1
|
Sharma S, Kumari P, Shandilya M, Thakur S, Perveen K, Sheikh I, Ahmed Z, Sayyed R, Mastinu A. The Combination of α-Fe 2O 3 NP and Trichoderma sp. Improves Antifungal Activity Against Fusarium Wilt. J Basic Microbiol 2025; 65:e2400613. [PMID: 39828989 PMCID: PMC11973845 DOI: 10.1002/jobm.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively. Simulation of BCA metabolites to nanoparticle biocontrol metabolites is considered the most effective biocontrol approach. Combining Fe2O3 nanoparticles and Trichoderma in nursery and field conditions manages pathogens and increases plant growth characteristics. The present study evaluated the commercial biocontrol strains and the use of NPFe in combination with Trichoderma harzianum to enhance the biocontrol potential of T. harzianum against soil-borne pathogens. The effectiveness of (NPFe + T. harzianum) was evaluated under in vitro conditions where combination was found most effective upto (87.63%) mycelial growth inhibition of pathogen and under field conditions lowest pooled Fusarium wilt incidence (19.54%) was recorded. Nanocomposites are beneficial for agricultural sustainability and environmental safety by upregulating the expression of genes linked to these processes, Fe NPs can activate plant defense mechanisms and increase plant resistance to pathogenic invasions. Additionally, as iron is a necessary component for plant growth and development, Fe NPs promote better nutrient uptake.
Collapse
Affiliation(s)
- Sushma Sharma
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Poonam Kumari
- Department of Physics, Akal College of Basic SciencesEternal UniversityBaru SahibIndia
| | - Mamta Shandilya
- School of Physics and Materials ScienceShoolini UniversitySolanIndia
| | - Sapna Thakur
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Imran Sheikh
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Zubair Ahmed
- Department of Botany, Hindu CollegeMahatma Jyotiba Phule Rohilkhand UniversityBareillyIndia
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and ScienceUniversity of NizwaNizwaSultanate of Oman
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of PharmacologyUniversity of BresciaBresciaItaly
| |
Collapse
|
2
|
Mohan B, Abishad P, Arya PR, Dias M, Vinod VK, Karthikeyan A, Juliet S, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Elucidating antibiofilm as well as photocatalytic disinfection potential of green synthesized nanosilver against multi-drug-resistant bacteria and its photodegradation ability of cationic dyes. Gut Pathog 2024; 16:51. [PMID: 39334435 PMCID: PMC11438043 DOI: 10.1186/s13099-024-00639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bioinspired nanomaterials have widely been employed as suitable alternatives for controlling biofilm and pathogens due to their distinctive physico-chemical properties. METHODOLOGY This study explored the antibiofilm as well as photocatalytic potential of silver (Ag) nanoparticles (NPs) synthesized using the cell-free supernatant of Lactobacillus acidophilus for the disinfection of multi-drug-resistant (MDR) strains of enteroaggregative E. coli (EAEC), Salmonella Typhimurium, S. Enteritidis and methicillin-resistant Staphylococcus aureus (MRSA) on exposure to LED light. In addition, the removal of toxic cationic dyes i.e., methylene blue (MB), rhodamine B (RhB) and crystal violet (CV) was explored on exposure to sunlight, LED and UV lights. RESULTS Initially, the synthesis of AgNPs was verified using UV- Vis spectroscopy, X-ray diffraction and transmission electron microscopy. The synthesized AgNPs exhibited MIC and MBC values of 7.80 and 15.625 µg/mL, respectively. The AgNPs exhibited significant inhibition (P < 0.001) in the biofilm-forming ability of all the tested MDR isolates. On exposure to LED light, the AgNPs could effectively eliminate all the tested MDR isolates in a dose-dependent manner. While performing photocatalytic assays, the degradation of RhB was observed to be quite slower than MB and CV irrespective of the tested light sources. Moreover, the sunlight as well as UV light exhibited better photodegradation capacity than LED light. Notwithstanding the light sources, RhB followed zero-order kinetics; however, MB and CV followed primarily second-order kinetics. CONCLUSION The green synthesized AgNPs were found to be an effective photocatalytic as well as antifouling candidate that could be applied in therapeutics and wastewater treatment.
Collapse
Affiliation(s)
- Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Marita Dias
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India.
| |
Collapse
|
3
|
Liu X, Li T, Cui X, Tao R, Gao Z. Antifungal mechanism of nanosilver biosynthesized with Trichoderma longibrachiatum and its potential to control muskmelon Fusarium wilt. Sci Rep 2024; 14:20242. [PMID: 39215137 PMCID: PMC11364820 DOI: 10.1038/s41598-024-71282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.
Collapse
Affiliation(s)
- Xian Liu
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tong Li
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohui Cui
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Mishra S, Gantayat S, Dhara C, Bhatt A, Singh M, Vijayakumar S, Rajput M. Advances in bioinspired nanomaterials managing microbial biofilms and virulence: A critical analysis. Microb Pathog 2024; 193:106738. [PMID: 38857710 DOI: 10.1016/j.micpath.2024.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Microbial virulence and biofilm formation stand as a big concern against the goal of achieving a green and sustainable future. Microbial pathogenesis is the process by which the microbes (bacterial, fungal, and viral) cause illness in their respective host organism. 'Nanotechnology' is a state-of-art discipline to address this problem. The use of conventional techniques against microbial proliferation has been challenging against the environment. To tackle this problem, there has been a revolution in this multi-disciplinary field, to address the aspect of bioinspired nanomaterials in the antibiofilm and antimicrobial sector. Bioinspired nanomaterials prove to be a potential antibiofilm and antimicrobial agent as they are non-hazardous to the environment and mostly synthesized using a single-step reduction protocol. They exhibit synergistic effects against bacterial, fungal, and viral pathogens and thereby, control the virulence. In this literature review, we have elucidated the potential of bioinspired nanoparticles as well as nanomaterials as a promising anti-microbial treatment pedagogy and throw light on the advancements in how smart photo-switchable platforms have been designed to exhibit both bacterial releasing as well as bacterial-killing properties. Certain limitations and possible outcomes of these bio-based nanomaterials have been discussed in the hope of achieving a green and sustainable ecosystem.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India.
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Ayush Bhatt
- School of Biosciences, Apeejay Stya University, Sohna-Palwal Road, Gurugram, Haryana, 122103, India
| | - Monika Singh
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, China, 264209
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Arcadia Grant, P.O., Chandanwari, Dehradun, 248007, India; Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India.
| |
Collapse
|
5
|
Francis DV, Subhan A, I Mourad AH, K Abdalla A, F R Ahmed Z. Optimizing germination conditions of Ghaf seed using ZnO nanoparticle priming through Taguchi method analysis. Sci Rep 2024; 14:15946. [PMID: 38987397 PMCID: PMC11237072 DOI: 10.1038/s41598-024-67025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Ghaf, a resilient tree in arid environments, plays a critical role in ecological restoration, desertification mitigation, and cultural heritage preservation. However, the seeds' inherent challenges, notably their hard outer coating restricting germination, emphasize the pressing need for innovative strategies. This work aimed to investigate the optimization of Ghaf seed germination process through seed priming with ZnO nanoparticles treatment (duration (t), concentration (c), temperature (T), and agitation (a), employing the Taguchi method for efficient experimental design. Furthermore, the study includes Analysis of Variance (ANOVA), analysis for the regression model to assess the significance of predictor variables and their interactions, thereby strengthening the statistical validity of our optimization approach. Notably, it revealed that concentration is a pivotal influencer in optimization of Ghaf seed germination. The results showed that the concentration of ZnO nanoparticles has no linear relation with any other parameters. To verify the outcomes, validation tests were performed utilizing the predicted optimal parameters. The observed low error ratio, falling within the range of 1 to 6%, confirmed the success of the Taguchi methodology in identifying optimal levels of the factors chosen. Significantly, ZnO-primed seeds showcased a remarkable enhancement in Ghaf seed germination, increasing from 15 to 88%. This study introduces a novel approach utilizing ZnO nanoparticle treatment optimized through the Taguchi method, significantly enhancing seed germination rates of Ghaf seeds and offering a promising avenue for sustainable agricultural practices in arid environments.
Collapse
Affiliation(s)
- Dali V Francis
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, UAE
| | - Abdul Subhan
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirates University, 15551, Al Ain, UAE
| | - Abdel-Hamid I Mourad
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirates University, 15551, Al Ain, UAE
| | - Abdelmoneim K Abdalla
- Food Science and Technology Department, College of Agriculture, South Valley University, Qena, 83523, Egypt.
| | - Zienab F R Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, UAE.
| |
Collapse
|
6
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Possible Molecular Targeting of Biofilm-Associated Genes by Nano-Ag in Candida albicans. Appl Biochem Biotechnol 2024; 196:4205-4233. [PMID: 37922031 DOI: 10.1007/s12010-023-04758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/05/2023]
Abstract
The treatment of candidiasis infections is hindered by the presence of biofilms. Here, we report the biofilm-associated genes as potential molecular targets by silver nanoparticles (nano-Ag) in Candida albicans. Nano-Ag was biosynthesized using Bacillus licheniformis, Bacillus cereus, and Fusarium oxysporum. The physicochemical properties of the microbial-synthesized of nano-Ag are widely characterized by visual observation, ultraviolet-visible spectroscopy, scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. Characterization results revealed the formation of nano-Ag. Antiplanktonic cells and antibiofilm activities of nano-Ag were also demonstrated by minimum inhibition concentrations (MIC), minimum fungicidal concentration (MFC), MFC/MIC ratio, crystal violet staining, 2,3-bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT), and microscopic image analysis. We have analyzed the expressions of biofilm-associated genes in C. albicans treated with different concentrations of nano-Ag based on MIC. The expression profile of BCR1, ALS1, ALS3, HWP1, and ECE1 showed downregulated genes involved in these pathways by the treatment with nanoparticles. Negative regulators, TUP1, NRG1, and TOR1, were upregulated by the treatment of nano-Ag. Our study suggests that nano-Ag affects gene expression and may subsequently decrease the pathogenesis of C. albicans by inhibiting biofilm formation. Molecular targeting of biofilm-associated genes involved in biofilm formation by nano-Ag may be an effective treatment strategy for candidiasis infections.
Collapse
Affiliation(s)
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Nima Bahador
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
7
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
8
|
Wu X, Ibrahim N, Liang Y, Liu X. Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata. Microorganisms 2024; 12:1088. [PMID: 38930470 PMCID: PMC11206080 DOI: 10.3390/microorganisms12061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 μg/L) and chelerythrine (393.31 μg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Yili Liang
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| |
Collapse
|
9
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
10
|
Kashyap AS, Manzar N, Vishwakarma SK, Mahajan C, Dey U. Tiny but mighty: metal nanoparticles as effective antimicrobial agents for plant pathogen control. World J Microbiol Biotechnol 2024; 40:104. [PMID: 38372816 DOI: 10.1007/s11274-024-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Metal nanoparticles (MNPs) have gained significant attention in recent years for their potential use as effective antimicrobial agents for controlling plant pathogens. This review article summarizes the recent advances in the role of MNPs in the control of plant pathogens, focusing on their mechanisms of action, applications, and limitations. MNPs can act as a broad-spectrum antimicrobial agent against various plant pathogens, including bacteria, fungi, and viruses. Different types of MNPs, such as silver, copper, zinc, iron, and gold, have been studied for their antimicrobial properties. The unique physicochemical properties of MNPs, such as their small size, large surface area, and high reactivity, allow them to interact with plant pathogens at the molecular level, leading to disruption of the cell membrane, inhibition of cellular respiration, and generation of reactive oxygen species. The use of MNPs in plant pathogen control has several advantages, including their low toxicity, selectivity, and biodegradability. However, their effectiveness can be influenced by several factors, including the type of MNP, concentration, and mode of application. This review highlights the current state of knowledge on the use of MNPs in plant pathogen control and discusses the future prospects and challenges in the field. Overall, the review provides insight into the potential of MNPs as a promising alternative to conventional chemical agents for controlling plant pathogens.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India.
| | - Shailesh Kumar Vishwakarma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Chetna Mahajan
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, HP, 176062, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Sepahijala, Tripura, India
| |
Collapse
|
11
|
Savvidou MG, Kontari E, Kalantzi S, Mamma D. Green Synthesis of Silver Nanoparticles Using the Cell-Free Supernatant of Haematococcus pluvialis Culture. MATERIALS (BASEL, SWITZERLAND) 2023; 17:187. [PMID: 38204044 PMCID: PMC10779655 DOI: 10.3390/ma17010187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using the cell-free supernatant of a Haematococcus pluvialis culture (CFS) was implemented in the current study, under illumination conditions. The reduction of Ag+ to AgNPs by the CFS could be described by a pseudo-first-order kinetic equation at the temperature range tested. A high reaction rate during synthesis and stable AgNPs were obtained at 45 °C, while an alkaline pH (pH = 11.0) and a AgNO3 aqueous solution to CFS ratio of 90:10 (v/v) proved to be the most effective conditions in AgNPs synthesis. A metal precursor (AgNO3) at the concentration range tested (1-5 mM) was the limited reactant in the synthesis process. The synthesis of AgNPs was accomplished under static and agitated conditions. Continuous stirring enhanced the rate of reaction but induced aggregation at prolonged incubation times. Zeta potential and polydispersity index measurements indicated stable AgNPs and the majority of AgNPs formation occurred in the monodisperse phase. The X-ray diffraction (XRD) pattern revealed the face-centered cubic structure of the formed AgNPs, while TEM analysis revealed that the AgNPs were of a quasi-spherical shape with a size from 30 to 50 nm. The long-term stability of the AgNPs could be achieved in darkness and at 4 °C. In addition, the synthesized nanoparticles showed antibacterial activity against Escherichia coli.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Evgenia Kontari
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| |
Collapse
|
12
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
13
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: a review. Biometals 2023; 36:745-776. [PMID: 36482125 DOI: 10.1007/s10534-022-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles currently show multiple applications in the industrial, clinical and environmental fields due to their particular physicochemical characteristics. Conventional approaches for the synthesis of silver nanoparticles (AgNPs) are based on physicochemical processes which, although they show advantages such as high productivity and good monodispersity of the nanoparticles obtained, have disadvantages such as the high energy cost of the process and the use of harmful radiation or toxic chemical reagents that can generate highly polluting residues. Given the current concern about the environment and the potential cytotoxic effects of AgNPs, once they are released into the environment, a new green chemistry approach to obtain these nanoparticles called biosynthesis has emerged. This new alternative process counteracts some limitations of conventional synthesis methods, using the metabolic capabilities of living beings to manufacture nanomaterials, which have proven to be more biocompatible than their counterparts obtained by traditional methods. Among the organisms used, fungi are outstanding and are therefore being explored as potential nanofactories in an area of research known as mycosynthesis. For all the above, this paper aims to illustrate the advances in state of the art in the mycosynthesis of AgNPs, outlining the two possible mechanisms involved in the process, as well as the AgNPs stabilizing substances produced by fungi, the variables that can affect mycosynthesis at the in vitro level, the applications of AgNPs obtained by mycosynthesis, the patents generated to date in this field, and the limitations encountered by researchers in the area.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Universidad Nacional de Colombia- Doctorado en Biotecnología- Grupo de Investigación en Macromoléculas UN- Grupo de Investigación Biología Ambiental UPTC. Grupo de Investigación Gestión Ambiental Universidad de Boyacá, Tunja, Colombia.
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de Investigación Biología Ambiental, Tunja, Colombia
| | - Y Cesar A Sierra
- Universidad Nacional de Colombia. Grupo de Investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
14
|
Agrawal S, Bhatt A. Microbial Endophytes: Emerging Trends and Biotechnological Applications. Curr Microbiol 2023; 80:249. [PMID: 37347454 DOI: 10.1007/s00284-023-03349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/16/2022] [Indexed: 06/23/2023]
Abstract
A plethora of knowledge on the role of endophytic microorganisms has been reported in recent years. The cooperative chemistry between the endophytes and the internal host tissue has turned them into a crucial aid for biotechnological applications. Microbial endophytes are ubiquitous among most plant species on earth and contribute to the benefit of host plants by generating a wide range of metabolites that provide the plant with survival value. Endophytes can either directly stimulate plant growth by producing phytohormones or indirectly stimulate plant growth by increasing the availability of soil nutrients to plants. Endophytes may also help suppress diseases in plants directly by neutralizing environmental toxic elements, and by inhibiting plant pathogens by antagonistic action, or indirectly by stimulating induced plant systemic resistance. Several natural compounds produced by endophytes as secondary metabolites are beneficial to both plants and humans. This is why endophytes are regarded as a significant source of novel natural products of value in modern medicine, agriculture, and industry. Endophytes are known for producing pigments, bioactive compounds, and industrially important enzymes, like glucanase, amylase, laccase, etc. Some endophytes can also produce nanoparticles that potentially have numerous applications in a variety of fields. They also play an important role in biodegradation and bioremediation, both of which are beneficial to the environment and ecology. In this review, we highlighted potential biotechnological applications of endophytic microbes, as well as their diverse importance in plant growth and public health.
Collapse
Affiliation(s)
- Shruti Agrawal
- VMSB Uttarakhand Technical University, Dehradun, Uttarakhand, India, 248001
| | - Arun Bhatt
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Ghurdauri, Pauri Garhwal, Uttarakhand, India, 246001.
| |
Collapse
|
15
|
Chu W, Wang P, Ma Z, Peng L, Guo C, Fu Y, Ding L. Lupeol-loaded chitosan-Ag + nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int J Biol Macromol 2023; 243:125310. [PMID: 37315678 DOI: 10.1016/j.ijbiomac.2023.125310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Lupeol, a pentacyclic triterpene, has demonstrated significant wound healing properties; however, its low water solubility has limited its clinical applicability. To overcome this limitation, we utilized Ag+-modified chitosan (CS-Ag) nanoparticles to deliver lupeol, resulting in the formation of CS-Ag-L-NPs. These nanoparticles were then encapsulated within a temperature-sensitive, self-assembled sericin hydrogel. Various analytical methods, including SEM, FTIR, XRD, HPLC, TGA assay, hemolysis and antibacterial activity tests, were employed to characterize the nanoparticles. Additionally, an infectious wound model was used to evaluate the therapeutic and antibacterial efficacy of the CS-Ag-L-NPs modified sericin hydrogel. Our results showed that the encapsulation efficiency of lupeol in CS-Ag-L-NPs reached 62.1 %, with good antibacterial activity against both gram-positive and gram-negative bacteria and a low hemolysis ratio (<5 %). The CS-Ag-L-NPs sericin gel exhibited multiple beneficial effects, including inhibiting bacterial proliferation in wound beds, promoting wound healing via accelerated re-epithelialization, reducing inflammation, and enhancing collagen fiber deposition. We conclude that the CS-Ag-L-NPs loaded sericin hydrogel has tremendous potential for development as a multifunctional therapeutic platform capable of accelerating wound healing and effectively suppressing bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Wenhui Chu
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Research Institute of Bio-medical and Chemical Industry CO., Ltd, Taizhou, Zhejiang 318000, PR China
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, Jinhua, Zhejiang 321000, PR China
| | - Zhe Ma
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Lin Peng
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Chenyuan Guo
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Lingzhi Ding
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
16
|
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 2023; 13:211. [PMID: 37251731 PMCID: PMC10209376 DOI: 10.1007/s13205-023-03636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.
Collapse
Affiliation(s)
- Aditya Banyal
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Shubham Tiwari
- IMS Engineering College, Ghaziabad, Uttar Pradesh 201009 India
| | - Aparajita Sharma
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Ishita Chanana
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 South Korea
| | - Saurabh Kulshrestha
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Pradeep Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
17
|
Pasquoto-Stigliani T, Guilger-Casagrande M, Campos EVR, Germano-Costa T, Bilesky-José N, Migliorini BB, Feitosa LO, Sousa BT, de Oliveira HC, Fraceto LF, Lima R. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. J Nanobiotechnology 2023; 21:166. [PMID: 37231443 PMCID: PMC10210372 DOI: 10.1186/s12951-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.
Collapse
Affiliation(s)
- Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Tais Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Natalia Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bianca B Migliorini
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Leandro O Feitosa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bruno T Sousa
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Halley C de Oliveira
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Renata Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
18
|
Exclusive Biosynthesis of Pullulan Using Taguchi’s Approach and Decision Tree Learning Algorithm by a Novel Endophytic Aureobasidium pullulans Strain. Polymers (Basel) 2023; 15:polym15061419. [PMID: 36987200 PMCID: PMC10058109 DOI: 10.3390/polym15061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Pullulan is a biodegradable, renewable, and environmentally friendly hydrogel biopolymer, with potential uses in food, medicine, and cosmetics. New endophytic Aureobasidium pullulans (accession number; OP924554) was used for the biosynthesis of pullulan. Innovatively, the fermentation process was optimized using both Taguchi’s approach and the decision tree learning algorithm for the determination of important variables for pullulan biosynthesis. The relative importance of the seven tested variables that were obtained by Taguchi and the decision tree model was accurate and followed each other’s, confirming the accuracy of the experimental design. The decision tree model was more economical by reducing the quantity of medium sucrose content by 33% without a negative reduction in the biosynthesis of pullulan. The optimum nutritional conditions (g/L) were sucrose (60 or 40), K2HPO4 (6.0), NaCl (1.5), MgSO4 (0.3), and yeast extract (1.0) at pH 5.5, and short incubation time (48 h), yielding 7.23% pullulan. The spectroscopic characterization (FT-IR and 1H-NMR spectroscopy) confirmed the structure of the obtained pullulan. This is the first report on using Taguchi and the decision tree for pullulan production by a new endophyte. Further research is encouraged for additional studies on using artificial intelligence to maximize fermentation conditions.
Collapse
|
19
|
Ghoniem AA, Moussa Z, Alenzi AM, Alotaibi AS, Fakhry H, El-Khateeb AY, Saber WIA, Elsayed A. Pseudomonas alcaliphila NEWG-2 as biosorbent agent for methylene blue dye: optimization, equilibrium isotherms, and kinetic processes. Sci Rep 2023; 13:3678. [PMID: 36872381 PMCID: PMC9986242 DOI: 10.1038/s41598-023-30462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023] Open
Abstract
In comparison to physicochemical and chemical methods, microbial dye biosorption is regarded as an eco-effective and economically viable alternative and is a widely applied method due to its high efficiency and compatibility with the environment. Therefore, the idea of this study is to clarify to what extent the viable cells and the dry biomass of Pseudomonas alcaliphila NEWG-2 can improve the biosorption of methylene blue (MB) from a synthetic wastewater sample. The array of Taguchi paradigm has been conducted to ascertain five variables affecting the biosorption of MB by broth forms of P. alcaliphila NEWG. The data of MB biosorption were familiar to the predicted ones, indicating the precision of the Taguchi model's prediction. The maximum biosorption of MB (87.14%) was achieved at pH 8, after 60 h, in a medium containing 15 mg/ml MB, 2.5% glucose, and 2% peptone, with sorting the highest signal-to-noise ratio (38.80). FTIR spectra detected various functional groups (primary alcohol, α, β-unsaturated ester, symmetric NH2 bending, and strong C-O stretching) on the bacterial cell wall that participated in the biosorption of MB. Furthermore, the spectacular MB biosorption ability was validated by equilibrium isotherms and kinetic studies (the dry biomass form), which were derived from the Langmuir model (qmax = 68.827 mg/g). The equilibrium time was achieved in about 60 min, with 70.5% of MB removal. The biosorption kinetic profile might be adequately represented by pseudo-second order and Elovich models. The changes in the bacterial cells before and after the biosorption of MB were characterized using a scanning electron microscope. As realized from the aforementioned data, the bacterium is a talented, effective, eco-friendly, and low-cost bio-sorbent for the decolorization and remedy of an industrial effluent containing MB from an aqueous environment. The current outcomes in the biosorption of MB molecules promote the use of the bacterial strain as viable cells and/or dry biomass in ecosystem restoration, environmental cleanup, and bioremediation studies.
Collapse
Affiliation(s)
- Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Asma Massad Alenzi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman Y El-Khateeb
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
20
|
Oves M, Rauf MA, Qari HA. Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030615. [PMID: 36770576 PMCID: PMC9920917 DOI: 10.3390/nano13030615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/29/2023]
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohd Ahmar Rauf
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Huda A. Qari
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
21
|
Mohamed HI, Fawzi EM, Abd-Elsalam KA, Ashry NA, Basit A. Endophytic fungi-derived biogenic nanoparticles: Mechanisms and applications. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:361-391. [DOI: 10.1016/b978-0-323-99922-9.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Yadav SA, Suvathika G, Alghuthaymi MA, Abd-Elsalam KA. Fungal-derived nanoparticles for the control of plant pathogens and pests. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:755-784. [DOI: 10.1016/b978-0-323-99922-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Garcia-Marin LE, Juarez-Moreno K, Vilchis-Nestor AR, Castro-Longoria E. Highly Antifungal Activity of Biosynthesized Copper Oxide Nanoparticles against Candida albicans. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3856. [PMID: 36364632 PMCID: PMC9658237 DOI: 10.3390/nano12213856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans (ATCC SC5314) was exposed to biosynthesized copper oxide nanoparticles (CuONPs) to determine their inhibitory capacity. Nanoparticles were polydisperse of small size (5.8 ± 3.5 nm) with irregular shape. The minimum inhibitory concentration (MIC) against C. albicans was 35.5 µg/mL. The production of reactive oxygen species (ROS) of C. albicans was verified when exposed to different concentrations of CuONPs. Ultrastructural analysis of C. albicans revealed a high concentration of CuONPs in the cytoplasm and outside the cell; also, nanoparticles were detected within the cell wall. Cytotoxic analyses using fibroblasts (L929), macrophages (RAW 264.7), and breast (MCF-12) cell lines show good results of cell viability when exposed at the MIC. Additionally, a hemocompatibility analysis was carried out and was found to be below 5%, considered the threshold for biocompatibility. Therefore, it is concluded that the biosynthesized CuONPs have a high potential for developing a topical antifungal treatment.
Collapse
Affiliation(s)
- Luis Enrique Garcia-Marin
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Blvd. Juriquilla 3001, Juriquilla La Mesa, Juriquilla 76230, Queretaro, Mexico
| | - Alfredo Rafael Vilchis-Nestor
- Sustainable Chemistry Research Joint Center UAEM—UNAM (CCIQS) Toluca-Atlacomulco Road Km 14.5, San Cayetano 50200, Toluca, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
24
|
Moussa Z, Ghoniem AA, Elsayed A, Alotaibi AS, Alenzi AM, Hamed SE, Elattar KM, Saber WIA. Innovative binary sorption of Cobalt(II) and methylene blue by Sargassum latifolium using Taguchi and hybrid artificial neural network paradigms. Sci Rep 2022; 12:18291. [PMID: 36316520 PMCID: PMC9622854 DOI: 10.1038/s41598-022-22662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
The present investigation has been designed by Taguchi and hybrid artificial neural network (ANN) paradigms to improve and optimize the binary sorption of Cobalt(II) and methylene blue (MB) from an aqueous solution, depending on modifying physicochemical conditions to generate an appropriate constitution for a highly efficient biosorption by the alga; Sargassum latifolium. Concerning Taguchi's design, the predicted values of the two responses were comparable to actual ones. The biosorption of Cobalt(II) ions was more efficient than MB, the supreme biosorption of Cobalt(II) was verified in run L21 (93.28%), with the highest S/N ratio being 39.40. The highest biosorption of MB was reached in run L22 (74.04%), with a S/N ratio of 37.39. The R2 and adjusted R2 were in reasonable values, indicating the validity of the model. The hybrid ANN model has exclusively emerged herein to optimize the biosorption of both Cobalt(II) and MB simultaneously, therefore, the ANN model was better than the Taguchi design. The predicted values of Cobalt(II) and MB biosorption were more obedience to the ANN model. The SEM analysis of the surface of S. latifolium showed mosaic form with massive particles, as crosslinking of biomolecules of the algal surface in the presence of Cobalt(II) and MB. Viewing FTIR analysis showed active groups e.g., hydroxyl, α, β-unsaturated ester, α, β-unsaturated ketone, N-O, and aromatic amine. To the best of our knowledge, there are no reports deeming the binary sorption of Cobalt(II) and MB ions by S. latifolium during Taguchi orthogonal arrays and hybrid ANN.
Collapse
Affiliation(s)
- Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt.
| | - Amenah S Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Sahar E Hamed
- Chemistry Department, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt.
| |
Collapse
|
25
|
Prasastha Ram V, Yasur J, Abishad P, Unni V, Purushottam Gourkhede D, Nishanth MAD, Niveditha P, Vergis J, Singh Malik SV, Kullaiah B, Kurkure NV, Ramesh C, Dufossé L, Rawool DB, Barbuddhe SB. Antimicrobial Efficacy of Green Synthesized Nanosilver with Entrapped Cinnamaldehyde against Multi-Drug-Resistant Enteroaggregative Escherichia coli in Galleria mellonella. Pharmaceutics 2022; 14:1924. [PMID: 36145672 PMCID: PMC9503582 DOI: 10.3390/pharmaceutics14091924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/11/2022] Open
Abstract
The global emergence of antimicrobial resistance (AMR) needs no emphasis. In this study, the in vitro stability, safety, and antimicrobial efficacy of nanosilver-entrapped cinnamaldehyde (AgC) against multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC) were investigated. Further, the in vivo antibacterial efficacy of AgC against MDR-EAEC was also assessed in Galleria mellonella larval model. In brief, UV-Vis and Fourier transform infrared (FTIR) spectroscopy confirmed effective entrapment of cinnamaldehyde with nanosilver, and the loading efficiency was estimated to be 29.50 ± 0.56%. The AgC was of crystalline form as determined by the X-ray diffractogram with a mono-dispersed spherical morphology of 9.243 ± 1.83 nm in electron microscopy. AgC exhibited a minimum inhibitory concentration (MIC) of 0.008−0.016 mg/mL and a minimum bactericidal concentration (MBC) of 0.008−0.032 mg/mL against MDR- EAEC strains. Furthermore, AgC was stable (high-end temperatures, proteases, cationic salts, pH, and host sera) and tested safe for sheep erythrocytes as well as secondary cell lines (RAW 264.7 and HEp-2) with no negative effects on the commensal gut lactobacilli. in vitro, time-kill assays revealed that MBC levels of AgC could eliminate MDR-EAEC infection in 120 min. In G. mellonella larvae, AgC (MBC values) increased survival, decreased MDR-EAEC counts (p < 0.001), had an enhanced immunomodulatory effect, and was tested safe to the host. These findings infer that entrapment enhanced the efficacy of cinnamaldehyde and AgNPs, overcoming their limitations when used individually, indicating AgC as a promising alternative antimicrobial candidate. However, further investigation in appropriate animal models is required to declare its application against MDR pathogens.
Collapse
Affiliation(s)
- Vemula Prasastha Ram
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Jyothsna Yasur
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Diksha Purushottam Gourkhede
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | - Maria Anto Dani Nishanth
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- ICAR-National Research Centre on Meat, Hyderabad 500092, India
| | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Pookode 673576, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Byrappa Kullaiah
- Centre for Research and Innovations, BGS Institute of Technology, Adichunchanagiri University, Mandya 571448, India
| | | | - Chatragadda Ramesh
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research, National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Département Agroalimentaire, Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, F-97744 Saint-Denis, France
| | | | | |
Collapse
|
26
|
Sonawane H, Shelke D, Chambhare M, Dixit N, Math S, Sen S, Borah SN, Islam NF, Joshi SJ, Yousaf B, Rinklebe J, Sarma H. Fungi-derived agriculturally important nanoparticles and their application in crop stress management - Prospects and environmental risks. ENVIRONMENTAL RESEARCH 2022; 212:113543. [PMID: 35613631 DOI: 10.1016/j.envres.2022.113543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has a wide range of agricultural applications, with emphasize on the development of novel nano-agrochemicals such as, nano-fertilizer and nano-pesticides. It has a significant impact on sustainable agriculture by increasing agricultural productivity, while reducing the use of inorganic fertilizers, pesticides, and herbicides. Nano-coating delivery methods for agrochemicals have improved agrochemical effectiveness, safety, and consistency. Biosynthesis of nanoparticles (NPs) has recently been recognized as an effective tool, contrary to chemically derived NPs, for plant abiotic and biotic stress control, and crop improvement. In this regard, fungi have tremendous scope and importance for producing biogenic NPs of various sizes, shapes, and characteristics. Fungi are potential candidates for synthesis of biogenic NPs due to their enhanced bioavailability, biological activity, and higher metal tolerance. However, their biomimetic properties and high capacity for dispersion in soil, water environments, and foods may have negative environmental consequences. Furthermore, their bioaccumulation raises significant concerns about the novel properties of nanomaterials potentially causing adverse biological effects, including toxicity. This review provides a concise outline of the growing role of fungal-mediated metal NPs synthesis, its potential applications in crop field, and associated issues of nano-pollution in soil and its future implications.
Collapse
Affiliation(s)
- Hiralal Sonawane
- PG Research Centre Botany, PDEA's Prof. Ramkrishna More ACS College, Akurdi, Pune, Maharashtra, India
| | - Deepak Shelke
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Mahadev Chambhare
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Nishi Dixit
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Siddharam Math
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Suparna Sen
- Environmental Biotechnology Lab, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | | | - Nazim Forid Islam
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India
| | - Sanket J Joshi
- Oil & Gas Research Centre, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Balal Yousaf
- Research Group for Advanced Carbonaceous Material for Environmental Applications, Chinese Academy of Science (CAS)-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefai, 230026, Anhui, China
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| | - Hemen Sarma
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India; Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar, BTR, Assam, 783370, India.
| |
Collapse
|
27
|
Optimization of the incubation parameters for biogenic synthesis of WO 3 nanoparticles using Taguchi method. Heliyon 2022; 8:e10640. [PMID: 36158110 PMCID: PMC9494235 DOI: 10.1016/j.heliyon.2022.e10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Green synthesis of metal nanoparticles is gathering attention due to eco-friendly processing. Tungsten oxide (WO3) nanoparticles have immense applications as semiconductors, antimicrobials and photo thermal materials but their synthesis using biological systems is hitherto unpublicized. The paper discusses synthesis of WO3 nanoparticles using Stenotrophomonas maltophilia and the optimization of physico-chemical parameters of incubation which influence the growth and metabolism of the bacterium and consequently the size of the WO3 nanoparticles. The biogenic synthesis of WO3 nanoparticles was confirmed by ATR-FTIR and X-ray diffraction analysis. Taguchi and analysis of variance method was applied to optimize the physico-chemical parameters (pH, temperature, time, aeration rate and concentration), considering particle size and poly dispersity index (PDI) of the nanoparticles as the experimental responses. Under the design of experiments technique, Taguchi's L27 array was selected to determine the optimal process parameters which could significantly reduce the particle size and PDI of WO3 nanoparticles. Statistical analysis by signal-to-noise ratio, regression analysis and ANOVA (95% confidence level) on experimental responses confirmed pH and aeration as most influential while temperature and time as least influential parameters. pH 8, Temperature 40 °C, aeration 200 RPM, time 3 days and concentration of sodium tungstate at 1 mM (p3t3r3d3c1) was the most effective level and parameters combination for smallest particle size and PDI of WO3 nanoparticles. Regression models developed for particle size and PDI exhibited a linear regression of 97.80% and 90.89% respectively, while the confirmation test validated the size and PDI of the experimental values against predicted results. SEM image of WO3 nanoparticles illustrated the same particle size as that predicted, further validating the model. The study can be applied to optimize any process parameters in the industry or on biological systems.
Collapse
|
28
|
Green Synthesized Silver Nanoparticles Using Lactobacillus Acidophilus as an Antioxidant, Antimicrobial, and Antibiofilm Agent Against Multi-drug Resistant Enteroaggregative Escherichia Coli. Probiotics Antimicrob Proteins 2022; 14:904-914. [PMID: 35715714 DOI: 10.1007/s12602-022-09961-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
The present study was envisaged to employ the green synthesis and characterization of silver nanoparticles (AgNPs) using the potential probiotic strain Lactobacillus acidophilus, to assess its antibacterial as well as antibiofilm activity against multi-drug-resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and to investigate their antioxidant activity. In this study, AgNPs were successfully synthesized through an eco-friendly protocol, which was then confirmed by its X-ray diffraction (XRD) pattern. A weight loss of 15% up to 182 °C with a narrow exothermic peak between 170 °C and 205 °C was observed in thermogravimetric analysis-differential thermal analysis (TGA-DTA), while aggregated nanoclusters were observed in scanning electron microscopy (SEM). Moreover, the transmission electron microscopy (TEM) imaging of AgNPs revealed a spherical morphology and crystalline nature with an optimum size ranging from 10 to 20 nm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of green synthesized AgNPs against the MDR-EAEC strains were found to be 7.80 mg/L and 15.60 mg/L, respectively. In vitro time-kill kinetic assay revealed a complete elimination of the MDR-EAEC strains after 180 min on co-incubation with the AgNPs. Moreover, the green synthesized AgNPs were found safe by in vitro haemolytic assay. Besides, the green synthesized AgNPs exhibited significant biofilm inhibition (P < 0.001) formed by MDR-EAEC strains. Additionally, a concentration-dependent antioxidant activity was observed in 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Hence, this study demonstrated potential antibacterial as well as antibiofilm activity of green synthesized AgNPs against MDR-EAEC strains with antioxidant properties and warrants further in-depth studies to explore it as an effective antimicrobial agent against MDR infections.
Collapse
|
29
|
Murillo-Rábago EI, Vilchis-Nestor AR, Juarez-Moreno K, Garcia-Marin LE, Quester K, Castro-Longoria E. Optimized Synthesis of Small and Stable Silver Nanoparticles Using Intracellular and Extracellular Components of Fungi: An Alternative for Bacterial Inhibition. Antibiotics (Basel) 2022; 11:antibiotics11060800. [PMID: 35740206 PMCID: PMC9220004 DOI: 10.3390/antibiotics11060800] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Silver nanoparticles (AgNPs) represent an excellent option to solve microbial resistance problems to traditionally used antibiotics. In this work, we report optimized protocols for the production of AgNPs using extracts and supernatants of Trichoderma harzianum and Ganoderma sessile. AgNPs were characterized using UV-Vis spectroscopy and transmission electron microscopy, and the hydrodynamic diameter and Z potential were also determined. The obtained AgNPs were slightly larger using the fungal extract, and in all cases, a quasi-spherical shape was obtained. The mean sizes of AgNPs were 9.6 and 19.1 nm for T. harzianum and 5.4 and 8.9 nm for G. sessile using supernatant and extract, respectively. The AgNPs were evaluated to determine their in vitro antibacterial effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) was determined, and in all cases the AgNPs showed an antimicrobial effect, with a MIC varying from 1.26–5.0 µg/mL, depending on the bacterial strain and type of nanoparticle used. Cytotoxicity analyses of AgNPs were carried out using macrophages and fibroblast cell lines. It was determined that the cell viability of fibroblasts exposed for 24 h to different concentrations of AgNPs was more than 50%, even at concentrations of up to 20 µg/mL of silver. However, macrophages were more susceptible to exposure at higher concentrations of AgNPs as their viability decreased at concentrations of 10 µg/mL. The results presented here demonstrate that small AgNPs are obtained using either supernatants or extracts of both fungal strains. A remarkable result is that very low concentrations of AgNPs were necessary for bacterial inhibition. Furthermore, AgNPs were stable for more than a year, preserving their antibacterial properties. Therefore, the reported optimized protocol using fungal supernatants or extracts may be used as a fast method for synthesizing small AgNPs with high potential to use in the clinic.
Collapse
Affiliation(s)
- Elvira Ivonne Murillo-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Mexico; (E.I.M.-R.); (L.E.G.-M.)
| | - Alfredo R. Vilchis-Nestor
- Sustainable Chemistry Research Joint Center UAEM—UNAM (CCIQS) Carr. Toluca-Atlacomulco Km 14.5, San Cayetano, Toluca 50200, Mexico;
| | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Blvd. Juriquilla 3001, Juriquilla La Mesa, Juriquilla, Queretaro 76230, Mexico;
| | - Luis E. Garcia-Marin
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Mexico; (E.I.M.-R.); (L.E.G.-M.)
| | - Katrin Quester
- Center for Nanoscience and Nanotechnology, UNAM, Carr. Tijuana-Ensenada Km 107, Ensenada 22860, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Mexico; (E.I.M.-R.); (L.E.G.-M.)
- Correspondence:
| |
Collapse
|
30
|
Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update. CHEMOSPHERE 2022; 295:133798. [PMID: 35122813 DOI: 10.1016/j.chemosphere.2022.133798] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by pathogenic entities pose severe issues to global food security. Effective sensory applications and tools for the effective determination of plant diseases become crucial to the assurance of food supply and agricultural sustainability. Antibody-mediated molecular assays and nucleic acid are gold-standard approaches for plant disease diagnosis, but the evaluating methodologies are liable, complex, and laborious. With the rise in global food demand, escalating the food production in threats of diverse pathogen ranges, and climate change is a major challenge. Engineered nanoparticles (NPs) have been inserted into conventional laboratory sequence technologies or molecular assays that provide a remarkable increment in selectivity and sensitivity. In the present scenario, they are useful in plant disease management as well as in plant health monitoring. The use of NPs could sustainably mitigate numerous food security issues and or threats in disease management by decreasing the risk of chemical inputs and alleviating supra detection of pathogens. Overall, this review paper discusses the role of NPs in plant diseases management, available commercial products. Additionally, the future directions and their regulatory laws in the usage of the nano-diagnostic approach for plant health monitoring have been explained.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satyakam Guha
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; School of Agricultural Sciences, K.R. Mangalam University, Sohna Rural, Haryana, 122103, India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia.
| |
Collapse
|
31
|
Pineda MEB, Lizarazo Forero LM, Sierra Avila CA. Antibacterial activity of biosynthesized silver nanoparticles (AgNps) against Pectobacterium carotovorum. Braz J Microbiol 2022; 53:1175-1186. [PMID: 35486355 PMCID: PMC9433472 DOI: 10.1007/s42770-022-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/09/2022] [Indexed: 11/02/2022] Open
Abstract
In a bioprospecting study of paramo soils cultivated with potato (Solanum tuberosum), 50 fungal isolates were obtained and evaluated for their nitrate reductase (NR) activity, given the role played by this enzyme in the biosynthesis of silver nanoparticles (AgNps). Five isolates strain with high NR activity belonging to Penicillium simplicissimum, Aspergillus niger, and Fusarium oxysporum species were selected, verifying the presence of the NR enzyme in their enzymatic extract. Later, these strains showed the ability to biosynthesize AgNps with distorted spherical shapes and sizes ranging from 15 to 45 nm. Subsequently, an antibiosis test was carried out by the agar diffusion method using glass fiber disks against the phytopathogenic agent Pectobacterium carotovorum, finding halos of inhibition of bacterial growth up to 15.3 mm using a 100 ppm solution of the AgNps obtained from F. oxysporum. These results contribute to generating the basis of a new alternative for the control of this phytopathogenic agent of potato, challenging to manage by traditional methods and of relevance at the post-harvest level.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Doctorado en Biotecnología UN, Grupo de Investigación en Macromoléculas UN, Grupo de Investigación Biología Ambiental UPTC, Grupo de investigación Gestión Ambiental- Universidad de Boyacá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz Marina Lizarazo Forero
- Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| | | |
Collapse
|
32
|
Ávila-Hernández JG, Aguilar-Zárate P, Carrillo-Inungaray ML, Michel MR, Wong-Paz JE, Muñiz-Márquez DB, Rojas-Molina R, Ascacio-Valdés JA, Martínez-Ávila GCG. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Braz J Microbiol 2022; 53:143-152. [PMID: 35060091 PMCID: PMC8882492 DOI: 10.1007/s42770-021-00668-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/23/2021] [Indexed: 01/23/2023] Open
Abstract
Fungal secondary metabolites with antimicrobial properties are used for biological pest control. Their production is influenced by several factors as environment, host, and culture conditions. In the present work, the secondary metabolites from fermented extracts of Beauveria bassiana PQ2 were tested as antifungal agents against Gibberella moniliformis LIA. The L18 (21 × 37) orthogonal array from Taguchi methodology was used to assess 8 parameters (pH, agitation, sucrose, yeast extract, KH2PO4, MgSO4, NH4NO3, and CaCl2) in B. bassiana PQ2 submerged fermentation. The ability of the fermented extracts to slow down the growth rate of G. moniliformis LIA was evaluated. The results from 18 trials were analyzed by Statistica 7 software by evaluating the signal-to-noise ratio (S/N) to find the lower-the-better condition. Optimal culture conditions were pH, 5; agitation, 250 rpm; sucrose, 37.5 g/L-1; yeast extract, 10 g/L-1; KH2PO4, 0.8 g/L-1; MgSO4, 1.2 g/L-1; NH4NO3, 0.1 g/L-1; and CaCl2, 0.4 g/L-1, being the agitation at the highest level the most significant factor. The optimal conditions were validated in a sparged bottle bioreactor resulting in a higher S/N value (12.48) compared to the estimate. The extract obtained has the capacity to inhibit the germination of G. moniliformis spores at 24 h. HPLC-ESI-MS2 allowed to identify the water-soluble red pigment as oosporein (m/z 304.9). The secondary metabolites from B. bassiana PQ2 are a suitable alternative to control the growth and sporulation of G. moniliformis.
Collapse
Affiliation(s)
- José Guadalupe Ávila-Hernández
- Food Research Laboratory, Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, 79060, San Luis Potosí, México
| | - Pedro Aguilar-Zárate
- Departamento de Ingenierías, Tecnológico Nacional de México/I. T. de Ciudad Valles, Ciudad Valles, 79010, San Luis Potosí, México.
| | - María Luisa Carrillo-Inungaray
- Food Research Laboratory, Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, 79060, San Luis Potosí, México
| | - Mariela R Michel
- Departamento de Ingenierías, Tecnológico Nacional de México/I. T. de Ciudad Valles, Ciudad Valles, 79010, San Luis Potosí, México
| | - Jorge Enrique Wong-Paz
- Departamento de Ingenierías, Tecnológico Nacional de México/I. T. de Ciudad Valles, Ciudad Valles, 79010, San Luis Potosí, México
| | - Diana Beatriz Muñiz-Márquez
- Departamento de Ingenierías, Tecnológico Nacional de México/I. T. de Ciudad Valles, Ciudad Valles, 79010, San Luis Potosí, México
| | - Romeo Rojas-Molina
- School of Agronomy, Chemistry and Biochemistry Laboratory, Campus Ciencias Agropecuarias, Universidad Autónoma de Nuevo León, General Escobedo, 66050, Nuevo León, México
| | - Juan Alberto Ascacio-Valdés
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, 25280, Coahuila, México
| | - Guillermo Cristian G Martínez-Ávila
- School of Agronomy, Chemistry and Biochemistry Laboratory, Campus Ciencias Agropecuarias, Universidad Autónoma de Nuevo León, General Escobedo, 66050, Nuevo León, México.
| |
Collapse
|
33
|
Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022; 10:microorganisms10020360. [PMID: 35208814 PMCID: PMC8876476 DOI: 10.3390/microorganisms10020360] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms of plant–endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.
Collapse
|
34
|
Green Synthesis of Stable Spherical Monodisperse Silver Nanoparticles Using a Cell-Free Extract of Trichoderma reesei. MATERIALS 2022; 15:ma15020481. [PMID: 35057198 PMCID: PMC8781021 DOI: 10.3390/ma15020481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023]
Abstract
In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2-6 nm) and narrow size distribution (2-25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV-Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (-49.0/-51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.
Collapse
|
35
|
Biosynthesis of Metal-Based Nanoparticles by Trichoderma and Its Potential Applications. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Gacem MA, Abd-Elsalam KA. Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:669-698. [DOI: 10.1016/b978-0-12-824508-8.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
37
|
Xiu J, Zhang Y, Paray BA, Gulnaz A, War MUD. Facile preparation of Fe2O3 nanoparticles mediated by Centaurea alba extract and assessment of the anti-atherosclerotic properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
Potentials of Endophytic Fungi in the Biosynthesis of Versatile Secondary Metabolites and Enzymes. FORESTS 2021. [DOI: 10.3390/f12121784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
World population growth and modernization have engendered multiple environmental problems: the propagation of humans and crop diseases and the development of multi-drug-resistant fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on endophytic fungi and their biotechnological potentials are in high demand due to their substantial, cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites. For this review, we provide a brief overview of plant–endophytic fungi interactions and we also state the history of the discovery of the untapped potentialities of fungal secondary metabolites. Then, we highlight the huge importance of the discovered metabolites and their versatile applications in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation. We then focus on the challenges and on the possible methods and techniques that can be used to help in the discovery of novel secondary metabolites. The latter range from endophytic selection and culture media optimization to more in-depth strategies such as omics, ribosome engineering and epigenetic remodeling.
Collapse
|
39
|
Ramírez-Valdespino CA, Orrantia-Borunda E. Trichoderma and Nanotechnology in Sustainable Agriculture: A Review. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:764675. [PMID: 37744133 PMCID: PMC10512408 DOI: 10.3389/ffunb.2021.764675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 09/26/2023]
Abstract
Due to their unique properties and functionalities, nanomaterials can be found in different activities as pharmaceutics, cosmetics, medicine, and agriculture, among others. Nowadays, formulations with nano compounds exist to reduce the application of conventional pesticides and fertilizers. Among the most used are nanoparticles (NPs) of copper, zinc, or silver, which are known because of their cytotoxicity, and their accumulation can change the dynamic of microbes present in the soil. In agriculture, Trichoderma is widely utilized as a safe biocontrol strategy and to promote plant yield, making it susceptible to be in contact with nanomaterials that can interfere with its viability as well as its biocontrol and plant growth promotion effects. It is well-known that strains of Trichoderma can tolerate and uptake heavy metals in their bulk form, but it is poorly understood whether the same occurs with nanomaterials. Interestingly, Trichoderma can synthesize NPs that exhibit antimicrobial activities against various organisms of interest, including plant pathogens. In this study, we summarize the main findings regarding Trichoderma and nanotechnology, including its use to synthesize NPs and the consequence that these compounds might have in this fungus and its associations. Moreover, based on these findings we discuss whether it is feasible to develop agrochemicals that combine NPs and Trichoderma strains to generate more sustainable products or not.
Collapse
Affiliation(s)
- Claudia A. Ramírez-Valdespino
- Laboratorio de Nanotoxicología, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | | |
Collapse
|
40
|
Zhang S, Yan S, An P, Cao Q, Wang C, Wang J, Zhang H, Zhang L. Embryogenic callus induction from immature zygotic embryos and genetic transformation of Larix kaempferi 3x Larix gmelinii 9. PLoS One 2021; 16:e0258654. [PMID: 34648587 PMCID: PMC8516217 DOI: 10.1371/journal.pone.0258654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
To date, there are few reports of the successful genetic transformation of larch and other conifers, mainly because it is difficult to transform and integrate exogenous genes. In this study, hybrid larch Larix kaempferi 3x Larix gmelinii 9 cones were collected on June 27, July 1, July 4, July 7 and July 16, 2017. Embryogenic callus induction was studied using a combination of different plant growth regulators and concentrations. The results showed that July 1 was the best stage; the highest induction rate was 10.83%, which cultured in BM medium (Button medium, which formula was listed in S1 Table) with 1.0 mg/L 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.2 mg/L KT(kinetin). When cultured on a proliferation medium for 12 days, proliferation was the fastest, reaching 323.08%, which could also maintain the freshness and vitality. The suitable pre-culture medium for somatic embryogenesis was 1/4 BM medium containing 10 g/L inositol and 60 g/L sucrose. The combination of 45 mg/L ABA (abscisic acid) and 75 g/L PEG4000 (Polyethyene glycol 4000) could promote the number of somatic embryos, and reached the maximum, 210 140 per 1 g FW. The genetic transformation was carried out by the Agrobacterium-mediated transformation method with embryogenic callus cultured for 12 days. The results showed the optimal OD600 of the infection solution(suspension of A. tumefaciens) was 0.5, co-culture time was 2 days, and screening concentration of Hyg (hygromycin B) was 4 mg/L. In this study, the transformation rate of resistance callus was 32.1%. It provides a reference for low genetic transformation efficiency of larch at present. This study could be beneficial for the innovation and breeding of larch by genetic engineering and provides a certain basis for rapid propagation of excellent larch germplasm resources and genetic engineering breeding of larch and other conifers.
Collapse
Affiliation(s)
- Sufang Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Shanshan Yan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Peiqi An
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Qing Cao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding (Chinese Academy of Forestry), Beijing, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
- * E-mail: (HZ); (LZ)
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
- * E-mail: (HZ); (LZ)
| |
Collapse
|
41
|
Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM, Jiang L. Fabrication of Silver Nanoparticles Against Fungal Pathogens. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.679358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of silver nanoparticles (AgNPs) against various pathogens is now being well recognized in the agriculture and health sector. Nanoparticles have been shown to exhibit various novel properties and these properties, on other hand, rely upon the size, shape, and morphology of these particles. Moreover, these physical characteristics enable them to interact with microbes, plants, and animals. Smaller-sized particles have shown more toxicity than larger-sized nanoparticles. AgNPs have shown growth inhibition of many fungi like Aspergillus fumigates, A. niger, A. flavus, Trichophyton rubrum, Candida albicans, and Penicillium species. According to the current hypothesis, AgNPs act by producing reactive oxygen species and free radicals, which cause protein denaturation, nucleic acid and proton pump damage, lipid peroxidation, and cell wall damage. Therefore, they alter the cell membrane permeability, causing cell death. This mini-review summarizes the use of silver nanoparticles against fungal pathogens and fungal biofilm in the agricultural sector.
Collapse
|
42
|
Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Aremu OS, Qwebani-Ogunleye T, Katata-Seru L, Mkhize Z, Trant JF. Synergistic broad-spectrum antibacterial activity of Hypoxis hemerocallidea-derived silver nanoparticles and streptomycin against respiratory pathobionts. Sci Rep 2021; 11:15222. [PMID: 34315915 PMCID: PMC8316514 DOI: 10.1038/s41598-021-93978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Respiratory tract infections arise due to the introduction of microbes into the airway, disrupting the normal, healthy, complex interdependent microbiome. The selective disruption of this community can be either beneficial or dangerous. Nanoparticles are a potential tool for modifying this population. Coated silver nanoparticles (AgNPs) were synthesized using ethanolic extracts of Hypoxis hemerocallidea (EEHH), a Southern African plant used extensively in traditional medicine and the source of many bioactive secondary metabolites. The room temperature reaction between silver nitrate and EEHH forms largely spherical AgNPs with an average diameter of 6-20 nm. These nanoparticles show similar levels of antibacterial activity as the broad-spectrum antibiotic streptomycin against Bacillus cereus, Streptococcus pneumonia, Escherichia coli, Pseudomonas aeuroginosa, and Moraxella catarrhalis. However, the AgNPs synergistically increase the antibacterial activity of streptomycin when they are applied in combination (30-52%). AgNPs are reiterated to be promising dual-function antibiotics, synergistically enhancing activity while also acting as delivery agents for small molecules.
Collapse
Affiliation(s)
- Oluwole S Aremu
- Institute of Traditional Knowledge and Traditional Medicine, Vaal University of Technology Science and Technology Park, 5 Moshoeshoe Road, Sebokeng, 1911, South Africa.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| | - T Qwebani-Ogunleye
- Institute of Traditional Knowledge and Traditional Medicine, Vaal University of Technology Science and Technology Park, 5 Moshoeshoe Road, Sebokeng, 1911, South Africa
| | | | - Zimbili Mkhize
- Department of Chemistry, North-West University, Mafikeng, South Africa
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
44
|
Al-khattaf FS. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J Biol Sci 2021; 28:3624-3631. [PMID: 34121906 PMCID: PMC8176005 DOI: 10.1016/j.sjbs.2021.03.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.
Collapse
Affiliation(s)
- Fatimah S. Al-khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Abdallah BM, Ali EM. Green Synthesis of Silver Nanoparticles Using the Lotus lalambensis Aqueous Leaf Extract and Their Anti-Candidal Activity against Oral Candidiasis. ACS OMEGA 2021; 6:8151-8162. [PMID: 33817474 PMCID: PMC8014928 DOI: 10.1021/acsomega.0c06009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 05/31/2023]
Abstract
Oral candidiasis is widely spread in both humans and animals, which is caused mainly by Candida albicans. In this study, we aimed to biosynthesize silver nanoparticles (AgNPs) for the first time using the Lotus lalambensis Schweinf leaf extract (L-AgNPs) and investigated their anti-candidal potency alone or in combination with the leaf extract of L. lalambensis (L-AgNPs/LL) against C. albicans. The biosynthesized L-AgNPs were characterized by imaging (transmission electron microscopy, TEM), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results of the disk diffusion method showed the potent synergistic anti-candidal activity of L-AgNPs/LL (24 mm inhibition zone). L-AgNPs/LL completely inhibited the morphogenesis of C. albicans and suppressed the adhesion and the formation of the biofilm of C. albicans by 82.5 and 78.7%, respectively. Further, L-AgNPs/LL inhibited the production of antioxidant enzymes of C. albicans by 80%. SEM and TEM revealed deteriorations in the cell wall ultrastructure in L-AgNPs/LL-treated C. albicans. Interestingly, L-AgNPs/LL showed less than 5% cytotoxicity when examined with either the primary bone marrow derived mesenchymal stem cell (BMSCs) or MCF-7 cell line at MIC values of L-AgNPs/LL. In conclusion, we identified L-AgNPs/LL as a potential biosynthesized-based drug for oral candidiasis in humans and animals.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Department
of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Endocrine
Research (KMEB), Department of Endocrinology, University of Southern Denmark, Odense DK-5000, Denmark
| | - Enas M. Ali
- Department
of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
46
|
Malhotra G, Chapadgaonkar SS. Taguchi optimization and scale up of xylanase from Bacillus licheniformis isolated from hot water geyser. J Genet Eng Biotechnol 2020; 18:65. [PMID: 33090283 PMCID: PMC7581663 DOI: 10.1186/s43141-020-00084-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Xylanase is one of the widely applied industrial enzymes with diverse applications. Thermostability and alkali tolerance are the two most desirable qualities for industrial applications of xylanase. In this paper, we reveal the statistical Taguchi optimization strategy for maximization of xylanase production. The important process parameters pH, temperature, concentration of wheat bran, and concentration of yeast extract were optimized using the Taguchi L8 orthogonal array where the 4 factors were considered at 2 levels (high and low). RESULTS The optimized conditions given by model were obtained as follows: (i) pH 6, (ii) culture temperature 35 °C, (iii) concentration of xylan 2% w/v, (iv) concentration of wheat bran 2.5% w/v. The production was scaled upto 2.5 L bioreactor using optimized process parameters. A high xylanase titer of 400 U/ml could be achieved in less than 60 h of culture in the reactor. CONCLUSION Optimization was successful in achieving about threefold increase in the yield of xylanase. The optimized conditions resulted in a successful scale up and enhancement of xylanase production.
Collapse
Affiliation(s)
- Girisha Malhotra
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India
| | - Shilpa S. Chapadgaonkar
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India
| |
Collapse
|
47
|
Abstract
This work focuses mainly on environmental concern and protection through providing beneficial use of waste biomass from water hyacinth to produce economical nano-magnetic adsorbent material-efficient for facile oil spill separation via an external magnetic field. The water hyacinth roots showed higher oil spills adsorption affinity of 2.2 g/g compared with 1.2 g/g for shoots. Nano-activated carbon was successfully extracted from the roots of water hyacinth after alkaline activation and followed by zinc chloride treatment before its carbonization. Nano-magnetite was induced into the activated carbonized nanomaterials to synthesized nano-magnetic activated carbon hybrid material (NMAC). X-ray diffraction elucidated the crystalline nature of both extracted activated carbon from water hyacinth and its magnetic hybrid material. Scanning electron microscopic micrographs implied the nano-size of both prepared activated carbon and the magnetite hybrid materials. The magnetic properties of the fabricated nano-magnetic activated carbon were evaluated using the vibrating sample magnetometer. The magnetic nano-hybrid material recorded a maximum oil adsorption affinity of 30.2 g oil/g. The optimum oil spill of 80% was established after 60 min in the presence of 1 g/L of magnetic nano-hybrid. The magnetic nano-hybrid material that absorbs oil spills was separated from the treatment media easily using an external magnetic field.
Collapse
|
48
|
Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation. Sci Rep 2020; 10:10265. [PMID: 32581282 PMCID: PMC7314835 DOI: 10.1038/s41598-020-67231-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
This work focuses mainly on environmental concern and protection through providing beneficial use of waste biomass from water hyacinth to produce economical nano-magnetic adsorbent material-efficient for facile oil spill separation via an external magnetic field. The water hyacinth roots showed higher oil spills adsorption affinity of 2.2 g/g compared with 1.2 g/g for shoots. Nano-activated carbon was successfully extracted from the roots of water hyacinth after alkaline activation and followed by zinc chloride treatment before its carbonization. Nano-magnetite was induced into the activated carbonized nanomaterials to synthesized nano-magnetic activated carbon hybrid material (NMAC). X-ray diffraction elucidated the crystalline nature of both extracted activated carbon from water hyacinth and its magnetic hybrid material. Scanning electron microscopic micrographs implied the nano-size of both prepared activated carbon and the magnetite hybrid materials. The magnetic properties of the fabricated nano-magnetic activated carbon were evaluated using the vibrating sample magnetometer. The magnetic nano-hybrid material recorded a maximum oil adsorption affinity of 30.2 g oil/g. The optimum oil spill of 80% was established after 60 min in the presence of 1 g/L of magnetic nano-hybrid. The magnetic nano-hybrid material that absorbs oil spills was separated from the treatment media easily using an external magnetic field.
Collapse
|
49
|
Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G, Li B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1146. [PMID: 32545239 PMCID: PMC7353409 DOI: 10.3390/nano10061146] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/02/2023]
Abstract
A large number of metallic nanoparticles have been successfully synthesized by using different plant extracts and microbes including bacteria, fungi viruses and microalgae. Some of these metallic nanoparticles showed strong antimicrobial activities against phytopathogens. Here, we summarized these green-synthesized nanoparticles from plants and microbes and their applications in the control of plant pathogens. We also discussed the potential deleterious effects of the metallic nanoparticles on plants and beneficial microbial communities associated with plants. Overall, this review calls for attention regarding the use of green-synthesized metallic nanoparticles in controlling plant diseases and clarification of the risks to plants, plant-associated microbial communities, and environments before using them in agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Afsana Hossain
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Md. Mahidul Islam Masum
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Qianli An
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| |
Collapse
|
50
|
Orłowska R, Pachota KA, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek PT. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2019.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|