation(s)
| | - Sergio A Rodriguez
- CONICET, Instituto de Ciencias Químicas, FAyA, UNSE, Av. Belgrano Sur 1912, Santiago del Estero, (4200), Argentina.
| |
Collapse
|
11
|
Sharma S, Chand P. Supercapacitor and Electrochemical Techniques: A Brief Review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
12
|
Blom SJ, Connell TU, Doeven EH, Hayne DJ, Kerr E, Henderson LC, Francis PS. Cathodic Co-reactant Electrogenerated Chemiluminescence of Water-soluble Heteroleptic Iridium(III) Complexes Bearing N–Methyl(pyridyl)pyridinium Cyclometalating Ligands. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Biomass valorisation of marula nutshell waste into nitrogen doped activated carbon for use in high performance supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Saha U, Jaiswal R, Goswami TH, Maji PK. Role and effect of electrolytes selection on supercapacitance behaviour of aminated graphenes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Meslam M, Elzatahry AA, Youssry M. Promising aqueous dispersions of carbon black for semisolid flow battery application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Paek SW, Balasubramanian S, Stupples D. Composites Additive Manufacturing for Space Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4709. [PMID: 35806833 PMCID: PMC9267820 DOI: 10.3390/ma15134709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
The assembly of 3D printed composites has a wide range of applications for ground preparation of space systems, in-orbit manufacturing, or even in-situ resource utilisation on planetary surfaces. The recent developments in composites additive manufacturing (AM) technologies include indoor experimentation on the International Space Station, and technological demonstrations will follow using satellite platforms on the Low Earth Orbits (LEOs) in the next few years. This review paper surveys AM technologies for varied off-Earth purposes where components or tools made of composite materials become necessary: mechanical, electrical, electrochemical and medical applications. Recommendations are also made on how to utilize AM technologies developed for ground applications, both commercial-off-the-shelf (COTS) and laboratory-based, to reduce development costs and promote sustainability.
Collapse
Affiliation(s)
- Sung Wook Paek
- School of Science & Technology, City University London, Northampton Square, London EC1V 0HB, UK;
| | | | - David Stupples
- School of Science & Technology, City University London, Northampton Square, London EC1V 0HB, UK;
| |
Collapse
|
17
|
Silambarasan P, Ramu AG, Govarthanan M, Kim W, Moon IS. Cerium-polysulfide redox flow battery with possible high energy density enabled by MFI-Zeolite membrane working with acid-base electrolytes. CHEMOSPHERE 2022; 291:132680. [PMID: 34715103 DOI: 10.1016/j.chemosphere.2021.132680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
A pH change can enable high-energy-density RFB (redox flow battery) in an aqueous medium. Nevertheless, a membrane to prevent the ion crossover is needed. This study adopted cerium and polysulfide in an acid-base combined electrolyte with an MFI-Zeolite membrane as a separator. The increased potential with pH change is described by the OCP (open circuit potential) difference, which varies by 0.8 V for the combination of acid-acid and acid-base electrolyte. A decrease of 350 mV at the redox peak potential of Ce3+/Ce4+ and a 10 mV negative potential shift for S42-/2S22- highlights the pH effect between the combination of acid-acid and acid-base electrolyte indicates the influence of pH leading in half-cell of anodic than the opposite cathodic side. The UV-visible spectral analysis for Ce3+ and S42- ions displacement shows that cerium and sulfur ions do not migrate to each other half-cell through an MFI-Zeolite membrane. As a result, the current efficiency of 94%, voltage, and energy efficiency of 40%-43% were attained at a current density of 10 mA cm-2. Moreover, the acid-base composition of the Ce/S system showed an energy density of 378.3 Wh l -1.
Collapse
Affiliation(s)
- P Silambarasan
- Department of Chemical Engineering, Sunchon National University, 255-Jungang Ro, Suncheon-si, Jeollanam-do, 57922, South Korea
| | - A G Ramu
- Department of Chemical Engineering, Sunchon National University, 255-Jungang Ro, Suncheon-si, Jeollanam-do, 57922, South Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - W Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - I S Moon
- Department of Chemical Engineering, Sunchon National University, 255-Jungang Ro, Suncheon-si, Jeollanam-do, 57922, South Korea.
| |
Collapse
|
18
|
Li X, Shen Y, Kong D, Fan H, Gao XL, Cui Y, Tao J, Ren Y, Zhang Y, Cai T, Wei X, Yan ZF. Realizing an aqueous sodium-ion battery with super-high discharge voltage based on a novel FeSe2@rGO anode. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous sodium-ion batteries (ASIBs) promise particularly increased operational safety and lower manufacturing cost than current state-of-the-art organic electrolytes-based lithium-ion batteries. However, the output voltages of reported ASIBs are still restricts...
Collapse
|
19
|
Tao B, Zhang N, Ye T, Gao P, Li H, Xie Y, Liu J, Wang G, Zhang W, Chang H. High-voltage aqueous symmetric supercapacitors based on 3D bicontinuous, highly wrinkled, N-doped porous graphene-like ultrathin carbon sheets. NEW J CHEM 2022. [DOI: 10.1039/d1nj05191a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived 3D bicontinuous, highly-wrinkled, N-doped porous graphene-like ultrathin carbon sheets for high-performance aqueous symmetric supercapacitor.
Collapse
Affiliation(s)
- Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Na Zhang
- Yinchuan University of Science and Technology, Yinchuan 750011, China
| | - Tian Ye
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Gao
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanmiao Xie
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Jinghua Liu
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101974. [PMID: 34323350 DOI: 10.1002/smll.202101974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable supercapacitors (FS-SCs) are promising energy storage devices for wearable electronics due to their versatile flexibility/stretchability, long cycle life, high power density, and safety. Transition metal compounds (TMCs) can deliver a high capacitance and energy density when applied as pseudocapacitive or battery-like electrode materials owing to their large theoretical capacitance and faradaic charge-storage mechanism. The recent development of TMCs (metal oxides/hydroxides, phosphides, sulfides, nitrides, and selenides) as electrode materials for FS-SCs are discussed here. First, fundamental energy-storage mechanisms of distinct TMCs, various flexible and stretchable substrates, and electrolytes for FS-SCs are presented. Then, the electrochemical performance and features of TMC-based electrodes for FS-SCs are categorically analyzed. The gravimetric, areal, and volumetric energy density of SC using TMC electrodes are summarized in Ragone plots. More importantly, several recent design strategies for achieving high-performance TMC-based electrodes are highlighted, including material composition, current collector design, nanostructure design, doping/intercalation, defect engineering, phase control, valence tuning, and surface coating. Integrated systems that combine wearable electronics with FS-SCs are introduced. Finally, a summary and outlook on TMCs as electrodes for FS-SCs are provided.
Collapse
Affiliation(s)
- Lulu Lyu
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chae Won Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
22
|
Loche P, Steinbrunner P, Friedowitz S, Netz RR, Bonthuis DJ. Transferable Ion Force Fields in Water from a Simultaneous Optimization of Ion Solvation and Ion-Ion Interaction. J Phys Chem B 2021; 125:8581-8587. [PMID: 34292738 PMCID: PMC8389903 DOI: 10.1021/acs.jpcb.1c05303] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The poor performance
of many existing nonpolarizable ion force
fields is typically blamed on either the lack of explicit polarizability,
the absence of charge transfer, or the use of unreduced Coulomb interactions.
However, this analysis disregards the large and mostly unexplored
parameter range offered by the Lennard-Jones potential. We use a global
optimization procedure to develop water-model-transferable force fields
for the ions K+, Na+, Cl–,
and Br– in the complete parameter space of all Lennard-Jones
interactions using standard mixing rules. No extra-thermodynamic assumption
is necessary for the simultaneous optimization of the four ion pairs.
After an optimization with respect to the experimental solvation free
energy and activity, the force fields reproduce the concentration-dependent
density, ionic conductivity, and dielectric constant with high accuracy.
The force field is fully transferable between simple point charge/extended
and transferable intermolecular potential water models. Our results
show that a thermodynamically consistent force field for these ions
needs only Lennard-Jones and standard Coulomb interactions.
Collapse
Affiliation(s)
- Philip Loche
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Sean Friedowitz
- Department of Materials Science and Engineering, Stanford University, Stanford 94305, California, United States
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
23
|
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Abstract
Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water's narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water's electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous battery technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
25
|
Siwatch P, Sharma K, Singh N, Manyani N, Tripathi S. Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Abstract
The aim of this study was to investigate the electrochemical behaviour of aqueous electrolytes on thin-layer (20 µm) nanoporous carbide-derived carbon (CDC) composite fibrous directly electrospun electrodes without further carbonisation. There have been previously investigated fibrous electrodes, which are produced by applying different post-treatment processes, however this makes the production of fibrous electrodes more expensive, complex and time consuming. Furthermore, in the present study high specific capacitance was achieved with directly electrospun nanoporous CDC-based fibrous electrodes in different neutral aqueous electrolytes. The benefit of fibrous electrodes is the advanced mechanical properties compared to the existing commercial electrode technologies based on pressure-rolled or slurry-cast powder mix electrodes. Such improved mechanical properties are preferred in more demanding applications, such as in the space industry. Electrospinning technology also allows for larger electrode production capacities without increased production costs. In addition to the influence of aqueous electrolyte chemical composition, the salt concentration effects and cycle stability with respect to organic electrolytes are investigated. Cyclic voltammetry (CV) measurements on electrospun electrodes showed the highest capacitance for asymmetrical cells with an aqueous 1 M NaNO3-H2O electrolyte. High CV capacitance was correlated with constant current charge–discharge (CC) data, for which a specific capacitance of 191 F g−1 for the positively charged electrode and 311 F g−1 for the negatively charged electrode was achieved. The investigation of electrolyte salt concentration on fibrous electrodes revealed the typical capacitance dependence on ionic conductivity with a peak capacitance at medium concentration levels. The cycle-life measurements of selected two-electrode test cells with aqueous and non-aqueous electrolytes revealed good stability of the electrospun electrodes.
Collapse
|
27
|
Torrinha Á, Martins M, Tavares M, Delerue-Matos C, Morais S. Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta 2021; 226:122111. [DOI: 10.1016/j.talanta.2021.122111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
|
28
|
Kondo T. Conductive Boron-doped Diamond Powder/Nanoparticles for Electrochemical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Mishra R, Panda P, Barman S. Synthesis of a Co 3V 2O 8/CN x hybrid nanocomposite as an efficient electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj00181g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt vanadium oxide/carbon nitride composite (Co3V2O8/CNx) was synthesized by solvothermal method. This Co3V2O8/CNx composite was applied for asymmetric supercapacitor application.
Collapse
Affiliation(s)
- Ranjit Mishra
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| | - Prajnashree Panda
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| | - Sudip Barman
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| |
Collapse
|
30
|
A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Novel pseudo-parallel activated carbon/carbon cloth electrodes connected in novel series for flexible symmetric supercapacitor with enlarged potential window. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
A rational experimental approach to identify correctly the working voltage window of aqueous-based supercapacitors. Sci Rep 2020; 10:19195. [PMID: 33154430 PMCID: PMC7644765 DOI: 10.1038/s41598-020-75851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
It is common to find in the literature different values for the working voltage window (WVW) range for aqueous-based supercapacitors. In many cases, even with the best intentions of the widening the operating voltage window, the measured current using the cyclic voltammetry (CV) technique includes a significant contribution from the irreversible Faradaic reactions involved in the water-splitting process, masked by fast scan rates. Sometimes even using low scan rates is hard to determine precisely the correct WVW of the aqueous-based electrochemical capacitor. In this sense, we discuss here the best practices to determine the WVW for capacitive current in an absence of water splitting using complementary techniques such as CV, chronoamperometry (CA), and the electrochemical impedance spectroscopy (EIS). To accomplish this end, we prepare and present a model system composed of multiwalled carbon nanotubes buckypaper electrodes housed in the symmetric coin cell and soaked with an aqueous-based electrolyte. The system electrochemical characteristics are carefully evaluated during the progressive enlargement of the cell voltage window. The presence of residual Faradaic current is verified in the transients from the CA study, as well as the impedance changes revealed by EIS as a function of the applied voltage, is discussed. We verify that an apparent voltage window of 2.0 V determined using the CV technique is drastically decreased to 1.2 V after a close inspection of the CA findings used to discriminate the presence of a parasitic Faradaic process. Some orientations are presented to instigate the establishment in the literature of some good scientific practices concerned with the reliable characterization of supercapacitors.
Collapse
|
33
|
Tiwari SK, Thakur AK, Adhikari AD, Zhu Y, Wang N. Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2046. [PMID: 33081271 PMCID: PMC7602964 DOI: 10.3390/nano10102046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
This review acmes the latest developments of composites of metal oxides/sulfide comprising of graphene and its analogues as electrode materials in the construction of the next generation of supercapacitors (SCs). SCs have become an indispensable device of energy-storage modes. A prompt increase in the number of scientific accomplishments in this field, including publications, patents, and device fabrication, has evidenced the immense attention they have attracted from scientific communities. These efforts have resulted in rapid advancements in the field of SCs, focusing on the development of electrode materials with features of high performance, economic viability, and robustness. It has been demonstrated that carbon-based electrode materials mixed with metal oxides and sulfoxides can perform extremely well in terms of energy density, durability, and exceptional cyclic stability. Herein, the state-of-the-art technologies relevant to the fabrication, characterization, and property assessment of graphene-based SCs are discussed in detail, especially for the composite forms when mixing with metal sulfide, metal oxides, metal foams, and nanohybrids. Effective synthetic methodologies for the nanocomposite fabrications via intercalation, coating, wrapping, and covalent interactions will be reviewed. We will first introduce some fundamental aspects of SCs, and briefly highlight the impact of graphene-based nanostructures on the basic principle of SCs, and then the recent progress in graphene-based electrodes, electrolytes, and all-solid-state SCs will be covered. The important surface properties of the metal oxides/sulfides electrode materials (nickel oxide, nickel sulfide, molybdenum oxide, ruthenium oxides, stannous oxide, nickel-cobalt sulfide manganese oxides, multiferroic materials like BaMnF, core-shell materials, etc.) will be described in each section as per requirement. Finally, we will show that composites of graphene-based electrodes are promising for the construction of the next generation of high performance, robust SCs that hold the prospects for practical applications.
Collapse
Affiliation(s)
- Santosh K. Tiwari
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Anukul K. Thakur
- Department of Printed Electronics Engineering, Sunchon National University, Chonnam 57922, Korea;
| | - Amrita De Adhikari
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Yanqiu Zhu
- Department of Mathematics and Physical Sciences, College of Engineering, University of Exeter, London EX4 4QJ, UK
| | - Nannan Wang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Han Y, Fang Y, Ding X, Liu J, Jin Z, Xu Y. A simple and effective flexible electrochemiluminescence sensor for lidocaine detection. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Wang W, Deng W, Wang X, Li Y, Zhou Z, Hu Z, Xue M, Li R. A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors. Chem Commun (Camb) 2020; 56:7965-7968. [PMID: 32538378 DOI: 10.1039/d0cc02040k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A hybrid solvent in salt electrolyte was developed by hybridizing aqueous and organic solvents in concentrated lithium bis(fluorosulfonyl)imide (LiFSI) salts, such an electrolyte provides an unprecedented electrochemical window of 5.35 V, which is even comparable to traditional organic electrolytes, and enables a super-stable carbon-based symmetric supercapacitor with a long life of 10 000 cycles at an operating voltage of 2.5 V.
Collapse
Affiliation(s)
- Weijian Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
KONDO Y, MIYAZAKI K, YOKOYAMA Y, MIYAHARA Y, FUKUTSUKA T, ABE T. Concentrated Sodium Bis(fluorosulfonyl)amide Aqueous Electrolyte Solutions for Electric Double-layer Capacitors. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-63001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Kohei MIYAZAKI
- Hall of Global Environmental Research, Kyoto University
- Graduate School of Engineering, Kyoto University
| | - Yuko YOKOYAMA
- Office of Society-Academia Collaboration for Innovation, Kyoto University
| | | | | | - Takeshi ABE
- Hall of Global Environmental Research, Kyoto University
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
37
|
PARK YY, TOMIYASU H, ATARASHI H, SUGIBAYASHI Y, SAITO M, ASANUMA N. Capacitors Consisting of an Aqueous Electrolyte of the Widest Potential Window —Development towards the Recovery of Regenerating Energy of Automobiles—. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.19-63084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | - Makoto SAITO
- Osaka Research Institute of Industrial Science and Technology
| | | |
Collapse
|
38
|
Wu H, He D, Wang Y. Electrode materials of Cobalt@Nitrogen doped carbon nano rod/reduced graphene oxide on Nickel foam by electrophoretic deposition and 3D rGO aerogel for a high-performance asymmetrical supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Giannakou P, Tas MO, Le Borgne B, Shkunov M. Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8456-8465. [PMID: 31985204 DOI: 10.1021/acsami.9b21283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm-2 at a voltage window of 0-1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
Collapse
Affiliation(s)
- Pavlos Giannakou
- Advanced Technology Institute, Department of Electrical and Electronic Engineering , University of Surrey , Guildford GU2 7XH , United Kingdom
| | - Mehmet O Tas
- Advanced Technology Institute, Department of Electrical and Electronic Engineering , University of Surrey , Guildford GU2 7XH , United Kingdom
| | - Brice Le Borgne
- GREMAN Institute and CERTEM , University of Tours , Tours 37000 , France
| | - Maxim Shkunov
- Advanced Technology Institute, Department of Electrical and Electronic Engineering , University of Surrey , Guildford GU2 7XH , United Kingdom
| |
Collapse
|
40
|
Iqbal MZ, Zakar S, Haider SS. Role of aqueous electrolytes on the performance of electrochemical energy storage device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113793] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Xu Z, Zhang Z, Yin H, Hou S, Lin H, Zhou J, Zhuo S. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv 2020; 10:3122-3129. [PMID: 35497769 PMCID: PMC9048893 DOI: 10.1039/c9ra07842h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly 3,4-ethylenedioxythiophene (PEDOT), play an important role in the application of pseudocapacitors. It is necessary to explore the effects of different conductive polymers in electrode composites. Herein, we prepare zinc sulfide/reduced graphene oxide (ZnS/RGO) by the hydrothermal method, and conductive polymers (PANI, PPy, PTh and PEDOT) doped with the same mass ratio (polymer to 70 wt%) via in situ polymerization on the surface of ZnS/RGO composite. For the supercapacitor application, the ZnS/RGO/PANI ternary electrode composite possesses the best capacitance performance and cycle stability out of all of the polymer-coated ZnS/RGO composites. In the three-electrode system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 1045.3 F g-1 and 160% at 1 A g-1 after 1000 loops. In a two-electrode symmetric system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 722.0 F g-1 and 76.1% at 1 A g-1 after 1000 loops, and the greatest energy and power density of the ZnS/RGO/PANI electrode are 349.7 W h kg-1 and 18.0 kW kg-1. In addition, conductive polymers can effectively improve the voltage range of the electrode composites in 6 M KOH electrolyte for the two-electrode system. The discharge voltage ∼1.6 V makes them promising electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Zichen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Zhiqiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Huiling Yin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Shengxian Hou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Hongtao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
| |
Collapse
|
42
|
Di Palma TM, Migliardini F, Gaele MF, Corbo P. Aluminum-Air Batteries with Solid Hydrogel Electrolytes: Effect of pH Upon Cell Performance. ANAL LETT 2020. [DOI: 10.1080/00032719.2019.1708923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Maria F. Gaele
- Istituto Motori, National Research Council of Italy, Napoli, Italy
| | - Pasquale Corbo
- Istituto Motori, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
43
|
Liu Z, Huang Y, Huang Y, Yang Q, Li X, Huang Z, Zhi C. Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 2020; 49:180-232. [PMID: 31781706 DOI: 10.1039/c9cs00131j] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past two decades, a series of aqueous rechargeable metal-ion batteries (ARMBs) have been developed, aiming at improving safety, environmental friendliness and cost-efficiency in fields of consumer electronics, electric vehicles and grid-scale energy storage. However, the notable gap between ARMBs and their organic counterparts in energy density directly hinders their practical applications, making it difficult to replace current widely-used organic lithium-ion batteries. Basically, this huge gap in energy density originates from cell voltage, as the narrow electrochemical stability window of aqueous electrolytes substantially confines the choice of electrode materials. This review highlights various ARMBs with focuses on their voltage characteristics and strategies that can effectively raise battery voltage. It begins with the discussion on the fundamental factor that limits the voltage of ARMBs, i.e., electrochemical stability window of aqueous electrolytes, which decides the maximum-allowed potential difference between cathode and anode. The following section introduces various ARMB systems and compares their voltage characteristics in midpoint voltage and plateau voltage, in relation to respective electrode materials. Subsequently, various strategies paving the way to high-voltage ARMBs are summarized, with corresponding advancements highlighted. The final section presents potential directions for further improvements and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Khatavkar SN, Sartale SD. Superior supercapacitive performance of grass-like CuO thin films deposited by liquid phase deposition. NEW J CHEM 2020. [DOI: 10.1039/c9nj04201f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First report on deposition and supercapacitive performance of grass-like CuO thin films by liquid phase deposition on flat and mesh stainless steel (SS). The maximum specific capacitances on flat and mesh SS are 552 and 849 F g−1.
Collapse
Affiliation(s)
- Shreelekha N. Khatavkar
- Thin Films and Nanomaterials Laboratory
- Department of Physics
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shrikrishna D. Sartale
- Thin Films and Nanomaterials Laboratory
- Department of Physics
- Savitribai Phule Pune University
- Pune 411007
- India
| |
Collapse
|
45
|
Ueda H, Nishiyama K, Yoshimoto S. Highly charged fullerene anions electrochemically stabilized by anionic polymers. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Miyashita K, Kondo T, Sugai S, Tei T, Nishikawa M, Tojo T, Yuasa M. Boron-doped Nanodiamond as an Electrode Material for Aqueous Electric Double-layer Capacitors. Sci Rep 2019; 9:17846. [PMID: 31780797 PMCID: PMC6882838 DOI: 10.1038/s41598-019-54197-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/09/2019] [Indexed: 11/12/2022] Open
Abstract
Herein, a conductive boron-doped nanodiamond (BDND) particle is prepared as an electrode material for an aqueous electric double-layer capacitor with high power and energy densities. The BDND is obtained by depositing a boron-doped diamond (BDD) on a nanodiamond particle substrate with a primary particle size of 4.7 nm via microwave plasma-assisted chemical vapor deposition, followed by heat treatment in air. The BDND comprises BDD and sp2 carbon components, and exhibits a conductivity above 10−2 S cm−1 and a specific surface area of 650 m2 g−1. Cyclic voltammetry measurements recorded in 1 M H2SO4 at a BDND electrode in a two-electrode system shows a capacitance of 15.1 F g−1 and a wide potential window (cell voltage) of 1.8 V, which is much larger than that obtained at an activated carbon electrode, i.e., 0.8 V. Furthermore, the cell voltage of the BDND electrode reaches 2.8 V when using saturated NaClO4 as electrolyte. The energy and power densities per unit weight of the BDND for charging–discharging in 1 M H2SO4 at the BDND electrode cell are 10 Wh kg−1 and 104 W kg−1, respectively, and the energy and power densities per unit volume of the BDND layer are 3–4 mWh cm−3 and 10 W cm−3, respectively. Therefore, the BDND is a promising candidate for the development of a compact aqueous EDLC device with high energy and power densities.
Collapse
Affiliation(s)
- Kenjo Miyashita
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan.
| | - Seiya Sugai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Takahiro Tei
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| | - Masahiro Nishikawa
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| | - Toshifumi Tojo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
| | - Makoto Yuasa
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan
| |
Collapse
|
47
|
Kongsawatvoragul K, Kalasina S, Kidkhunthod P, Sawangphruk M. Charge storage mechanisms of cobalt hydroxide thin film in ionic liquid and KOH electrolytes for asymmetric supercapacitors with graphene aerogel. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Krois K, Hüfner L, Gläsel J, Etzold BJM. Simulative Approach for Linking Electrode and Electrolyte Properties to Supercapacitor Performance. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Konrad Krois
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Lucas Hüfner
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Jan Gläsel
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Bastian J. M. Etzold
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
49
|
Tian M, Li R, Liu C, Long D, Cao G. Aqueous Al-Ion Supercapacitor with V 2O 5 Mesoporous Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15573-15580. [PMID: 30965001 DOI: 10.1021/acsami.9b02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A high-performance, low-cost, aqueous Al-ion supercapacitor was fabricated based on nanostructured V2O5 impregnated mesoporous carbon microspheres (MCM/V2O5) electrodes and Al2(SO4)3 electrolyte for efficient energy storage. MCM/V2O5 composites exhibit high dispersion of nanostructured V2O5 in a mesoporous carbon matrix, beneficial to fast reversible redox reactions with a short diffusion path. The corresponding capacitor illustrates the distinguishable redox behavior, most likely due to the Al3+ intercalation/deintercalation leading to the reduction/oxidation of V5+/V4+. It delivers a high-energy density of 18.0 Wh kg-1 at 147 W kg-1 and a long cycling lifespan with over 88% capacitance retention over 10 000 cycles. The competitive performance can be ascribed to the integration of the electric double layer capacitance provided from MCM with pseudocapacitance contributed by nanostructured V2O5. This work offers the possibilities of high-performance aqueous capacitors based on trivalent Al-ion as guest species, providing new directions for future development of supercapacitors.
Collapse
Affiliation(s)
- Meng Tian
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , China
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ruihan Li
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Chaofeng Liu
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Donghui Long
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Guozhong Cao
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
50
|
Ghosh S, Polaki S, Sahoo G, Jin EM, Kamruddin M, Cho JS, Jeong SM. Designing metal oxide-vertical graphene nanosheets structures for 2.6 V aqueous asymmetric electrochemical capacitor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|