1
|
Li Q, Wang L, Grubb LE, Talasila M, Rodriguez Gallo MC, Mehta D, Scandola S, Uhrig RG. B4 Raf-like MAPKKK RAF24 regulates Arabidopsis thaliana flowering time through HISTONE MONO-UBIQUITINATION 2. THE NEW PHYTOLOGIST 2025. [PMID: 40394941 DOI: 10.1111/nph.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 04/02/2025] [Indexed: 05/22/2025]
Abstract
The timing of flowering is a critical agronomic trait governed by an extensive and sophisticated regulatory network. To date, limited understanding of how posttranslational modifications regulate flowering time exists. Here, using Arabidopsis, we resolve a role for the B4 Raf-like MAPKKK protein kinase RAF24 in regulating flowering time. Loss of RAPIDLY ACCELERATED FIBROSARCOMA24 (RAF24) led to premature flowering time through altered expression of FLC and FT. Comparative phosphoproteomic analysis of raf24 and wild-type plants revealed a list of known flowering-related phosphoproteins from distinct flowering pathways displaying downregulated phosphorylation. Of these, the RING-type ubiquitin ligase HISTONE MONO-UBIQUITINATION 2 (HUB2) lacked phosphorylation in the absence of RAF24. Absence of RAF24 induced H2Bub1 overaccumulation, with protein-protein interactome analysis of HUB2 in the presence and absence of RAF24 influencing HUB2 protein interaction partners, such as H2B. HUB2 was also found to physically interact with SUCROSE NONFERMENTING KINASE 2.4 (SnRK2.4) and SnRK2.6, known substrates of RAF24. Using phospho-mimetic and phospho-ablative plant lines, we then validated the importance of HUB2 phosphorylation at serine 314 (S314) in maintaining appropriate flowering time. Our findings uncovered a novel biological role of RAF24, as a higher-order flowering regulator, while further implicating HUB2 as a centerpiece of flowering time regulation.
Collapse
Affiliation(s)
- Qiaomu Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Le Wang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Lauren E Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Mohana Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | | | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Biosystems, Katholieke Universiteit Leuven, B-3001, Leuven, Belgium
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Richard Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| |
Collapse
|
2
|
Ivsic C, Shabala S, Sussmilch FC. Evolutionary insights into light-induced stomatal opening mechanisms. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00065-2. [PMID: 40222890 DOI: 10.1016/j.tplants.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
Light-induced stomatal opening pathways are essential for regulating gas exchange and water loss in response to dynamic environmental light cues. While stomatal signalling pathways are well characterised at the genetic level in Arabidopsis thaliana (arabidopsis), much less is known about these mechanisms in non-flowering plant groups. We discuss recent advances in our knowledge of key components - photoreceptors, mitogen-activated protein kinases (MAPKs), phosphatases, H+-ATPases and ion channels - across plant lineages, highlighting the gaps in knowledge particularly in non-flowering species. Addressing these gaps will provide valuable insights into stomatal evolution and a deeper understanding of the functional diversity of the plants alive today.
Collapse
Affiliation(s)
- Caroline Ivsic
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
3
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
4
|
Kim D, Jorge GL, Xu C, Su L, Cho SH, Ahsan N, Chen D, Zhou L, Gritsenko MA, Zhou M, Wan J, Pasa-Tolic L, Xu D, Bartley LE, Thelen JJ, Stacey G. Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites. Mol Cell Proteomics 2025; 24:100926. [PMID: 39923935 PMCID: PMC11952801 DOI: 10.1016/j.mcpro.2025.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 02/11/2025] Open
Abstract
In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Chunhui Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Dongqin Chen
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lijuan Zhou
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Marina A Gritsenko
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jinrong Wan
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
5
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
6
|
Singh N, Giri MK, Chattopadhyay D. Lighting the path: how light signaling regulates stomatal movement and plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:769-786. [PMID: 39673781 DOI: 10.1093/jxb/erae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.
Collapse
Affiliation(s)
- Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, Odisha,India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
7
|
Oh A, Kimura R, Inoue S, Sato T, Hayashi Y, Sato A, Takahashi Y, Kinoshita T. Identification of a Novel Stomatal Opening Chemical, PP242, That Inhibits Early Abscisic Acid Signal Transduction in Guard Cells. PLANT & CELL PHYSIOLOGY 2025:pcaf013. [PMID: 39882944 DOI: 10.1093/pcp/pcaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase. However, the signaling pathways that regulate the stomatal aperture remain unclear. Previously, we identified a target of rapamycin (TOR) inhibitor, temsirolimus, to induce stomatal opening through chemical screening. In the present study, we further investigated other TOR inhibitors and identified PP242 as a novel stomatal opening chemical. PP242 induced stomatal opening even in the dark, as well as phosphorylation of the penultimate Thr of PM H+-ATPase in guard cells. Interestingly, PP242 completely suppressed ABA-induced stomatal closure, and inhibited ABA-induced activation of SNF1-related protein kinase 2s (SnRK2s), which are essential kinases for ABA signal transduction in guard cells. In vitro biochemical analysis revealed that PP242 did not directly inhibit SnRK2 but rather inhibited upstream ABA signaling components, specifically B3 clade Raf-like kinases. A quadruple mutant of B3 clade Raf-like kinases exhibited an open stoma phenotype that resembled the effect of PP242. However, PP242 still induced stomatal opening in this mutant, suggesting that PP242 also targets other guard cell components. Together, these results reveal that PP242 induces stomatal opening partly by inhibiting steady-state ABA signal transduction.
Collapse
Affiliation(s)
- Airi Oh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Riku Kimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shinpei Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Taiyo Sato
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yohei Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Gonçalves Dias M, Doss B, Rawat A, Siegel KR, Mahathanthrige T, Sklenar J, Rodriguez Gallo MC, Derbyshire P, Dharmasena T, Cameron E, Uhrig RG, Zipfel C, Menke FLH, Monaghan J. Subfamily C7 Raf-like kinases MRK1, RAF26, and RAF39 regulate immune homeostasis and stomatal opening in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2278-2294. [PMID: 39449177 PMCID: PMC11579443 DOI: 10.1111/nph.20198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The calcium-dependent protein kinase CPK28 regulates several stress pathways in multiple plant species. Here, we aimed to discover CPK28-associated proteins in Arabidopsis thaliana. We used affinity-based proteomics and identified several potential CPK28 binding partners, including the C7 Raf-like kinases MRK1, RAF26, and RAF39. We used biochemistry, genetics, and physiological assays to gain insight into their function. We define redundant roles for these kinases in stomatal opening, immune-triggered reactive oxygen species (ROS) production, and resistance to a bacterial pathogen. We report that CPK28 associates with and trans-phosphorylates RAF26 and RAF39, and that MRK1, RAF26, and RAF39 are active kinases that localize to endomembranes. Although Raf-like kinases share some features with mitogen-activated protein kinase kinase kinases (MKKKs), we found that MRK1, RAF26, and RAF39 are unable to trans-phosphorylate any of the 10 Arabidopsis mitogen-activated protein kinase kinases (MKKs). Overall, our study suggests that C7 Raf-like kinases associate with and are phosphorylated by CPK28, function redundantly in stomatal opening and immunity, and possess substrate specificities distinct from canonical MKKKs.
Collapse
Affiliation(s)
| | - Bassem Doss
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - Anamika Rawat
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | | | | | - Jan Sklenar
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Emma Cameron
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - R. Glen Uhrig
- Department of Biological SciencesUniversity of AlbertaEdmontonABT6G 2E9Canada
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
- Institute of Plant and Microbial Biology and Zurich‐Basel Plant Science CenterUniversity of ZurichZurich8008Switzerland
| | - Frank L. H. Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | - Jacqueline Monaghan
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
9
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Su J, He B, Li P, Yu B, Cen Q, Xia L, Jing Y, Wu F, Karnik R, Xue D, Blatt MR, Wang Y. Overexpression of tonoplast Ca 2+-ATPase in guard cells synergistically enhances stomatal opening and drought tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1587-1602. [PMID: 38923303 DOI: 10.1111/jipb.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Stomata play a crucial role in plants by controlling water status and responding to drought stress. However, simultaneously improving stomatal opening and drought tolerance has proven to be a significant challenge. To address this issue, we employed the OnGuard quantitative model, which accurately represents the mechanics and coordination of ion transporters in guard cells. With the guidance of OnGuard, we successfully engineered plants that overexpressed the main tonoplast Ca2+-ATPase gene, ACA11, which promotes stomatal opening and enhances plant growth. Surprisingly, these transgenic plants also exhibited improved drought tolerance due to reduced water loss through their stomata. Again, OnGuard assisted us in understanding the mechanism behind the unexpected stomatal behaviors observed in the ACA11 overexpressing plants. Our study revealed that the overexpression of ACA11 facilitated the accumulation of Ca2+ in the vacuole, thereby influencing Ca2+ storage and leading to an enhanced Ca2+ elevation in response to abscisic acid. This regulatory cascade finely tunes stomatal responses, ultimately leading to enhanced drought tolerance. Our findings underscore the importance of tonoplast Ca2+-ATPase in manipulating stomatal behavior and improving drought tolerance. Furthermore, these results highlight the diverse functions of tonoplast-localized ACA11 in response to different conditions, emphasizing its potential for future applications in plant enhancement.
Collapse
Affiliation(s)
- Jinghan Su
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Bingqing He
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Peiyuan Li
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Baiyang Yu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Cen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingfeng Xia
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yi Jing
- BGI Research, Sanya, 572025, China
| | - Feibo Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yizhou Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Sowders JM, Jewell JB, Tanaka K. CPK28 is a modulator of purinergic signaling in plant growth and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1086-1101. [PMID: 38308597 PMCID: PMC11096078 DOI: 10.1111/tpj.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Extracellular ATP (eATP) is a key signaling molecule that plays a pivotal role in plant growth and defense responses. The receptor P2K1 is responsible for perceiving eATP and initiating its signaling cascade. However, the signal transduction mechanisms downstream of P2K1 activation remain incompletely understood. We conducted a comprehensive analysis of the P2K1 interactome using co-immunoprecipitation-coupled tandem mass spectrometry, leading to the identification of 121 candidate proteins interacting with P2K1. In silico analysis narrowed down the candidates to 47 proteins, including Ca2+-binding proteins, ion transport-related proteins, and receptor kinases. To investigate their involvement in eATP signaling, we employed a screening strategy based on changes in gene expression in response to eATP in mutants of the identified interactors. This screening revealed several Ca2+-dependent protein kinases (CPKs) that significantly affected the expression of eATP-responsive genes, suggesting their potential roles in eATP signaling. Notably, CPK28 and CPK6 showed physical interactions with P2K1 both in yeast and plant systems. Calcium influx and gene expression studies demonstrated that CPK28 perturbed eATP-induced Ca2+ mobilization and some early transcriptional responses. Overexpression of CPK28 resulted in an antagonistic physiological response to P2K1-mediated eATP signaling during both plant growth and defense responses to the necrotrophic pathogen Botrytis cinerea. Our findings highlight CPK28, among other CPKs, as a modulator of P2K1-mediated eATP signaling, providing valuable insights into the coordination of eATP signaling in plant growth and immunity.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
12
|
Ando E, Taki K, Suzuki T, Kinoshita T. A novel semi-dominant mutation in brassinosteroid signaling kinase1 increases stomatal density. FRONTIERS IN PLANT SCIENCE 2024; 15:1377352. [PMID: 38628368 PMCID: PMC11019013 DOI: 10.3389/fpls.2024.1377352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Stomata play a pivotal role in balancing CO2 uptake for photosynthesis and water loss via transpiration. Thus, appropriate regulation of stomatal movement and its formation are crucial for plant growth and survival. Red and blue light induce phosphorylation of the C-terminal residue of the plasma membrane (PM) H+-ATPase, threonine, in guard cells, generating the driving force for stomatal opening. While significant progress has been made in understanding the regulatory mechanism of PM H+-ATPase in guard cells, the regulatory components for the phosphorylation of PM H+-ATPase have not been fully elucidated. Recently, we established a new immunohistochemical technique for detecting guard-cell PM H+-ATPase phosphorylation using leaves, which was expected to facilitate investigations with a single leaf. In this study, we applied the technique to genetic screening experiment to explore novel regulators for the phosphorylation of PM H+-ATPase in guard cells, as well as stomatal development. We successfully performed phenotyping using a single leaf. During the experiment, we identified a mutant exhibiting high stomatal density, jozetsu (jzt), named after a Japanese word meaning 'talkative'. We found that a novel semi-dominant mutation in BRASSINOSTEROID SIGNALING KINASE1 (BSK1) is responsible for the phenotype in jzt mutant. The present results demonstrate that the new immunohistochemical technique has a wide range of applications, and the novel mutation would provide genetic tool to expand our understanding of plant development mediated by brassinosteroid signaling.
Collapse
Affiliation(s)
- Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kyomi Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
14
|
Fuji S, Yamauchi S, Sugiyama N, Kohchi T, Nishihama R, Shimazaki KI, Takemiya A. Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H +-ATPase. Nat Commun 2024; 15:1195. [PMID: 38378726 PMCID: PMC10879506 DOI: 10.1038/s41467-024-45236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.
Collapse
Affiliation(s)
- Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan.
| |
Collapse
|
15
|
Hayashi Y, Fukatsu K, Takahashi K, Kinoshita SN, Kato K, Sakakibara T, Kuwata K, Kinoshita T. Phosphorylation of plasma membrane H +-ATPase Thr881 participates in light-induced stomatal opening. Nat Commun 2024; 15:1194. [PMID: 38378616 PMCID: PMC10879185 DOI: 10.1038/s41467-024-45248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Kohei Fukatsu
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | | | - Kyohei Kato
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Sakakibara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
16
|
Wang H, Wang Y, Sang T, Lin Z, Li R, Ren W, Shen X, Zhao B, Wang X, Zhang X, Zhou S, Dai S, Hu H, Song CP, Wang P. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2122-2137. [PMID: 37226855 DOI: 10.1111/jipb.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.
Collapse
Affiliation(s)
- Hongliang Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Sang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongxia Li
- Shanghai Bioprofile Technology Company Ltd, Shanghai, 200241, China
| | - Weiwei Ren
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shaojun Dai
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Aihara Y, Maeda B, Goto K, Takahashi K, Nomoto M, Toh S, Ye W, Toda Y, Uchida M, Asai E, Tada Y, Itami K, Sato A, Murakami K, Kinoshita T. Identification and improvement of isothiocyanate-based inhibitors on stomatal opening to act as drought tolerance-conferring agrochemicals. Nat Commun 2023; 14:2665. [PMID: 37188667 DOI: 10.1038/s41467-023-38102-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.
Collapse
Affiliation(s)
- Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Kanna Goto
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Nomoto
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Shigeo Toh
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Environmental Bioscience, Meijo University, Nagoya, Japan
| | - Wenxiu Ye
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Yosuke Toda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Phytometrics Co., Ltd., Hamamatsu, Shizuoka, 435-0036, Japan
| | - Mami Uchida
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Eri Asai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan.
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
18
|
Kim D, Chen D, Ahsan N, Jorge GL, Thelen JJ, Stacey G. The Raf-like MAPKKK INTEGRIN-LINKED KINASE 5 regulates purinergic receptor-mediated innate immunity in Arabidopsis. THE PLANT CELL 2023; 35:1572-1592. [PMID: 36762404 PMCID: PMC10118279 DOI: 10.1093/plcell/koad029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/31/2023] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 results in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Dongqin Chen
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Nagib Ahsan
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J Thelen
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Ueda A, Aihara Y, Sato S, Kano K, Mishiro-Sato E, Kitano H, Sato A, Fujimoto KJ, Yanai T, Amaike K, Kinoshita T, Itami K. Discovery of 2,6-Dihalopurines as Stomata Opening Inhibitors: Implication of an LRX-Mediated H +-ATPase Phosphorylation Pathway. ACS Chem Biol 2023; 18:347-355. [PMID: 36638821 DOI: 10.1021/acschembio.2c00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stomata are pores in the leaf epidermis of plants and their opening and closing regulate gas exchange and water transpiration. Stomatal movements play key roles in both plant growth and stress responses. In recent years, small molecules regulating stomatal movements have been used as a powerful tool in mechanistic studies, as well as key players for agricultural applications. Therefore, the development of new molecules regulating stomatal movement and the elucidation of their mechanisms have attracted much attention. We herein describe the discovery of 2,6-dihalopurines, AUs, as a new stomatal opening inhibitor, and their mechanistic study. Based on biological assays, AUs may involve in the pathway related with plasma membrane H+-ATPase phosphorylation. In addition, we identified leucine-rich repeat extensin proteins (LRXs), LRX3, LRX4 and LRX5 as well as RALF, as target protein candidates of AUs by affinity based pull down assay and molecular dynamics simulation. The mechanism of stomatal movement related with the LRXs-RALF is an unexplored pathway, and therefore further studies may lead to the discovery of new signaling pathways and regulatory factors in the stomatal movement.
Collapse
Affiliation(s)
- Ayaka Ueda
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yusuke Aihara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shinya Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hiroyuki Kitano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Yanai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kazuma Amaike
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Li Y, Zhang S, Zou Y, Yuan L, Cheng M, Liu J, Zhang C, Chen Y. Red light-upregulated MPK11 negatively regulates red light-induced stomatal opening in Arabidopsis. Biochem Biophys Res Commun 2023; 638:43-50. [PMID: 36436341 DOI: 10.1016/j.bbrc.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Stomatal movements allow the uptake of CO2 for photosynthesis and water loss through transpiration, therefore play a crucial role in determining water use efficiency. Both red and blue lights induce stomatal opening, and the stomatal apertures under light are finetuned by both positive and negative regulators in guard cells. However, the molecular mechanisms for precisely adjusting stomatal apertures under light have not been completely understood. Here, we provided evidence supporting that Arabidopsis thaliana mitogen-activated protein kinase 11 (MPK11) plays a negative role in red light-induced stomatal opening. First, MPK11 was found to be highly expressed in guard cells, and MPK11-GFP signals were detected in both nuclear and cytoplasm of guard cells. The transcript levels of MPK11 in guard cells were upregulated by white light, and the stomata of mpk11 opened wider than that of wild type under white light. Consistent with the larger stomatal aperture, mpk11 mutant exhibited higher stomatal conductance and CO2 assimilation rate under white light. The transcript levels of the genes responsible for osmolytes increases were higher in guard cells of mpk11 than that of wild type, which may contribute to the larger stomatal aperture of mpk11 under white light. Furthermore, MPK11 transcript levels in guard cells were upregulated by red light, and mpk11 mutant showed a larger stomatal aperture under red light. Taken together, these results demonstrate that red light-upregulated MPK11 plays a negative role in stomatal opening, which finetuning the stomatal opening apertures and preventing excessive water loss by transpiration under light.
Collapse
Affiliation(s)
- Yuzhen Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Shasha Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yanmin Zou
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Lina Yuan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Miaomiao Cheng
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jiahuan Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chunguang Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuling Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
21
|
Ando E, Kollist H, Fukatsu K, Kinoshita T, Terashima I. Elevated CO 2 induces rapid dephosphorylation of plasma membrane H + -ATPase in guard cells. THE NEW PHYTOLOGIST 2022; 236:2061-2074. [PMID: 36089821 PMCID: PMC9828774 DOI: 10.1111/nph.18472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Light induces stomatal opening, which is driven by plasma membrane (PM) H+ -ATPase in guard cells. The activation of guard-cell PM H+ -ATPase is mediated by phosphorylation of the penultimate C-terminal residue, threonine. The phosphorylation is induced by photosynthesis as well as blue light photoreceptor phototropin. Here, we investigated the effects of cessation of photosynthesis on the phosphorylation level of guard-cell PM H+ -ATPase in Arabidopsis thaliana. Immunodetection of guard-cell PM H+ -ATPase, time-resolved leaf gas-exchange analyses and stomatal aperture measurements were carried out. We found that light-dark transition of leaves induced dephosphorylation of the penultimate residue at 1 min post-transition. Gas-exchange analyses confirmed that the dephosphorylation is accompanied by an increase in the intercellular CO2 concentration, caused by the cessation of photosynthetic CO2 fixation. We discovered that CO2 induces guard-cell PM H+ -ATPase dephosphorylation as well as stomatal closure. Interestingly, reverse-genetic analyses using guard-cell CO2 signal transduction mutants suggested that the dephosphorylation is mediated by a mechanism distinct from the established CO2 signalling pathway. Moreover, type 2C protein phosphatases D6 and D9 were required for the dephosphorylation and promoted stomatal closure upon the light-dark transition. Our results indicate that CO2 -mediated dephosphorylation of guard-cell PM H+ -ATPase underlies stomatal closure.
Collapse
Affiliation(s)
- Eigo Ando
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Hannes Kollist
- Institute of TechnologyUniversity of TartuTartu50411Estonia
| | - Kohei Fukatsu
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
| |
Collapse
|
22
|
Soda MN, Hayashi Y, Takahashi K, Kinoshita T. Tryptophan synthase ß subunit 1 affects stomatal phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1011360. [PMID: 36518509 PMCID: PMC9743989 DOI: 10.3389/fpls.2022.1011360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Stomata open in response to several environmental stimuli, such as light and low CO2. Plasma membrane (PM) H+-ATPase in guard cells plays a pivotal role for light-induced stomatal opening. In contrast, stomata close in response to the dark or plant hormone abscisic acid (ABA). However, molecular mechanisms of stomatal movements remain unclear. To elucidate the molecular mechanism of stomatal movements, we performed a genetic screen based on stomatal aperture-dependent weight decrease of detached leaves from EMS-treated Arabidopsis thaliana and isolated a rapid transpiration in detached leaves 2 (rtl2). The rtl2 mutant showed constitutive open-stomata phenotype with lower leaf temperature. ABA had no effect on stomatal aperture in rtl2. The rtl2 mutant also showed increased stomatal density, severe dwarf phenotype with pale green leaves and dark veins. Map-based analysis of the RTL2 locus revealed that the rtl2 mutant possesses a single nucleotide substitution, which induces amino acid substitution Gly162 to Glu in the tryptophan synthase ß subunit 1 (TSB1). The TSB1 encodes an enzyme in tryptophan (Trp) biosynthetic pathway. Amount of TSB1 protein was drastically reduced in rtl2 mutant. A different allele of tsb1 mutant (tsb1-1) also showed constitutive open-stomata phenotype with reduced TSB1 protein as in rtl2. Analyses of test-crossed plants of rtl2 and tsb1-1 showed open-stomata and dwarf phenotypes. These results indicate that a responsible gene for rtl2 is TSB1. We further investigated stomatal phenotype in mutants from Trp biosynthetic pathway, such as wei2-1 wei7-1, trp3-1, and tsb2-1. The trp3-1 mutant showed significant wider stomatal aperture as well as tsb1-1. Trp biosynthetic pathway closely relates to auxin biosynthesis. Then, we investigated auxin responsible genes and found that an expression of AUR3 was up in rtl2. In contrast, auxin had no effect on stomatal aperture in Arabidopsis and the phosphorylation status of PM H+-ATPase in guard cell protoplasts from Vicia faba. In addition, auxin antagonist had no effect on stomatal aperture. Interestingly, tsb1-1 grown under hydroponic culture system showed normal stomatal aperture by exogenously application of Trp. These results suggest that open stomata phenotype in tsb1-1 is due to Trp deficiency but not auxin.
Collapse
Affiliation(s)
- Midori N. Soda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
23
|
Inoue S, Hayashi M, Huang S, Yokosho K, Gotoh E, Ikematsu S, Okumura M, Suzuki T, Kamura T, Kinoshita T, Ma JF. A tonoplast-localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg 2+ conditions. THE NEW PHYTOLOGIST 2022; 236:864-877. [PMID: 35976788 PMCID: PMC9804957 DOI: 10.1111/nph.18410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.
Collapse
Affiliation(s)
- Shin‐ichiro Inoue
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Sheng Huang
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Kengo Yokosho
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of AgricultureKyushu University744 MotookaFukuoka819‐0395Japan
| | - Shuka Ikematsu
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and BiotechnologyChubu UniversityKasugai‐shiAichi487‐8501Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Jian Feng Ma
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| |
Collapse
|
24
|
Jones JJ, Huang S, Hedrich R, Geilfus CM, Roelfsema MRG. The green light gap: a window of opportunity for optogenetic control of stomatal movement. THE NEW PHYTOLOGIST 2022; 236:1237-1244. [PMID: 36052708 DOI: 10.1111/nph.18451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| |
Collapse
|
25
|
Murakami N, Fuji S, Yamauchi S, Hosotani S, Mano J, Takemiya A. Reactive Carbonyl Species Inhibit Blue-Light-Dependent Activation of the Plasma Membrane H+-ATPase and Stomatal Opening. PLANT & CELL PHYSIOLOGY 2022; 63:1168-1176. [PMID: 35786727 DOI: 10.1093/pcp/pcac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 07/02/2022] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) play a central role in plant responses to biotic and abiotic stresses. ROS stimulate stomatal closure by inhibiting blue light (BL)-dependent stomatal opening under diverse stresses in the daytime. However, the stomatal opening inhibition mechanism by ROS remains unclear. In this study, we aimed to examine the impact of reactive carbonyl species (RCS), lipid peroxidation products generated by ROS, on BL signaling in guard cells. Application of RCS, such as acrolein and 4-hydroxy-(E)-2-nonenal (HNE), inhibited BL-dependent stomatal opening in the epidermis of Arabidopsis thaliana. Acrolein also inhibited H+ pumping and the plasma membrane H+-ATPase phosphorylation in response to BL. However, acrolein did not inhibit BL-dependent autophosphorylation of phototropins and the phosphorylation of BLUE LIGHT SIGNALING1 (BLUS1). Similarly, acrolein affected neither the kinase activity of BLUS1 nor the phosphatase activity of protein phosphatase 1, a positive regulator of BL signaling. However, acrolein inhibited fusicoccin-dependent phosphorylation of H+-ATPase and stomatal opening. Furthermore, carnosine, an RCS scavenger, partially alleviated the abscisic-acid- and hydrogen-peroxide-induced inhibition of BL-dependent stomatal opening. Altogether, these findings suggest that RCS inhibit BL signaling, especially H+-ATPase activation, and play a key role in the crosstalk between BL and ROS signaling pathways in guard cells.
Collapse
Affiliation(s)
- Nanaka Murakami
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Sakurako Hosotani
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Jun'ichi Mano
- Science Research Center, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515 Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| |
Collapse
|
26
|
Nakamichi N, Yamaguchi J, Sato A, Fujimoto KJ, Ota E. Chemical biology to dissect molecular mechanisms underlying plant circadian clocks. THE NEW PHYTOLOGIST 2022; 235:1336-1343. [PMID: 35661165 DOI: 10.1111/nph.18298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks regulate the diel rhythmic physiological activities of plants, enabling them to anticipate and adapt to day-night and seasonal changes. Genetic and biochemical approaches have suggested that transcription-translation feedback loops (TTFL) are crucial for Arabidopsis clock function. Recently, the study of chemical chronobiology has emerged as a discipline within the circadian clock field, with important and complementary discoveries from both plant and animal research. In this review, we introduce recent advances in chemical biology using small molecules to perturb plant circadian clock function through TTFL components. Studies using small molecule clock modulators have been instrumental for revealing the role of post-translational modification in the clock, or the metabolite-dependent clock input pathway, as well as for controlling clock-dependent flowering time.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 169-8555, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Eisuke Ota
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
27
|
Sun Z, Feng Z, Ding Y, Qi Y, Jiang S, Li Z, Wang Y, Qi J, Song C, Yang S, Gong Z. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. MOLECULAR PLANT 2022; 15:1192-1210. [PMID: 35668674 DOI: 10.1016/j.molp.2022.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli. Drought stress, for instance, induces accumulation of the plant hormone abscisic acid (ABA), triggering ABA signal transduction. However, the molecular mechanisms for switching between plant growth promotion and stress response remain poorly understood. Here we report that RAF (rapidly accelerated fibrosarcoma)-LIKE MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 22 (RAF22) in Arabidopsis thaliana physically interacts with ABA INSENSITIVE 1 (ABI1) and phosphorylates ABI1 at Ser416 residue to enhance its phosphatase activity. Interestingly, ABI1 can also enhance the activity of RAF22 through dephosphorylation, reciprocally inhibiting ABA signaling and promoting the maintenance of plant growth under normal conditions. Under drought stress, however, the ABA-activated OPEN STOMATA1 (OST1) phosphorylates the Ser81 residue of RAF22 and inhibits its kinase activity, restraining its enhancement of ABI1 activity. Taken together, our study reveals that RAF22, ABI1, and OST1 form a dynamic regulatory network that plays crucial roles in optimizing plant growth and environmental adaptation under drought stress.
Collapse
Affiliation(s)
- Zhihui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenkai Feng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanpeng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shan Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 100193, China.
| |
Collapse
|
28
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
29
|
Grunwald Y, Gosa SC, Torne-Srivastava T, Moran N, Moshelion M. Out of the blue: Phototropins of the leaf vascular bundle sheath mediate the regulation of leaf hydraulic conductance by blue light. THE PLANT CELL 2022; 34:2328-2342. [PMID: 35285491 PMCID: PMC9134085 DOI: 10.1093/plcell/koac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase, AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.
Collapse
Affiliation(s)
| | | | - Tanmayee Torne-Srivastava
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Moran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
30
|
Rahmati Ishka M. A surprising feature of the blue light: Regulation of leaf hydraulic conductance via an autonomous phototropin-mediated blue light signaling pathway in bundle-sheath cells. THE PLANT CELL 2022; 34:2116-2117. [PMID: 35287178 PMCID: PMC9134053 DOI: 10.1093/plcell/koac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
|
31
|
Akiyama M, Sugimoto H, Inoue SI, Takahashi Y, Hayashi M, Hayashi Y, Mizutani M, Ogawa T, Kinoshita D, Ando E, Park M, Gray WM, Kinoshita T. Type 2C protein phosphatase clade D family members dephosphorylate guard cell plasma membrane H+-ATPase. PLANT PHYSIOLOGY 2022; 188:2228-2240. [PMID: 34894269 PMCID: PMC8968332 DOI: 10.1093/plphys/kiab571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Plasma membrane (PM) H+-ATPase in guard cells is activated by phosphorylation of the penultimate residue, threonine (Thr), in response to blue and red light, promoting stomatal opening. Previous in vitro biochemical investigation suggested that Mg2+- and Mn2+-dependent membrane-localized type 2C protein phosphatase (PP2C)-like activity mediates the dephosphorylation of PM H+-ATPase in guard cells. PP2C clade D (PP2C.D) was later demonstrated to be involved in PM H+-ATPase dephosphorylation during auxin-induced cell expansion in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether PP2C.D phosphatases are involved in PM H+-ATPase dephosphorylation in guard cells. Transient expression experiments using Arabidopsis mesophyll cell protoplasts revealed that all PP2C.D isoforms dephosphorylate the endogenous PM H+-ATPase. We further analyzed PP2C.D6/8/9, which display higher expression levels than other isoforms in guard cells, observing that pp2c.d6, pp2c.d8, and pp2c.d9 single mutants showed similar light-induced stomatal opening and phosphorylation status of PM H+-ATPase in guard cells as Col-0. In contrast, the pp2c.d6/9 double mutant displayed wider stomatal apertures and greater PM H+-ATPase phosphorylation in response to blue light, but delayed dephosphorylation of PM H+-ATPase in guard cells; the pp2c.d6/8/9 triple mutant showed similar phenotypes to those of the pp2c.d6/9 double mutant. Taken together, these results indicate that PP2C.D6 and PP2C.D9 redundantly mediate PM H+-ATPase dephosphorylation in guard cells. Curiously, unlike auxin-induced cell expansion in seedlings, auxin had no effect on the phosphorylation status of PM H+-ATPase in guard cells.
Collapse
Affiliation(s)
| | | | - Shin-ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yohei Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Miya Mizutani
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takumi Ogawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Daichi Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Meeyeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
32
|
Ren Z, Suolang B, Fujiwara T, Yang D, Saijo Y, Kinoshita T, Wang Y. Promotion and Upregulation of a Plasma Membrane Proton-ATPase Strategy: Principles and Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:749337. [PMID: 35003152 PMCID: PMC8728062 DOI: 10.3389/fpls.2021.749337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Plasma membrane proton-ATPase (PM H+-ATPase) is a primary H+ transporter that consumes ATP in vivo and is a limiting factor in the blue light-induced stomatal opening signaling pathway. It was recently reported that manipulation of PM H+-ATPase in stomatal guard cells and other tissues greatly improved leaf photosynthesis and plant growth. In this report, we review and discuss the function of PM H+-ATPase in the context of the promotion and upregulation H+-ATPase strategy, including associated principles pertaining to enhanced stomatal opening, environmental plasticity, and potential applications in crops and nanotechnology. We highlight the great potential of the promotion and upregulation H+-ATPase strategy, and explain why it may be applied in many crops in the future.
Collapse
Affiliation(s)
- Zirong Ren
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Bazhen Suolang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Tadashi Fujiwara
- Division of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Dan Yang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yusuke Saijo
- Division of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
33
|
Toh S, Takata N, Ando E, Toda Y, Wang Y, Hayashi Y, Mitsuda N, Nagano S, Taniguchi T, Kinoshita T. Overexpression of Plasma Membrane H +-ATPase in Guard Cells Enhances Light-Induced Stomatal Opening, Photosynthesis, and Plant Growth in Hybrid Aspen. FRONTIERS IN PLANT SCIENCE 2021; 12:766037. [PMID: 34899787 PMCID: PMC8663642 DOI: 10.3389/fpls.2021.766037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Stomata in the plant epidermis open in response to light and regulate CO2 uptake for photosynthesis and transpiration for uptake of water and nutrients from roots. Light-induced stomatal opening is mediated by activation of the plasma membrane (PM) H+-ATPase in guard cells. Overexpression of PM H+-ATPase in guard cells promotes light-induced stomatal opening, enhancing photosynthesis and growth in Arabidopsis thaliana. In this study, transgenic hybrid aspens overexpressing Arabidopsis PM H+-ATPase (AHA2) in guard cells under the strong guard cell promoter Arabidopsis GC1 (AtGC1) showed enhanced light-induced stomatal opening, photosynthesis, and growth. First, we confirmed that AtGC1 induces GUS expression specifically in guard cells in hybrid aspens. Thus, we produced AtGC1::AHA2 transgenic hybrid aspens and confirmed expression of AHA2 in AtGC1::AHA2 transgenic plants. In addition, AtGC1::AHA2 transgenic plants showed a higher PM H+-ATPase protein level in guard cells. Analysis using a gas exchange system revealed that transpiration and the photosynthetic rate were significantly increased in AtGC1::AHA2 transgenic aspen plants. AtGC1::AHA2 transgenic plants showed a>20% higher stem elongation rate than the wild type (WT). Therefore, overexpression of PM H+-ATPase in guard cells promotes the growth of perennial woody plants.
Collapse
Affiliation(s)
- Shigeo Toh
- Department of Environmental Bioscience, Meijo University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Toda
- Japan Science and Technology Agency, Saitama, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Phytometrics co., ltd., Shizuoka, Japan
| | - Yin Wang
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Takizawa, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
34
|
Wang T, Ye W, Wang Y, Zhang M, Aihara Y, Kinoshita T. Protease Inhibitor-Dependent Inhibition of Light-Induced Stomatal Opening. FRONTIERS IN PLANT SCIENCE 2021; 12:735328. [PMID: 34567048 PMCID: PMC8462734 DOI: 10.3389/fpls.2021.735328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Stomata in the epidermis of plants play essential roles in the regulation of photosynthesis and transpiration. Stomata open in response to blue light (BL) by phosphorylation-dependent activation of the plasma membrane (PM) H+-ATPase in guard cells. Under water stress, the plant hormone abscisic acid (ABA) promotes stomatal closure via the ABA-signaling pathway to reduce water loss. We established a chemical screening method to identify compounds that affect stomatal movements in Commelina benghalensis. We performed chemical screening using a protease inhibitor (PI) library of 130 inhibitors to identify inhibitors of stomatal movement. We discovered 17 PIs that inhibited light-induced stomatal opening by more than 50%. Further analysis of the top three inhibitors (PI1, PI2, and PI3; inhibitors of ubiquitin-specific protease 1, membrane type-1 matrix metalloproteinase, and matrix metalloproteinase-2, respectively) revealed that these inhibitors suppressed BL-induced phosphorylation of the PM H+-ATPase but had no effect on the activity of phototropins or ABA-dependent responses. The results suggest that these PIs suppress BL-induced stomatal opening at least in part by inhibiting PM H+-ATPase activity but not the ABA-signaling pathway. The targets of PI1, PI2, and PI3 were predicted by bioinformatics analyses, which provided insight into factors involved in BL-induced stomatal opening.
Collapse
Affiliation(s)
- Tenghua Wang
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Wenxiu Ye
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| | - Maoxing Zhang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Horticulture, International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Vialet-Chabrand S, Matthews JSA, Lawson T. Light, power, action! Interaction of respiratory energy- and blue light-induced stomatal movements. THE NEW PHYTOLOGIST 2021; 231:2231-2246. [PMID: 34101837 DOI: 10.1111/nph.17538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 05/07/2023]
Abstract
Although the signalling pathway of blue light (BL)-dependent stomatal opening is well characterized, little is known about the interspecific diversity, the role it plays in the regulation of gas exchange and the source of energy used to drive the commonly observed increase in pore aperture. Using a combination of red and BL under ambient and low [O2 ] (to inhibit respiration), the interaction between BL, photosynthesis and respiration in determining stomatal conductance was investigated. These findings were used to develop a novel model to predict the feedback between photosynthesis and stomatal conductance under these conditions. Here we demonstrate that BL-induced stomatal responses are far from universal, and that significant species-specific differences exist in terms of both rapidity and magnitude. Increased stomatal conductance under BL reduced photosynthetic limitation, at the expense of water loss. Moreover, we stress the importance of the synergistic effect of BL and respiration in driving rapid stomatal movements, especially when photosynthesis is limited. These observations will help reshape our understanding of diurnal gas exchange in order to exploit the dynamic coordination between the rate of carbon assimilation (A) and stomatal conductance (gs ), as a target for enhancing crop performance and water use efficiency.
Collapse
Affiliation(s)
| | - Jack S A Matthews
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
36
|
Arabidopsis group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proc Natl Acad Sci U S A 2021; 118:2100073118. [PMID: 34282011 PMCID: PMC8325330 DOI: 10.1073/pnas.2100073118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.
Collapse
|
37
|
Hosotani S, Yamauchi S, Kobayashi H, Fuji S, Koya S, Shimazaki KI, Takemiya A. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. THE PLANT CELL 2021; 33:1813-1827. [PMID: 33665670 PMCID: PMC8254492 DOI: 10.1093/plcell/koab067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/20/2021] [Indexed: 05/20/2023]
Abstract
Light-induced stomatal opening stimulates CO2 uptake and transpiration in plants. Weak blue light under strong red light effectively induces stomatal opening. Blue light-dependent stomatal opening initiates light perception by phototropins, and the signal is transmitted to a plasma membrane H+-ATPase in guard cells via BLUE LIGHT SIGNALING 1 (BLUS1) kinase. However, it is unclear how BLUS1 transmits the signal to H+-ATPase. Here, we characterized BLUS1 signaling in Arabidopsis thaliana, and showed that the BLUS1 C-terminus acts as an auto-inhibitory domain and that phototropin-mediated Ser-348 phosphorylation within the domain removes auto-inhibition. C-Terminal truncation and phospho-mimic Ser-348 mutation caused H+-ATPase activation in the dark, but did not elicit stomatal opening. Unexpectedly, the plants exhibited stomatal opening under strong red light and stomatal closure under weak blue light. A decrease in intercellular CO2 concentration via red light-driven photosynthesis together with H+-ATPase activation caused stomatal opening. Furthermore, phototropins caused H+-ATPase dephosphorylation in guard cells expressing constitutive signaling variants of BLUS1 in response to blue light, possibly for fine-tuning stomatal opening. Overall, our findings provide mechanistic insights into the blue light regulation of stomatal opening.
Collapse
Affiliation(s)
- Sakurako Hosotani
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Haruki Kobayashi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shigekazu Koya
- Department of Biology, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
- Author for correspondence:
| |
Collapse
|
38
|
Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. Signaling mechanisms in abscisic acid-mediated stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:307-321. [PMID: 33145840 PMCID: PMC7902384 DOI: 10.1111/tpj.15067] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 05/09/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Guillaume Dubeaux
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| |
Collapse
|
39
|
Yang J, Li C, Kong D, Guo F, Wei H. Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure. FRONTIERS IN PLANT SCIENCE 2020; 11:601478. [PMID: 33343603 PMCID: PMC7746640 DOI: 10.3389/fpls.2020.601478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 06/10/2023]
Abstract
Stomata are valves on the leaf surface controlling carbon dioxide (CO2) influx for photosynthesis and water loss by transpiration. Thus, plants have to evolve elaborate mechanisms controlling stomatal aperture to allow efficient photosynthesis while avoid excessive water loss. Light is not only the energy source for photosynthesis but also an important signal regulating stomatal movement during dark-to-light transition. Our knowledge concerning blue and red light signaling and light-induced metabolite changes that contribute to stomatal opening are accumulating. This review summarizes recent advances on the signaling components that lie between the perception of blue/red light and activation of the PM H+-ATPases, and on the negative regulation of stomatal opening by red light-activated phyB signaling and ultraviolet (UV-B and UV-A) irradiation. Besides, light-regulated guard cell (GC)-specific metabolic levels, mesophyll-derived sucrose, and CO2 concentration within GCs also play dual roles in stomatal opening. Thus, light-induced stomatal opening is tightly accompanied by brake mechanisms, allowing plants to coordinate carbon gain and water loss. Knowledge on the mechanisms regulating the trade-off between stomatal opening and closure may have potential applications toward generating superior crops with improved water use efficiency (CO2 gain vs. water loss).
Collapse
Affiliation(s)
- Juan Yang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Chunlian Li
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Dexin Kong
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Fangyan Guo
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Hongbin Wei
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Westbrook AS, McAdam SAM. Atavistic Stomatal Responses to Blue Light in Marsileaceae. PLANT PHYSIOLOGY 2020; 184:1378-1388. [PMID: 32843522 PMCID: PMC7608159 DOI: 10.1104/pp.20.00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 05/05/2023]
Abstract
Stomata respond to changes in light environment through multiple mechanisms that jointly regulate the tradeoff between carbon assimilation and water loss. The stomatal response to blue light is highly sensitive, rapid, and not driven by photosynthesis. It is present in most vascular plant groups but is believed to have been lost in the ancestor of leptosporangiate ferns. Schizaeales and Salviniales are the only leptosporangiate orders that have not been tested for stomatal responses to a low fluence of blue light. We report that these stomatal responses are absent in Lygodium japonicum (Schizaeales). In contrast, we observed stomatal responses to a low fluence of blue light in Regnellidium diphyllum and Marsilea minuta (Marsileaceae, Salviniales). In R. diphyllum, blue light triggered stomatal oscillations. The oscillations were more sensitive to atmospheric carbon dioxide concentration than to humidity, suggesting that the blue light responses of Marsileaceae stomata differ from those of angiosperms. Our findings suggest that Marsileaceae have physiologically diverged from other leptosporangiate ferns, achieving unusually high photosynthetic capacities through amphibious lifestyles and numerous anatomical convergences with angiosperms. Blue light stomatal responses may have contributed to this divergence by enabling high rates of leaf gas exchange in Marsileaceae.
Collapse
Affiliation(s)
- Anna S Westbrook
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
41
|
Inoue S, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki K. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:679-692. [PMID: 32780529 PMCID: PMC7693358 DOI: 10.1111/tpj.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.
Collapse
Affiliation(s)
- Shin‐Ichiro Inoue
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Xiang Zhao
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - Thomas Waksman
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
- Present address:
Department of BiologyGraduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchi753‐8512Japan
| | - Masaki Okumura
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota
| | | | - Motoaki Seki
- RIKEN Cluster for Pioneering Research2‐1 HirosawaWako351‐0198Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, Tsurumi‐kuYokohama230‐0045Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074Japan
| | - Yaeta Endo
- Institute for the Promotion of Science and TechnologyEhime UniversityMatsuyama790‐8577Japan
| | | | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8602Japan
| | - Xiao Zhang
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - John M. Christie
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Ken‐Ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
| |
Collapse
|
42
|
Ishishita K, Higa T, Tanaka H, Inoue SI, Chung A, Ushijima T, Matsushita T, Kinoshita T, Nakai M, Wada M, Suetsugu N, Gotoh E. Phototropin2 Contributes to the Chloroplast Avoidance Response at the Chloroplast-Plasma Membrane Interface. PLANT PHYSIOLOGY 2020; 183:304-316. [PMID: 32193212 PMCID: PMC7210631 DOI: 10.1104/pp.20.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 05/31/2023]
Abstract
Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.
Collapse
Affiliation(s)
- Kazuhiro Ishishita
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Hidekazu Tanaka
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Shin-Ichiro Inoue
- Graduate School of Sciences, Nagoya University, Aichi 464-8602, Japan
| | - Aeri Chung
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | | | - Masato Nakai
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masamitsu Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Wang Y, Chen ZH. Does Molecular and Structural Evolution Shape the Speedy Grass Stomata? FRONTIERS IN PLANT SCIENCE 2020; 11:333. [PMID: 32373136 PMCID: PMC7186404 DOI: 10.3389/fpls.2020.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
It has been increasingly important for breeding programs to be aimed at crops that are capable of coping with a changing climate, especially with regards to higher frequency and intensity of drought events. Grass stomatal complex has been proposed as an important factor that may enable grasses to adapt to water stress and variable climate conditions. There are many studies focusing on the stomatal morphology and development in the eudicot model plant Arabidopsis and monocot model plant Brachypodium. However, the comprehensive understanding of the distinction of stomatal structure and development between monocots and eudicots, especially between grasses and eudicots, are still less known at evolutionary and comparative genetic levels. Therefore, we employed the newly released version of the One Thousand Plant Transcriptome (OneKP) database and existing databases of green plant genome assemblies to explore the evolution of gene families that contributed to the formation of the unique structure and development of grass stomata. This review emphasizes the differential stomatal morphology, developmental mechanisms, and guard cell signaling in monocots and eudicots. We provide a summary of useful molecular evidences for the high water use efficiency of grass stomata that may offer new horizons for future success in breeding climate resilient crops.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
44
|
Matthews JSA, Vialet-Chabrand S, Lawson T. Role of blue and red light in stomatal dynamic behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2253-2269. [PMID: 31872212 PMCID: PMC7134916 DOI: 10.1093/jxb/erz563] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/19/2019] [Indexed: 05/20/2023]
Abstract
Plants experience changes in light intensity and quality due to variations in solar angle and shading from clouds and overlapping leaves. Stomatal opening to increasing irradiance is often an order of magnitude slower than photosynthetic responses, which can result in CO2 diffusional limitations on leaf photosynthesis, as well as unnecessary water loss when stomata continue to open after photosynthesis has reached saturation. Stomatal opening to light is driven by two distinct pathways; the 'red' or photosynthetic response that occurs at high fluence rates and saturates with photosynthesis, and is thought to be the main mechanism that coordinates stomatal behaviour with photosynthesis; and the guard cell-specific 'blue' light response that saturates at low fluence rates, and is often considered independent of photosynthesis, and important for early morning stomatal opening. Here we review the literature on these complicated signal transduction pathways and osmoregulatory processes in guard cells that are influenced by the light environment. We discuss the possibility of tuning the sensitivity and magnitude of stomatal response to blue light which potentially represents a novel target to develop ideotypes with the 'ideal' balance between carbon gain, evaporative cooling, and maintenance of hydraulic status that is crucial for maximizing crop performance and productivity.
Collapse
Affiliation(s)
- Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
45
|
Hayashi M, Sugimoto H, Takahashi H, Seki M, Shinozaki K, Sawasaki T, Kinoshita T, Inoue SI. Raf-like kinases CBC1 and CBC2 negatively regulate stomatal opening by negatively regulating plasma membrane H +-ATPase phosphorylation in Arabidopsis. Photochem Photobiol Sci 2020; 19:88-98. [PMID: 31904040 DOI: 10.1039/c9pp00329k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stomatal pores, which are surrounded by pairs of guard cells in the plant epidermis, regulate gas exchange between plants and the atmosphere, thereby controlling photosynthesis and transpiration. Blue light works as a signal to guard cells, to induce intracellular signaling and open stomata. Blue light receptor phototropins (phots) are activated by blue light; phot-mediated signals promote plasma membrane (PM) H+-ATPase activity via C-terminal Thr phosphorylation, serving as the driving force for stomatal opening in guard cells. However, the details of this signaling process are not fully understood. In this study, through an in vitro screening of phot-interacting protein kinases, we obtained the CBC1 and CBC2 that had been reported as signal transducers in stomatal opening. Promoter activities of CBC1 and CBC2 indicated that both genes were expressed in guard cells. Single and double knockout mutants of CBC1 and CBC2 showed no lesions in the context of phot-mediated phototropism, chloroplast movement, or leaf flattening. In contrast, the cbc1cbc2 double mutant showed larger stomatal opening under both dark and blue light conditions. Interestingly, the level of phosphorylation of C-terminal Thr of PM H+-ATPase was higher in double mutant guard cells. The larger stomatal openings of the double mutant were effectively suppressed by the phytohormone abscisic acid (ABA). CBC1 and CBC2 interacted with BLUS1 and PM H+-ATPase in vitro. From these results, we conclude that CBC1 and CBC2 act as negative regulators of stomatal opening, probably via inhibition of PM H+-ATPase activity.
Collapse
Affiliation(s)
- Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hodaka Sugimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hirotaka Takahashi
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Motoaki Seki
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
46
|
Koide E, Suetsugu N, Iwano M, Gotoh E, Nomura Y, Stolze SC, Nakagami H, Kohchi T, Nishihama R. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2020; 61:631-643. [PMID: 31851335 DOI: 10.1093/pcp/pcz232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
To optimize growth and development, plants monitor photosynthetic activities and appropriately regulate various cellular processes. However, signaling mechanisms that coordinate plant growth with photosynthesis remain poorly understood. To identify factors that are involved in signaling related to photosynthetic stimuli, we performed a phosphoproteomic analysis with Marchantia polymorpha, an extant bryophyte species in the basal lineage of land plants. Among proteins whose phosphorylation status changed differentially between dark-treated plants and those after light irradiation but failed to do so in the presence of a photosynthesis inhibitor, we identified a B4-group Raf-like kinase, named PHOTOSYNTHESIS-RELATED RAF (MpPRAF). Biochemical analyses confirmed photosynthesis-activity-dependent changes in the phosphorylation status of MpPRAF. Mutations in the MpPRAF gene resulted in growth retardation. Measurement of carbohydrates demonstrated both hyper-accumulation of starch and reduction of sucrose in Mppraf mutants. Neither inhibition of starch synthesis nor exogenous supply of sucrose alleviated the growth defect, suggesting serious impairment of Mppraf mutants in both the synthesis of sucrose and the repression of its catabolism. As a result of the compromised photosynthate metabolism, photosynthetic electron transport was downregulated in Mppraf mutants. A mutated MpPRAF with a common amino acid substitution for inactivating kinase activity was unable to rescue the Mppraf mutant defects. Our results provide evidence that MpPRAF is a photosynthesis signaling kinase that regulates sucrose metabolism.
Collapse
Affiliation(s)
- Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
47
|
Babla M, Cai S, Chen G, Tissue DT, Cazzonelli CI, Chen ZH. Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Front Genet 2019; 10:956. [PMID: 31681411 PMCID: PMC6797626 DOI: 10.3389/fgene.2019.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
Collapse
Affiliation(s)
- Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
48
|
Aoki S, Toh S, Nakamichi N, Hayashi Y, Wang Y, Suzuki T, Tsuji H, Kinoshita T. Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana. Sci Rep 2019; 9:10054. [PMID: 31332248 PMCID: PMC6646381 DOI: 10.1038/s41598-019-46440-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
Stomatal movements are regulated by many environmental signals, such as light, CO2, temperature, humidity, and drought. Recently, we showed that photoperiodic flowering components have positive effects on light-induced stomatal opening in Arabidopsis thaliana. In this study, we determined that light-induced stomatal opening and increased stomatal conductance were larger in plants grown under long-day (LD) conditions than in those grown under short-day (SD) conditions. Gene expression analyses using purified guard cell protoplasts revealed that FT and SOC1 expression levels were significantly increased under LD conditions. Interestingly, the enhancement of light-induced stomatal opening and increased SOC1 expression in guard cells due to LD conditions persisted for at least 1 week after plants were transferred to SD conditions. We then investigated histone modification using chromatin immunoprecipitation–PCR, and observed increased trimethylation of lysine 4 on histone 3 (H3K4) around SOC1. We also found that LD-dependent enhancement of light-induced stomatal opening and H3K4 trimethylation in SOC1 were suppressed in the ft-2 mutant. These results indicate that photoperiod is an important environmental cue regulating stomatal opening, and that LD conditions enhance light-induced stomatal opening and epigenetic modification (H3K4 trimethylation) around SOC1, a positive regulator of stomatal opening, in an FT-dependent manner. Thus, this study provides novel insights into stomatal responses to photoperiod.
Collapse
Affiliation(s)
- Saya Aoki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Ministry of Education, Culture, Sports, Science and Technology, Chiyoda, Tokyo, 100-8959, Japan
| | - Shigeo Toh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Life Sciences, School of Agriculture, Meiji University, Tama, Kawasaki, 214-8571, Japan
| | - Norihito Nakamichi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yin Wang
- Institute for Advanced Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, 244-0813, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
49
|
Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG. Acquiring Control: The Evolution of Stomatal Signalling Pathways. TRENDS IN PLANT SCIENCE 2019; 24:342-351. [PMID: 30797685 DOI: 10.1016/j.tplants.2019.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 05/24/2023]
Abstract
In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Collapse
Affiliation(s)
- Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - M Rob G Roelfsema
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| |
Collapse
|
50
|
Bokros N, Popescu SC, Popescu GV. Multispecies genome-wide analysis defines the MAP3K gene family in Gossypium hirsutum and reveals conserved family expansions. BMC Bioinformatics 2019; 20:99. [PMID: 30871456 PMCID: PMC6419318 DOI: 10.1186/s12859-019-2624-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Gene families are sets of structurally and evolutionarily related genes – in one or multiple species – that typically share a conserved biological function. As such, the identification and subsequent analyses of entire gene families are widely employed in the fields of evolutionary and functional genomics of both well established and newly sequenced plant genomes. Currently, plant gene families are typically identified using one of two major ways: 1) HMM-profile based searches using models built on Arabidopsis thaliana genes or 2) coding sequence homology searches using curated databases. Integrated databases containing functionally annotated genes and gene families have been developed for model organisms and several important crops; however, a comprehensive methodology for gene family annotation is currently lacking, preventing automated annotation of newly sequenced genomes. Results This paper proposes a combined measure of homology identification, motif conservation, phylogenomic and integrated gene expression analyses to define gene family structures in multiple plant species. The MAP3K gene families in seven plant species, including two currently unexamined species Gossypium hirsutum, and Zostera marina, were characterized to reveal new insights into their collective function and evolution and demonstrate the effectiveness of our novel methodology. Conclusion Compared with recent reports, this methodology performs significantly better for the identification and analysis of gene family members in several monocots/dicots, diploid as well as polyploid plant species. Electronic supplementary material The online version of this article (10.1186/s12859-019-2624-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norbert Bokros
- Department of Biochemistry, Molecular Biology, Plant Pathology and Entomology, Mississippi State University, Mississippi State, MS, 39762, USA.,Institute for Genomics, Biocomputing and Bioengineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Sorina C Popescu
- Department of Biochemistry, Molecular Biology, Plant Pathology and Entomology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - George V Popescu
- Institute for Genomics, Biocomputing and Bioengineering, Mississippi State University, Mississippi State, MS, 39762, USA. .,The National Institute for Laser, Plasma & Radiation Physics, Bucharest, Romania.
| |
Collapse
|