1
|
Ji J, Hu F, Qin J, Zhao Y, Dong Y, Yang H, Bai Z, Wu G, Wang Q, Jin B. Comparation on the responses and resilience of single-Anammox system and synergistic partial-denitrification/anammox system to long-term nutrient starvation: Performance and metagenomic insights. BIORESOURCE TECHNOLOGY 2025; 415:131694. [PMID: 39447919 DOI: 10.1016/j.biortech.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Starvation disturbance was a common problem in biological sewage treatment processes. However, understanding about the responses and resilience of different active anammox biomass in autotrophic and heterotrophic systems to long-term nutrient starvation remains limited. This study compared responses and potential recovery mechanisms of autotrophic single-Anammox and heterotrophic synergistic partial-denitrification/anammox (PD/anammox) systems to prolonged starvation (31-40 days). After starvation, total inorganic nitrogen (TIN) removal efficiency of single-Anammox and synergistic PD/anammox systems decreased to 62.16 % and 78.52 %, respectively, of their original level. After the nutrient resupply, the performance of both systems gradually recovered to a similar-to-pre-starvation level at the rate of 1.26 %/day and 1.89 %/day, respectively. Compared with single-Anammox system, complex synergistic relationship of microorganisms and effective quorum sensing (QS) regulation strategies might mitigate the negative influences were caused by starvation and ensure the performance quickly return of synergistic PD/anammox system. This study would contribute to promote the application of Anammox technology.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Qin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongen Dong
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiyue Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Halbrook S, Wilber W, Barrow ME, Farrer EC. Bacterial community response to novel and repeated disturbances. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70022. [PMID: 39387551 PMCID: PMC11465558 DOI: 10.1111/1758-2229.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long-term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
Collapse
Affiliation(s)
- Susannah Halbrook
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - William Wilber
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Mary Elizabeth Barrow
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| | - Emily C. Farrer
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA
| |
Collapse
|
3
|
Chang C, Hu E, Shi Y, Pan B, Li M. Linking microbial community coalescence to ecological diversity, community assembly and species coexistence in a typical subhumid river catchment in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173367. [PMID: 38796011 DOI: 10.1016/j.scitotenv.2024.173367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Community coalescence denotes the amalgamation of biotic and abiotic factors across multiple intact ecological communities. Despite the growing attention given to the phenomenon of coalescence, there remains limited investigation into community coalescence in single and multiple source habitats and its impact on microbial community assemblages in sinks. This study focused on a major river catchment in northern China. We investigated microbial community coalescence across different habitats (i.e., water, sediment, biofilm, and riparian soil) and seasons (i.e., summer and winter). Using 16S rRNA gene amplicon sequence variants, we examined the relationship between community coalescence and microbial diversity, assembly processes, and species coexistence. The results showed that the intensity of microbial community coalescence was higher in the same habitat pairs compared to disparate habitat pairs in both summer and winter. During the occurrence of microbial community coalescence, the assembly processes regulated the intensity of coalescence. When the microbial community exhibited strong heterogeneous selection (heterogeneous environmental conditions leading to more dissimilar community structures), the intensity of community coalescence was low. With the assembly process shifted towards stochasticity, coalescence intensity increased gradually. However, when homogeneous selection (homogeneous environmental conditions leading to more similar community structures) predominantly shaped microbial communities, coalescence intensity exceeded the threshold of 0.25-0.30. Moreover, the enhanced intensity of community coalescence could increase the complexity of microbial networks, thereby enhancing species coexistence. Furthermore, the assembly processes mediated the relationship between community coalescence and species coexistence, underscoring the pivotal role of intermediate intensity of community coalescence in maintaining efficient species coexistence. In conclusion, this study highlights the crucial role of community coalescence originating from single and multiple source habitats in shaping microbial communities in sinks, thus emphasizing its central importance in watershed ecosystems.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China
| | - Yifei Shi
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 710054, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Eliette AS, Elodie B, Arnaud M, Tiffany R, Aymé S, Pascal P. Idiosyncratic invasion trajectories of human bacterial pathogens facing temperature disturbances in soil microbial communities. Sci Rep 2024; 14:12375. [PMID: 38811807 PMCID: PMC11137084 DOI: 10.1038/s41598-024-63284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Current knowledge about effects of disturbance on the fate of invaders in complex microbial ecosystems is still in its infancy. In order to investigate this issue, we compared the fate of Klebsiella pneumoniae (Kp) and Listeria monocytogenes (Lm) in soil microcosms. We then used environmental disturbances (freeze-thaw or heat cycles) to compare the fate of both invaders and manipulate soil microbial diversity. Population dynamics of the two pathogens was assessed over 50 days of invasion while microbial diversity was measured at times 0, 20 and 40 days. The outcome of invasion was strain-dependent and the response of the two invaders to disturbance differed. Resistance to Kp invasion was higher under the conditions where resident microbial diversity was the highest while a significant drop of diversity was linked to a higher persistence. In contrast, Lm faced stronger resistance to invasion in heat-treated microcosms where diversity was the lowest. Our results show that diversity is not a universal proxy of resistance to microbial invasion, indicating the need to properly assess other intrinsic properties of the invader, such as its metabolic repertoire, or the array of interactions between the invader and resident communities.
Collapse
Affiliation(s)
- Ascensio-Schultz Eliette
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Barbier Elodie
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Mounier Arnaud
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Raynaud Tiffany
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | - Spor Aymé
- Université de Bourgogne, University Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, 21000, Dijon, France
| | | |
Collapse
|
6
|
Jurburg SD, Blowes SA, Shade A, Eisenhauer N, Chase JM. Synthesis of recovery patterns in microbial communities across environments. MICROBIOME 2024; 12:79. [PMID: 38711157 DOI: 10.1186/s40168-024-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical assessment of microbiome responses to disturbance across different environments is needed to understand the factors driving microbiome recovery, and the role of the environment in driving these patterns. RESULTS To this end, we combined null models with Bayesian generalized linear models to examine 86 time series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion (i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle. CONCLUSIONS This is the first study to systematically compare secondary successional dynamics across disturbed microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified perspective. Video Abstract.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| | - Ashley Shade
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Universite Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| |
Collapse
|
7
|
Custer GF, Bresciani L, Dini-Andreote F. Toward an integrative framework for microbial community coalescence. Trends Microbiol 2024; 32:241-251. [PMID: 37778924 DOI: 10.1016/j.tim.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Community coalescence is defined as the mixing of intact ecological communities. From river confluences to fecal microbiota transplantation, community coalescence constitutes a common ecological occurrence affecting natural and engineered microbial systems. In this opinion article, we propose an integrative framework for microbial community coalescence to guide advances in our understanding of this important - yet underexplored - ecological phenomenon. We start by aligning community coalescence with the unified framework of biological invasion and enumerate commonalities and idiosyncrasies between these two analogous processes. Then, we discuss how organismal interactions and cohesive establishment affect coalescence outcomes with direct implications for community functioning. Last, we propose the use of ecological null modeling to study the interplay of ecological processes structuring community reassembly following coalescence.
Collapse
Affiliation(s)
- Gordon F Custer
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Luana Bresciani
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Liu X, Salles JF. Drivers and consequences of microbial community coalescence. THE ISME JOURNAL 2024; 18:wrae179. [PMID: 39288091 PMCID: PMC11447283 DOI: 10.1093/ismejo/wrae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Microbial communities are undergoing unprecedented dispersion and amalgamation across diverse ecosystems, thereby exerting profound and pervasive influences on microbial assemblages and ecosystem dynamics. This review delves into the phenomenon of community coalescence, offering an ecological overview that outlines its four-step process and elucidates the intrinsic interconnections in the context of community assembly. We examine pivotal mechanisms driving community coalescence, with a particular emphasis on elucidating the fates of both source and resident microbial communities and the consequential impacts on the ecosystem. Finally, we proffer recommendations to guide researchers in this rapidly evolving domain, facilitating deeper insights into the ecological ramifications of microbial community coalescence.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ecologie Microbienne Lyon, Centre National de la Recherche Scientifique (CNRS) UMR5557, Bâtiment Grégoire Mendel, 69100 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Pinheiro Alves de Souza Y, Schloter M, Weisser W, Schulz S. Deterministic Development of Soil Microbial Communities in Disturbed Soils Depends on Microbial Biomass of the Bioinoculum. MICROBIAL ECOLOGY 2023; 86:2882-2893. [PMID: 37624441 PMCID: PMC10640511 DOI: 10.1007/s00248-023-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Despite its enormous importance for ecosystem services, factors driving microbial recolonization of soils after disturbance are still poorly understood. Here, we compared the microbial recolonization patterns of a disturbed, autoclaved soil using different amounts of the original non-disturbed soil as inoculum. By using this approach, we manipulated microbial biomass, but did not change microbial diversity of the inoculum. We followed the development of a new soil microbiome after reinoculation over a period of 4 weeks using a molecular barcoding approach as well as qPCR. Focus was given on the assessment of bacteria and archaea. We could show that 1 week after inoculation in all inoculated treatments bacterial biomass exceeded the values from the original soil as a consequence of high dissolved organic carbon (DOC) concentrations in the disturbed soil resulting from the disturbance. This high biomass was persistent over the complete experimental period. In line with the high DOC concentrations, in the first 2 weeks of incubation, copiotrophic bacteria dominated the community, which derived from the inoculum used. Only in the disturbed control soils which did not receive a microbial inoculum, recolonization pattern differed. In contrast, archaeal biomass did not recover over the experimental period and recolonization was strongly triggered by amount of inoculated original soil added. Interestingly, the variability between replicates of the same inoculation density decreased with increasing biomass in the inoculum, indicating a deterministic development of soil microbiomes if higher numbers of cells are used for reinoculation.
Collapse
Affiliation(s)
- Yuri Pinheiro Alves de Souza
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany
- Technische Universität München, TUM School of Life Science, Chair of Environmental Microbiology, Freising, Germany
| | - Michael Schloter
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany
- Technische Universität München, TUM School of Life Science, Chair of Environmental Microbiology, Freising, Germany
| | - Wolfgang Weisser
- Technische Universität München, TUM School of Life Science, Chair of Terrestrial Ecology, Freising, Germany
| | - Stefanie Schulz
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany.
| |
Collapse
|
10
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
11
|
Mao Z, Zhao Z, Da J, Tao Y, Li H, Zhao B, Xing P, Wu Q. The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments. ENVIRONMENTAL MICROBIOME 2023; 18:19. [PMID: 36932455 PMCID: PMC10024408 DOI: 10.1186/s40793-023-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.
Collapse
Affiliation(s)
- Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Da
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Life Science, Anhui Normal University, Wuhu, 241002, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
12
|
Shi Y, Khan IUH, Radford D, Guo G, Sunohara M, Craiovan E, Lapen DR, Pham P, Chen W. Core and conditionally rare taxa as indicators of agricultural drainage ditch and stream health and function. BMC Microbiol 2023; 23:62. [PMID: 36882680 PMCID: PMC9990217 DOI: 10.1186/s12866-023-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Devon Radford
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Galen Guo
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Mark Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Phillip Pham
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada.,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada. .,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada.
| |
Collapse
|
13
|
Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and Long-Term Warming. Appl Environ Microbiol 2023; 89:e0154322. [PMID: 36847530 PMCID: PMC10056963 DOI: 10.1128/aem.01543-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.
Collapse
|
14
|
Tran HT, Nguyen HM, Nguyen TMH, Chang C, Huang WL, Huang CL, Chiang TY. Microbial Communities Along 2,3,7,8-tetrachlorodibenzodioxin Concentration Gradient in Soils Polluted with Agent Orange Based on Metagenomic Analyses. MICROBIAL ECOLOGY 2023; 85:197-208. [PMID: 35034142 DOI: 10.1007/s00248-021-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.
Collapse
Affiliation(s)
- Huyen-Trang Tran
- Department of Biology, Vinh University, Vinh, Nghe An, 461010, Vietnam
| | - Hung-Minh Nguyen
- Center for responding to climate change, Department of Climate Change, Ministry of Natural Resources and Environment, Hanoi, 125000, Vietnam
| | - Thi-Minh-Hue Nguyen
- Analytical laboratory for Environment, Dioxin and Toxins, Northern Center for Environmental Monitoring, Vietnam Environment Administration, Hanoi, 115000, Vietnam
| | - Chieh Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Ling Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
Skouroliakou DI, Breton E, Irion S, Artigas LF, Christaki U. Stochastic and Deterministic Processes Regulate Phytoplankton Assemblages in a Temperate Coastal Ecosystem. Microbiol Spectr 2022; 10:e0242722. [PMID: 36222680 PMCID: PMC9769578 DOI: 10.1128/spectrum.02427-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Assessing the relative contributions of the interacting deterministic and stochastic ecological processes for phytoplankton community assembly is crucial in understanding and predicting community organization and succession at different temporal and spatial scales. In this study, we hypothesized that deterministic and stochastic ecological processes regulating phytoplankton, present seasonal and repeating patterns. This hypothesis was explored during a 5-year survey (287 samples) conducted at a small spatial scale (~15km) in a temperate coastal ecosystem (eastern English Channel). Microscopy and flow cytometry quantified phytoplankton abundance and biomass, while metabarcoding data allowed an extended evaluation of diversity and the exploration of the ecological processes regulating phytoplankton using null model analysis. Alpha diversity of phytoplankton was governed by the effect of environmental conditions (environmental filtering). Temporal community turnover (beta diversity) evidenced a consistent interannual pattern that determined the phytoplankton seasonal structure. In winter and early spring (from January to March), determinism (homogeneous selection) was the major process in the phytoplankton community assembly. The overall mean in the year was 38%. Stochastic processes (ecological drift) prevailed during the rest of the year from April to December, where the overall mean for the year was 55%. The maximum values were recorded in late spring and summer, which often presented recurrent and transient monospecific phytoplankton peaks. Overall, the prevalence of stochastic processes rendered less predictable seasonal dynamics of phytoplankton communities to future environmental change. IMPORTANCE While ecological deterministic processes are conducive to modeling, stochastic ones are far less predictable. Understanding the overall assembly processes of phytoplankton is critical in tracking and predicting future changes. The novelty of this study was that it addressed a long-posed question, on a pluriannual scale. Was seasonal phytoplankton succession influenced by deterministic processes (e.g., abiotic environment) or by stochastic ones (e.g., dispersal, or ecological drift)? Our results provided strong support for a seasonal and repeating pattern with stochastic processes (drift) prevailing during most of the year and periods with monospecific phytoplankton peaks.
Collapse
Affiliation(s)
| | - Elsa Breton
- University Littoral Côte d’Opale, CNRS, Wimereux, France
| | - Solène Irion
- University Littoral Côte d’Opale, CNRS, Wimereux, France
| | | | | |
Collapse
|
16
|
Jurburg SD, Buscot F, Chatzinotas A, Chaudhari NM, Clark AT, Garbowski M, Grenié M, Hom EFY, Karakoç C, Marr S, Neumann S, Tarkka M, van Dam NM, Weinhold A, Heintz-Buschart A. The community ecology perspective of omics data. MICROBIOME 2022; 10:225. [PMID: 36510248 PMCID: PMC9746134 DOI: 10.1186/s40168-022-01423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (β-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and β-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research- UFZ, Halle, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Narendrakumar M Chaudhari
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Adam T Clark
- Institute of Biology, University of Graz, Graz, Austria
| | - Magda Garbowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Botany, University of Wyoming, Wyoming, USA
| | - Matthias Grenié
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Erik F Y Hom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, Oxford, Mississippi, USA
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Biology, Indiana University, Indiana, USA
| | - Susanne Marr
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, Halle, Germany
| | - Steffen Neumann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, Halle, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research- UFZ, Halle, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Qiao X, Sun T, Lei J, Xiao L, Xue L, Zhang H, Jia J, Bei S. Arbuscular mycorrhizal fungi contribute to wheat yield in an agroforestry system with different tree ages. Front Microbiol 2022; 13:1024128. [DOI: 10.3389/fmicb.2022.1024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Intercropping achieved through agroforestry is increasingly being recognized as a sustainable form of land use. In agroforestry, the roots of trees and crops are intermingled, and their interactions and the production of exudates alter the soil environment and soil microbial community. Although tree–crop interactions vary depending on the stand age of the trees, how stand age affects beneficial microorganisms, including arbuscular mycorrhizal fungi (AMF), and whether changes in soil microorganisms feed back on crop growth in agroforestry systems are unknown. We therefore conducted a long-term field study to compare changes in the soil microbial and AMF communities in a jujube/wheat agroforestry system containing trees of different stand ages: 3-year-old jujube, 8-year-old jujube, and 13-year-old jujube. Our results showed that by changing soil moisture and available phosphorus content, the stand age of the trees had a significant effect on the soil microbial and AMF communities. Soil moisture altered the composition of soil bacteria, in particular the proportions of Gram-positive and Gram-negative species, and available phosphorus had significant effects on the AMF community. A network analysis showed that older stands of trees reduced both AMF diversity and network complexity. An ordinary least squares regression analysis indicated that AMF diversity, network complexity, and stability contributed to wheat yield. Finally, structural equation modeling showed that changes in edaphic factors induced by tree age brought about significant variation in the soil microbial and AMF communities, in turn, affecting crop growth. Our study highlights the crucial roles of soil microorganisms, in particular AMF, in supporting plant growth in agroforestry systems as well as the need to consider stand age in the establishment of these systems.
Collapse
|
18
|
Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience 2022; 25:104185. [PMID: 35479409 PMCID: PMC9035691 DOI: 10.1016/j.isci.2022.104185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial inoculants are constantly introduced into the soil as the deployment of sustainable agricultural practices increases. These introductions might induce soil native communities’ dynamics, influencing their assembly process. We followed the impact and successional trajectories of native soil communities of different diversity levels to the invasion by Bacillus mycoides M2E15 (BM) and B. pumilus ECOB02 (BP). Whereas the impact was more substantial when the invader survived (BM), the transient presence of BP also exerted tangible effects on soil bacterial diversity. Community assembly analyses revealed that deterministic processes primarily drove community turnover. This selection acted stronger in highly diverse communities invaded by BM than in those invaded by BP. We showed that resident bacterial communities exhibit patterns of secondary succession following invasions, even if the latter are unsuccessful. Furthermore, the intensification of biotic interactions in more diverse communities might strengthen the deterministic selection upon invasion in communities with higher diversity. Microbial invaders altered soil bacterial diversity regardless of their survival The impact was more pronounced when the invader was established Deterministic selection primarily drove community turnover following invasion The dynamic of invaded community showed pattern of secondary succession
Collapse
|
19
|
Correa-Galeote D, Argiz L, Val del Rio A, Mosquera-Corral A, Juarez-Jimenez B, Gonzalez-Lopez J, Rodelas B. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers (Basel) 2022; 14:1396. [PMID: 35406269 PMCID: PMC9003127 DOI: 10.3390/polym14071396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria, which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter, Calothrix, Dyella, Flavobacterium, Novosphingobium, Qipengyuania, and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
Collapse
Affiliation(s)
- David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Lucia Argiz
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Belen Juarez-Jimenez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Belen Rodelas
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| |
Collapse
|
20
|
Wang D, Wang Y, Liu L, Chen Y, Wang C, Li YY, Zhang T. Response and resilience of anammox consortia to nutrient starvation. MICROBIOME 2022; 10:23. [PMID: 35105385 PMCID: PMC8805231 DOI: 10.1186/s40168-021-01212-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND It is of critical importance to understand how anammox consortia respond to disturbance events and fluctuations in the wastewater treatment reactors. Although the responses of anammox consortia to operational parameters (e.g., temperature, dissolved oxygen, nutrient concentrations) have frequently been reported in previous studies, less is known about their responses and resilience when they suffer from nutrient interruption. RESULTS Here, we investigated the anammox community states and transcriptional patterns before and after a short-term nutrient starvation (3 days) to determine how anammox consortia respond to and recover from such stress. The results demonstrated that the remarkable changes in transcriptional patterns, rather than the community compositions were associated with the nutritional stress. The divergent expression of genes involved in anammox reactions, especially the hydrazine synthase complex (HZS), and nutrient transportation might function as part of a starvation response mechanism in anammox bacteria. In addition, effective energy conservation and substrate supply strategies (ATP accumulation, upregulated amino acid biosynthesis, and enhanced protein degradation) and synergistic interactions between anammox bacteria and heterotrophs might benefit their survival during starvation and the ensuing recovery of the anammox process. Compared with abundant heterotrophs in the anammox system, the overall transcription pattern of the core autotrophic producers (i.e., anammox bacteria) was highly resilient and quickly returned to its pre-starvation state, further contributing to the prompt recovery when the feeding was resumed. CONCLUSIONS These findings provide important insights into nutritional stress-induced changes in transcriptional activities in the anammox consortia and would be beneficial for the understanding of the capacity of anammox consortia in response to stress and process stability in the engineered ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
21
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Ceola G, Goss-Souza D, Alves J, Alves da Silva A, Stürmer SL, Baretta D, Sousa JP, Klauberg-Filho O. Biogeographic Patterns of Arbuscular Mycorrhizal Fungal Communities Along a Land-Use Intensification Gradient in the Subtropical Atlantic Forest Biome. MICROBIAL ECOLOGY 2021; 82:942-960. [PMID: 33656687 DOI: 10.1007/s00248-021-01721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.
Collapse
Affiliation(s)
- Gessiane Ceola
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Dennis Goss-Souza
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Joana Alves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Sidney Luiz Stürmer
- Departament of Natural Sciences, Regional University of Blumenau, Blumenau, SC, 89030-903, Brazil
| | - Dilmar Baretta
- Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil.
- Agroveterinary Centre, Santa Catarina State University, Av. Luis de Camões, 2090, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
23
|
Ossowicki A, Raaijmakers JM, Garbeva P. Disentangling soil microbiome functions by perturbation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:582-590. [PMID: 34231344 PMCID: PMC8518845 DOI: 10.1111/1758-2229.12989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 05/24/2023]
Abstract
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying mechanisms. By applying perturbation, one can generate compositional and functional shifts of complex microbial communities in a controlled way. Perturbations can reduce microbial diversity, diminish the abundance of specific microbial taxa and thereby disturb the interactions within the microbial consortia and with their eukaryotic hosts. Four different microbiome perturbation approaches, namely selective heat, specific biocides, dilution-to-extinction and genome editing are the focus of this mini-review. We also discuss the potential of perturbation approaches to reveal the tipping point at which specific soil functions are lost and to link this change to key microbial taxa involved in specific microbiome-associated phenotypes.
Collapse
Affiliation(s)
- Adam Ossowicki
- Department of Microbial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10WageningenPB6708Netherlands
- Soil and Water Research Infrastructure (SoWa)Biology Centre CASČeské BudějoviceCzech Republic
| | - Jos M. Raaijmakers
- Department of Microbial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10WageningenPB6708Netherlands
- Institute of Biology, Leiden UniversityLeidenNetherlands
| | - Paolina Garbeva
- Department of Microbial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10WageningenPB6708Netherlands
| |
Collapse
|
24
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
25
|
Donhauser J, Qi W, Bergk-Pinto B, Frey B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. GLOBAL CHANGE BIOLOGY 2021; 27:1365-1386. [PMID: 33336444 DOI: 10.1111/gcb.15492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Climate change is strongly affecting high-mountain soils and warming in particular is associated with pronounced changes in microbe-mediated C and N cycling, affecting plant-soil interactions and greenhouse gas balances and therefore feedbacks to global warming. We used shotgun metagenomics to assess changes in microbial community structures, as well as changes in microbial C- and N-cycling potential and stress response genes and we linked these data with changes in soil C and N pools and temperature-dependent measurements of bacterial growth rates. We did so by incubating high-elevation soil from the Swiss Alps at 4°C, 15°C, 25°C, or 35°C for 1 month. We found no shift with increasing temperature in the C-substrate-degrader community towards taxa more capable of degrading recalcitrant organic matter. Conversely, at 35°C, we found an increase in genes associated with the degradation and modification of microbial cell walls, together with high bacterial growth rates. Together, these findings suggest that the rapidly growing high-temperature community is fueled by necromass from heat-sensitive taxa. This interpretation was further supported by a shift in the microbial N-cycling potential towards N mineralization and assimilation under higher temperatures, along with reduced potential for conversions among inorganic N forms. Microbial stress-response genes reacted inconsistently to increasing temperature, suggesting that the high-temperature community was not severely stressed by these conditions. Rather, soil microbes were able to acclimate by changing the thermal properties of membranes and cell walls as indicated by an increase in genes involved in membrane and cell wall modifications as well as a shift in the optimum temperature for bacterial growth towards the treatment temperature. Overall, our results suggest that high temperatures, as they may occur with heat waves under global warming, promote a highly active microbial community capable of rapid mineralization of microbial necromass, which may transiently amplify warming effects.
Collapse
Affiliation(s)
- Jonathan Donhauser
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Benoît Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
26
|
Wang L, Tomas F, Mueller RS. Nutrient enrichment increases size of Zostera marina shoots and enriches for sulfur and nitrogen cycling bacteria in root-associated microbiomes. FEMS Microbiol Ecol 2021; 96:5861935. [PMID: 32578844 DOI: 10.1093/femsec/fiaa129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Seagrasses are vital coastal ecosystem engineers, which are mutualistically associated with microbial communities that contribute to the ecosystem services provided by meadows. The seagrass microbiome and sediment microbiota play vital roles in belowground biogeochemical and carbon cycling. These activities are influenced by nutrient, carbon and oxygen availability, all of which are modulated by environmental factors and plant physiology. Seagrass meadows are increasingly threatened by nutrient pollution, and it is unknown how the seagrass microbiome will respond to this stressor. We investigated the effects of fertilization on the physiology, morphology and microbiome of eelgrass (Zostera marina) cultivated over 4 weeks in mesocosms. We analyzed the community structure associated with eelgrass leaf, root and rhizosphere microbiomes, and of communities from water column and bulk sediment using 16S rRNA amplicon sequencing. Fertilization led to a higher number of leaves compared with that of eelgrass kept under ambient conditions. Additionally, fertilization led to enrichment of sulfur and nitrogen bacteria in belowground communities. These results suggest nutrient enrichment can stimulate belowground biogeochemical cycling, potentially exacerbating sulfide toxicity in sediments and decreasing future carbon sequestration stocks.
Collapse
Affiliation(s)
- Lu Wang
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Fiona Tomas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA.,Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), C/ Miquel Marquès, 21 07190 Esporles Illes Balears, Spain
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
27
|
Gao Y, Ding J, Yuan M, Chiariello N, Docherty K, Field C, Gao Q, Gu B, Gutknecht J, Hungate BA, Le Roux X, Niboyet A, Qi Q, Shi Z, Zhou J, Yang Y. Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition. NPJ Biofilms Microbiomes 2021; 7:17. [PMID: 33558544 PMCID: PMC7870951 DOI: 10.1038/s41522-021-00187-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas nifH gene encoding nitrogenase increased in the warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Junjun Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.,Key Laboratory of Dryland Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Nona Chiariello
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Kathryn Docherty
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Chris Field
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jessica Gutknecht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, Saint Paul, MN, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Xavier Le Roux
- Mirobial Ecology Centre LEM, INRA, CNRS, University of Lyon, University Lyon 1, UMR INRA 1418, Villeurbanne, France
| | - Audrey Niboyet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (Sorbonne Université, CNRS, INRA, IRD, Université Paris Diderot, UPEC), Paris, France.,AgroParisTech, Paris, France
| | - Qi Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zhou Shi
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.,Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Kaminsky LM, Esker PD, Bell TH. Abiotic conditions outweigh microbial origin during bacterial assembly in soils. Environ Microbiol 2020; 23:358-371. [PMID: 33185966 DOI: 10.1111/1462-2920.15322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022]
Abstract
Understanding the processes guiding microbial community assembly in soils is essential for predicting microbiome structure and function following soil disturbance events like agricultural soil fumigation. However, assembly outcomes are complex and variable, being affected by both selective abiotic forces and by the history of colonizing microorganisms. To untangle the interactions between these factors, we conducted a controlled microcosm study tracking bacterial assembly in cleared soils over 7 weeks. We used mesh bags to connect five unsterilized source soils, differing in land use history (forested, agricultural, or fallow), with four sterile recipient soil treatments, differing in abiotic conditions (no soil additives, salt addition, urea addition, or mixed salt/urea addition). We found that 59%-96% of bacterial colonizers after 1 week were Firmicutes, but by 7 weeks Actinobacteria and Bacteroidetes were also dominant. Salt and nitrogen additions reshaped bacterial assembly by constraining alpha diversity by up to half and biomass accumulation by up to an order of magnitude. Within-treatment dispersion was significantly lower for salt and nutrient addition microcosms, suggesting deterministic selective pressures. In contrast, source soil origin had little impact on assembly trajectories. These results suggest that abiotic conditions can overshadow microbial source history in shaping community assembly outcomes.
Collapse
Affiliation(s)
- Laura M Kaminsky
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Paul D Esker
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Graduate Faculty in International Agriculture and Development, The Pennsylvania State University, University Park, PA, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Piton G, Foulquier A, Martinez‐García LB, Legay N, Arnoldi C, Brussaard L, Hedlund K, Martins da Silva P, Nascimento E, Reis F, Sousa JP, Clément J, De Deyn GB. Resistance–recovery trade‐off of soil microbial communities under altered rain regimes: An experimental test across European agroecosystems. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gabin Piton
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | - Arnaud Foulquier
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | | | - Nicolas Legay
- INSA Centre Val de Loire Université de ToursCNRSUMR 7324 CITERES Tours France
| | - Cindy Arnoldi
- University of Grenoble AlpesUniversity of Savoie Mont BlancCNRSLECA Grenoble France
| | - Lijbert Brussaard
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| | | | - Pedro Martins da Silva
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Eduardo Nascimento
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Filipa Reis
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | | | - Gerlinde B. De Deyn
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
30
|
Comparing the Influence of Assembly Processes Governing Bacterial Community Succession Based on DNA and RNA Data. Microorganisms 2020; 8:microorganisms8060798. [PMID: 32466517 PMCID: PMC7355735 DOI: 10.3390/microorganisms8060798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Quantifying which assembly processes structure microbiomes can assist prediction, manipulation, and engineering of community outcomes. However, the relative importance of these processes might depend on whether DNA or RNA are used, as they differ in stability. We hypothesized that RNA-inferred community responses to (a)biotic fluctuations are faster than those inferred by DNA; the relative influence of variable selection is stronger in RNA-inferred communities (environmental factors are spatiotemporally heterogeneous), whereas homogeneous selection largely influences DNA-inferred communities (environmental filters are constant). To test these hypotheses, we characterized soil bacterial communities by sequencing both 16S rRNA amplicons from the extracted DNA and RNA transcripts across distinct stages of soil primary succession and quantified the relative influence of each assembly process using ecological null model analysis. Our results revealed that variations in α-diversity and temporal turnover were higher in RNA- than in DNA-inferred communities across successional stages, albeit there was a similar community composition; in line with our hypotheses, the assembly of RNA-inferred community was more closely associated with environmental variability (variable selection) than using the standard DNA-based approach, which was largely influenced by homogeneous selection. This study illustrates the need for benchmarking approaches to properly elucidate how community assembly processes structure microbial communities.
Collapse
|
31
|
Miao Y, Johnson NW, Phan T, Heck K, Gedalanga PB, Zheng X, Adamson D, Newell C, Wong MS, Mahendra S. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. WATER RESEARCH 2020; 173:115540. [PMID: 32018172 DOI: 10.1016/j.watres.2020.115540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Microbial community dynamics were characterized following combined catalysis and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Although a few specific bacterial taxa are capable of removing 1,4-dioxane and individual CVOCs, many microorganisms are inhibited when these contaminants are present in mixtures. Chemical catalysis by tungstated zirconia (WOx/ZrO2) and hydrogen peroxide (H2O2) as a non-selective treatment was designed to achieve nearly 20% 1,4-dioxane and over 60% trichloroethene and 50% dichloroethene removals. Post-catalysis, bioaugmentation with 1,4-dioxane metabolizing bacterial strain,Pseudonocardia dioxanivorans CB1190, removed the remaining 1,4-dioxane. The evolution of the microbial community under different conditions was time-dependent but relatively independent of the concentrations of contaminants. The compositions of microbiomes tended to be similar regardless of complex contaminant mixtures during the biodegradation phase, indicating a r-K strategy transition attributed to the shock experienced during catalysis and the subsequent incubation. The originally dominant genera Pseudomonas and Ralstonia were sensitive to catalytic oxidation, and were overwhelmed by Sphingomonas, Rhodococcus, and other catalyst-tolerant microbes, but microbes capable of biodegradation of organics thrived during the incubation. Methane metabolism, chloroalkane-, and chloroalkene degradation pathways appeared to be responsible for CVOC degradation, based on the identifications of haloacetate dehalogenases, 2-haloacid dehalogenases, and cytochrome P450 family. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase that were in line with shifting predominant genera, confirming the deterministic processes guiding the microbial assembly. Collectively, this study demonstrated that catalysis followed by bioaugmentation is an effective treatment for 1,4-dioxane in the presence of high CVOC concentrations, and it enhanced our understanding of microbial ecological impacts resulting from abiotic-biological treatment trains. These results will be valuable for predicting treatment synergies that lead to cost savings and improve remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Thien Phan
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Kimberly Heck
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Public Health, California State University, Fullerton, CA, 92834, United States
| | - Xiaoru Zheng
- Department of Statistics, University of California, Los Angeles, CA, 90095, United States
| | - David Adamson
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Charles Newell
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
32
|
Cheaib B, Seghouani H, Ijaz UZ, Derome N. Community recovery dynamics in yellow perch microbiome after gradual and constant metallic perturbations. MICROBIOME 2020; 8:14. [PMID: 32041654 PMCID: PMC7011381 DOI: 10.1186/s40168-020-0789-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/19/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The eco-evolutionary processes ruling post-disturbance microbial assembly remain poorly studied, particularly in host-microbiome systems. The community recovery depends not only on the type, duration, intensity, and gradient of disturbance, but also on the initial community structure, phylogenetic composition, legacy, and habitat (soil, water, host). In this study, yellow perch (Perca flavescens) juveniles were exposed over 90 days to constant and gradual sublethal doses of cadmium chloride. Afterward, the exposure of aquaria tank system to cadmium was ceased for 60 days. The skin, gut and water tank microbiomes in control and treatment groups, were characterized before, during and after the cadmium exposure using 16s rDNA libraries and high throughput sequencing technology (Illumina, Miseq). RESULTS Our data exhibited long-term bioaccumulation of cadmium salts in the liver even after two months since ceasing the exposure. The gradient of cadmium disturbance had differential effects on the perch microbiota recovery, including increases in evenness, taxonomic composition shifts, as well as functional and phylogenetic divergence. The perch microbiome reached an alternative stable state in the skin and nearly complete recovery trajectories in the gut communities. The recovery of skin communities showed a significant proliferation of opportunistic fish pathogens (i.e., Flavobacterium). Our findings provide evidence that neutral processes were a much more significant contributor to microbial community turnover in control treatments than in those treated with cadmium, suggesting the role of selective processes in driving community recovery. CONCLUSIONS The short-term metallic disturbance of fish development has important long-term implications for host health. The recovery of microbial communities after metallic exposure depends on the magnitude of exposure (constant, gradual), and the nature of the ecological niche (water, skin, and gut). The skin and gut microbiota of fish exposed to constant concentrations of cadmium (CC) were closer to the control negative than those exposed to the gradual concentrations (CV). Overall, our results show that the microbial assembly during the community recovery were both orchestrated by neutral and deterministic processes. Video Abtract.
Collapse
Affiliation(s)
- Bachar Cheaib
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6 Canada
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ Scotland
| | - Hamza Seghouani
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6 Canada
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ Scotland
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène Marchand, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6 Canada
| |
Collapse
|
33
|
Yang S, Zheng Q, Yang Y, Yuan M, Ma X, Chiariello NR, Docherty KM, Field CB, Gutknecht JLM, Hungate BA, Niboyet A, Le Roux X, Zhou J. Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. GLOBAL CHANGE BIOLOGY 2020; 26:431-442. [PMID: 31562826 DOI: 10.1111/gcb.14852] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above- and belowground plant growth, likely enhancing plant-microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire 'reboots' the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.
Collapse
Affiliation(s)
- Sihang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qiaoshu Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Xingyu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Nona R Chiariello
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Kathryn M Docherty
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Jessica L M Gutknecht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Audrey Niboyet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (Sorbonne Université, CNRS, INRA, IRD, Université Paris Diderot, UPEC), Paris, France
- AgroParisTech, Paris, France
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, CNRS, INRA, Université de Lyon, Université Lyon 1, UMR INRA 1418, UMR CNRS 5557, Villeurbanne, France
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
34
|
Romero-Olivares AL, Meléndrez-Carballo G, Lago-Lestón A, Treseder KK. Soil Metatranscriptomes Under Long-Term Experimental Warming and Drying: Fungi Allocate Resources to Cell Metabolic Maintenance Rather Than Decay. Front Microbiol 2019; 10:1914. [PMID: 31551941 PMCID: PMC6736569 DOI: 10.3389/fmicb.2019.01914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Earth’s temperature is rising, and with this increase, fungal communities are responding and affecting soil carbon processes. At a long-term soil-warming experiment in a boreal forest in interior Alaska, warming and warming-associated drying alters the function of microbes, and thus, decomposition of carbon. But what genetic mechanisms and resource allocation strategies are behind these community shifts and soil carbon changes? Here, we evaluate fungal resource allocation efforts under long-term experimental warming (including associated drying) using soil metatranscriptomics. We profiled resource allocation efforts toward decomposition and cell metabolic maintenance, and we characterized community composition. We found that under the warming treatment, fungi allocate resources to cell metabolic maintenance at the expense of allocating resources to decomposition. In addition, we found that fungal orders that house taxa with stress-tolerant traits were more abundant under the warmed treatment compared to control conditions. Our results suggest that the warming treatment elicits an ecological tradeoff in resource allocation in the fungal communities, with potential to change ecosystem-scale carbon dynamics. Fungi preferentially invest in mechanisms that will ensure survival under warming and drying, such as cell metabolic maintenance, rather than in decomposition. Through metatranscriptomes, we provide mechanistic insight behind the response of fungi to climate change and consequences to soil carbon processes.
Collapse
Affiliation(s)
- Adriana L Romero-Olivares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Germán Meléndrez-Carballo
- Department of Electronics and Telecommunications, Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
| | - Asunción Lago-Lestón
- Department of Medical Innovation, Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
35
|
Jurburg SD, Cornelissen JJBWJ, de Boer P, Smits MA, Rebel JMJ. Successional Dynamics in the Gut Microbiome Determine the Success of Clostridium difficile Infection in Adult Pig Models. Front Cell Infect Microbiol 2019; 9:271. [PMID: 31448240 PMCID: PMC6691177 DOI: 10.3389/fcimb.2019.00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile infections (CDI) are a major cause of antibiotic-associated diarrhea. It is hypothesized that CDI develops due to the antibiotic-induced disruption of the intestinal microbial community structure, which allows C. difficile to flourish. Here, we pre-treated weaned pigs with the antibiotics Clindamycin or Ciprofloxacin for 1 day, and subsequently inoculated them with a human and pig enteropathogenic C. difficile strain 078 spores. Body temperature, clinical signs of disease, and the fecal microbiome were monitored daily for 15 days. Clindamycin had a stronger effect on the pigs than Ciprofloxacin, resulting in drastic shifts in the fecal microbiome, decreases in microbial diversity and significant increases in body temperature, even in the absence of C. difficile. Fecal shedding of C. difficile was detectable for 3 and 9 days in Ciprofloxacin and Clindamycin treated pigs inoculated with C. difficile, respectively, and in both cases decreased cell proliferation rates were detected in colon tissue. The timing of C. difficile shedding coincided with the decrease in a large cluster of Firmicutes following Clindamycin treatment, a pattern which was also independent of C. difficile inoculation. The observed community patterns suggest that successional dynamics following antibiotic treatment facilitate C. difficile establishment. The similarities between the microbiome responses observed in our study and those previously reported in CDI-infected humans further support the utility of adult pigs as models for the study of CDI.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- Wageningen Bioveterinary Research, Lelystad, Netherlands.,iDiv - German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | | | | | - Mari A Smits
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Johanna M J Rebel
- Wageningen Bioveterinary Research, Lelystad, Netherlands.,Wageningen Livestock Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Zhao P, Bao J, Wang X, Liu Y, Li C, Chai B. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau. PeerJ 2019; 7:e6746. [PMID: 31119067 PMCID: PMC6510221 DOI: 10.7717/peerj.6746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Microbial community assembly is influenced by a continuum (actually the trade-off) between deterministic and stochastic processes. An understanding of this ecological continuum is of great significance for drawing inferences about the effects of community assembly processes on microbial community structure and function. Here, we investigated the driving forces of soil microbial community assembly in three different environmental contexts located on subalpine coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a continuum existed between deterministic and stochastic processes in shaping the microbial community structure, but deterministic processes prevailed. By integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) was the main driver of the community structure and diversity patterns. In addition, we also found that SOC had a great influence on the community assembly processes. In conclusion, our results show that deterministic processes always dominated assembly processes in shaping bacterial community structure along the three habitat contexts.
Collapse
Affiliation(s)
- Pengyu Zhao
- Institute of Loess Plateau, Shanxi University; Shanxi Key laboratory of Ecological Restoration of Loess Plateau, Taiyuan, China
| | - Jiabing Bao
- Institute of Loess Plateau, Shanxi University; Shanxi Key laboratory of Ecological Restoration of Loess Plateau, Taiyuan, China
| | - Xue Wang
- Institute of Loess Plateau, Shanxi University; Shanxi Key laboratory of Ecological Restoration of Loess Plateau, Taiyuan, China
| | - Yi Liu
- College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, China
| | - Cui Li
- College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University; Shanxi Key laboratory of Ecological Restoration of Loess Plateau, Taiyuan, China
| |
Collapse
|
37
|
Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol 2019; 21:750-758. [PMID: 30507058 PMCID: PMC7379498 DOI: 10.1111/1462-2920.14492] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 11/29/2022]
Abstract
In many studies, rare bacterial taxa have been found to increase in response to environmental changes. These changes have been proposed to contribute to the insurance of ecosystem functions. However, it has not been systematically tested if rare taxa are more likely to increase in abundance than dominant taxa. Here, we study whether rare soil bacterial taxa are more likely to respond to environmental disturbances and if rare taxa are more opportunistic than dominant taxa. To test this, we applied nine different disturbance treatments to a grassland soil and observed changes in bacterial community composition over 7 days. While 12% of the dominant taxa changed in abundance, only 1% of the rare taxa showed any effect. Rare taxa increased in response to a single disturbance treatment only, while dominant taxa responded to up to five treatments. We conclude that rare taxa are not more likely to contribute to community dynamics after disturbances than dominant taxa. Nevertheless, as rare taxa outnumber abundant taxa with here 230 taxa that changed significantly, the chance is high that some of these rare taxa might act as ecologically important keystone taxa. Therefore, rare and abundant taxa might both contribute to ecosystem insurance.
Collapse
Affiliation(s)
- Viola Kurm
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50Wageningen 6700 ABThe Netherlands
- Wageningen Plant Research, Biointeractions and Plant HealthP.O. Box 16Wageningen6700 AAThe Netherlands
| | - Stefan Geisen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50Wageningen 6700 ABThe Netherlands
| | - Wilhelmina H. Gera Hol
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)P.O. Box 50Wageningen 6700 ABThe Netherlands
| |
Collapse
|
38
|
Lauer A, Baal JD, Mendes SD, Casimiro KN, Passaglia AK, Valenzuela AH, Guibert G. Valley Fever on the Rise-Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis. Microorganisms 2019; 7:E31. [PMID: 30682831 PMCID: PMC6406340 DOI: 10.3390/microorganisms7020031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
The incidence of coccidioidomycosis, also known as Valley Fever, is increasing in the Southwestern United States and Mexico. Despite considerable efforts, a vaccine to protect humans from this disease is not forthcoming. The aim of this project was to isolate and phylogenetically compare bacterial species that could serve as biocontrol candidates to suppress the growth of Coccidioides immitis, the causative agent of coccidioidomycosis, in eroded soils or in areas close to human settlements that are being developed. Soil erosion in Coccidioides endemic areas is leading to substantial emissions of fugitive dust that can contain arthroconidia of the pathogen and thus it is becoming a health hazard. Natural microbial antagonists to C. immitis, that are adapted to arid desert soils could be used for biocontrol attempts to suppress the growth of the pathogen in situ to reduce the risk for humans and animals of contracting coccidioidomycosis. Bacteria were isolated from soil samples obtained near Bakersfield, California. Subsequently, pairwise challenge assays with bacterial pure cultures were initially performed against Uncinocarpus reesii, a non-pathogenic relative of C. immitis on media plates. Bacterial isolates that exhibited strongly antifungal properties were then re-challenged against C. immitis. Strongly anti-C. immitis bacterial isolates related to Bacillus subtilis and Streptomyces spp. were isolated, and their antifungal spectrum was investigated using a selection of environmental fungi.
Collapse
Affiliation(s)
- Antje Lauer
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Joe Darryl Baal
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Susan D Mendes
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Kayla Nicole Casimiro
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Alyce Kayes Passaglia
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Alex Humberto Valenzuela
- Department of Biology, California State University Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA.
| | - Gerry Guibert
- Monterey County Health Department, 1270 Natividad, Salinas, CA 93906, USA.
| |
Collapse
|
39
|
Yang N, Li Y, Zhang W, Wang L, Gao Y. Reduction of bacterial integrity associated with dam construction: A quantitative assessment using an index of biotic integrity improved by stability analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:75-83. [PMID: 30273786 DOI: 10.1016/j.jenvman.2018.09.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/14/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Rivers are extensively regulated by damming, yet the effects of such interruption on bacterial communities have not been assessed quantitatively. To fill this gap, we proposed a bacteria-based index of biotic integrity (Ba-IBI) by using bacterial community dataset collected from the Three Gorges Reservoir and its upper reaches. Stability analysis based on bacterial resistance (RS) and resilience (RL) to external disturbance was conducted to improve the performance of the index. Four core metrics, i.e. the ratio of Bacilli, Bacteroidetes and Clostridia to Alphaproteobacteria (BBC/A), Oxalobacteraceae, Methanotrophs and Thermophiles were selected after range, responsive and redundancy tests. The improved Ba-IBI, ranging from 1.04 to 4.10, was better at distinguishing sites with or without direct dam effects compared with the unimproved one. The index values maintained high in the riverine sites while reducing in the reservoir, demonstrating the negative influence of dam construction on bacterial integrity. Based on the assessment results, 23.1%, 46.2% and 30.8% sampling sites were large, moderately and little affected by damming, respectively. A Random Forest (RF) regression model was trained and tested, offering a valid prediction of the input Ba-IBI and environmental parameters. Sensitivity analysis revealed the significant contributions of flow velocity towards the predicting process performance, indicating the importance of hydrodynamic conditions on determining the spatial variability of bacterial communities. This study provides not only a first quantitative insight for assessing bacterial response to damming, but also a guideline for applying the improved index in the dam regulation and ecological protection.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| |
Collapse
|
40
|
Jacquiod S, Nunes I, Brejnrod A, Hansen MA, Holm PE, Johansen A, Brandt KK, Priemé A, Sørensen SJ. Long-term soil metal exposure impaired temporal variation in microbial metatranscriptomes and enriched active phages. MICROBIOME 2018; 6:223. [PMID: 30545417 PMCID: PMC6292020 DOI: 10.1186/s40168-018-0606-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/25/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND It remains unclear whether adaptation and changes in diversity associated to a long-term perturbation are sufficient to ensure functional resilience of soil microbial communities. We used RNA-based approaches (16S rRNA gene transcript amplicon coupled to shotgun mRNA sequencing) to study the legacy effects of a century-long soil copper (Cu) pollution on microbial activity and composition, as well as its effect on the capacity of the microbial community to react to temporal fluctuations. RESULTS Despite evidence of microbial adaptation (e.g., iron homeostasis and avoidance/resistance strategies), increased heterogeneity and richness loss in transcribed gene pools were observed with increasing soil Cu, together with an unexpected predominance of phage mRNA signatures. Apparently, phage activation was either triggered directly by Cu, or indirectly via enhanced expression of DNA repair/SOS response systems in Cu-exposed bacteria. Even though total soil carbon and nitrogen had accumulated with increasing Cu, a reduction in temporally induced mRNA functions was observed. Microbial temporal response groups (TRGs, groups of microbes with a specific temporal response) were heavily affected by Cu, both in abundance and phylogenetic composition. CONCLUSION Altogether, results point toward a Cu-mediated "decoupling" between environmental fluctuations and microbial activity, where Cu-exposed microbes stopped fulfilling their expected contributions to soil functioning relative to the control. Nevertheless, some functions remained active in February despite Cu, concomitant with an increase in phage mRNA signatures, highlighting that somehow, microbial activity is still happening under these adverse conditions.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Agroécologie, AgroSup Dijon, INRA, Univ Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Inês Nunes
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Present address: Microbe Technology Department, Novozymes A/S, Krogshoejvej 36, 2880, Bagsværd, Denmark
| | - Asker Brejnrod
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Present address: Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Martin A Hansen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter E Holm
- Present address: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kristian K Brandt
- Present address: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anders Priemé
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
41
|
Pacchioni F, Esposito A, Giacobazzi E, Bettua C, Struffi P, Jousson O. Air and waterborne microbiome of a pharmaceutical plant provide insights on spatiotemporal variations and community resilience after disturbance. BMC Microbiol 2018; 18:124. [PMID: 30285625 PMCID: PMC6171249 DOI: 10.1186/s12866-018-1267-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 02/01/2023] Open
Abstract
Background The presence of microrganisms in pharmaceutical production plant environments is typically monitored by cultural methods, however these cannot detect the unculturable fraction of the microbial community. To get more accurate information on the composition of these indoor microbial communities, both water and air microbiome from a pharmaceutical production plant were profiled by 16S amplicon sequencing. Results In the water system, we found taxa which typically characterize surface freshwater, groundwater and oligotrophic environments. The airborne microbiome resulted dominated by taxa usually found in outdoor air in combination with human-associated taxa. The alpha- and beta- diversity values showed that the heat-based sanitization process of the water plant affects the composition of the water microbiome by transiently increasing both diversity and evenness. Taxonomic compositional shifts were also detected in response to sanitization, consisting in an increase of Firmicutes and α-Proteobacteria. On the other hand, seasonality seems to be the main driver of bacterial community composition in air of this work environment. Conclusions This approach resulted useful to describe the taxonomy of these indoor microbiomes and could be further applied to other built environments, in which the knowledge of the microbiome composition is of relevance. In addition, this study could assist in the design of new guidelines to improve microbiological quality control in indoor work environments. Electronic supplementary material The online version of this article (10.1186/s12866-018-1267-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alfonso Esposito
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | - Clotilde Bettua
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Struffi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
42
|
A unified conceptual framework for prediction and control of microbiomes. Curr Opin Microbiol 2018; 44:20-27. [PMID: 30007202 DOI: 10.1016/j.mib.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Microbiomes impact nearly all systems on Earth, and despite vast differences among systems, we contend that it is possible and highly beneficial to develop a unified conceptual framework for understanding microbiome dynamics that is applicable across systems. The ability to robustly predict and control environmental and human microbiomes would provide impactful opportunities to sustain and improve the health of ecosystems and humans alike. Doing so requires understanding the processes governing microbiome temporal dynamics, which currently presents an enormous challenge. We contend, however, that new opportunities can emerge by placing studies of both environmental and human microbiome temporal dynamics in the context of a unified conceptual framework. Our conceptual framework poses that factors influencing the temporal dynamics of microbiomes can be grouped into three broad categories: biotic and abiotic history, internal dynamics, and external forcing factors. Both environmental and human microbiome science study these factors, but not in a coordinated or consistent way. Here we discuss opportunities for greater crosstalk across these domains, such as leveraging specific ecological concepts from environmental microbiome science to guide optimization of strategies to manipulate human microbiomes towards improved health. To achieve unified understanding, it is necessary to have a common body of theory developed from explicit iteration between models and molecular-based characterization of microbiome dynamics across systems. Only through such model-experiment iteration will we eventually achieve prediction and control across microbiomes that impact ecosystem sustainability and human health.
Collapse
|
43
|
At the Nexus of History, Ecology, and Hydrobiogeochemistry: Improved Predictions across Scales through Integration. mSystems 2018; 3:mSystems00167-17. [PMID: 29657967 PMCID: PMC5895879 DOI: 10.1128/msystems.00167-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
To improve predictions of ecosystem function in future environments, we need to integrate the ecological and environmental histories experienced by microbial communities with hydrobiogeochemistry across scales. A key issue is whether we can derive generalizable scaling relationships that describe this multiscale integration. To improve predictions of ecosystem function in future environments, we need to integrate the ecological and environmental histories experienced by microbial communities with hydrobiogeochemistry across scales. A key issue is whether we can derive generalizable scaling relationships that describe this multiscale integration. There is a strong foundation for addressing these challenges. We have the ability to infer ecological history with null models and reveal impacts of environmental history through laboratory and field experimentation. Recent developments also provide opportunities to inform ecosystem models with targeted omics data. A major next step is coupling knowledge derived from such studies with multiscale modeling frameworks that are predictive under non-steady-state conditions. This is particularly true for systems spanning dynamic interfaces, which are often hot spots of hydrobiogeochemical function. We can advance predictive capabilities through a holistic perspective focused on the nexus of history, ecology, and hydrobiogeochemistry.
Collapse
|
44
|
Jurburg SD, Natal-da-Luz T, Raimundo J, Morais PV, Sousa JP, van Elsas JD, Salles JF. Bacterial communities in soil become sensitive to drought under intensive grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1638-1646. [PMID: 29054674 DOI: 10.1016/j.scitotenv.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Increasing climatic and anthropogenic pressures on soil ecosystems are expected to create a global patchwork of disturbance scenarios. Some regions will be strongly impacted by climate change, others by agricultural intensification, and others by both. Soil microbial communities are integral components of terrestrial ecosystems, but their responses to multiple perturbations are poorly understood. Here, we exposed soils from sustainably- or intensively-managed grasslands in an agro-silvo-pastoral oak woodland to month-long intensified drought and flood simulation treatments in a controlled mesocosm setting. We monitored the response of the bacterial communities at the end of one month as well as during the following month of recovery. The communities in sustainably-managed plots under all precipitation regimes were richer and more diverse than those in intensively-managed plots, and contained a lower proportion of rapidly-growing taxa. Soils from both land managements exhibited changes in bacterial community composition in response to flooding, but only intensively-managed soils were affected by drought. The ecologies of bacteria favored by both drought and flood point to both opportunism and stress tolerance as key traits shaping the community following disturbance. Finally, the response of several taxa (i.e. Chloracidobacteria RB41, Janthinobacterium sp.) to precipitation depended on land management, suggesting that the community itself affected individual disturbance responses. Our findings provide an in-depth view of the complexity of soil bacterial community responses to climatic and anthropogenic pressures in time, and highlight the potential of these stressors to have multiplicative effects on the soil biota.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- Microbial Ecology group, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands; Department of Infection Biology, Wageningen Bioveterinary Research Institute, Wageningen University and Research, Lelystad, Netherlands.
| | - Tiago Natal-da-Luz
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - João Raimundo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Paula V Morais
- CEMUC- Mining & raw materials group, Department of Life Sciences, University of Coimbra, Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Jan Dirk van Elsas
- Microbial Ecology group, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Joana Falcao Salles
- Microbial Ecology group, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Interactions between predation and disturbances shape prey communities. Sci Rep 2018; 8:2968. [PMID: 29445181 PMCID: PMC5813231 DOI: 10.1038/s41598-018-21219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/25/2018] [Indexed: 11/17/2022] Open
Abstract
Ecological disturbances are important drivers of biodiversity patterns. Many biodiversity studies rely on endpoint measurements instead of following the dynamics that lead to those outcomes and testing ecological drivers individually, often considering only a single trophic level. Manipulating multiple factors (biotic and abiotic) in controlled settings and measuring multiple descriptors of multi-trophic communities could enlighten our understanding of the context dependency of ecological disturbances. Using model microbial communities, we experimentally tested the effects of imposed disturbances (i.e. increased dilution simulating density-independent mortality as press or pulse disturbances coupled with resource deprivation) on bacterial abundance, diversity and community structure in the absence or presence of a protist predator. We monitored the communities immediately before and after imposing the disturbance and four days after resuming the pre-disturbance dilution regime to infer resistance and recovery properties. The results highlight that bacterial abundance, diversity and community composition were more affected by predation than by disturbance type, resource loss or the interaction of these factors. Predator abundance was strongly affected by the type of disturbance imposed, causing temporary relief of predation pressure. Importantly, prey community composition differed significantly at different phases, emphasizing that endpoint measurements are insufficient for understanding the recovery of communities.
Collapse
|
46
|
Wang H, Deng N, Wu D, Hu S, Kou M. Long-term net transformation and quantitative molecular mechanisms of soil nitrogen during natural vegetation recovery of abandoned farmland on the Loess Plateau of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:152-159. [PMID: 28689119 DOI: 10.1016/j.scitotenv.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
The availability of nitrogen (N) can alter vegetation species composition and diversity in degraded ecosystems. A comprehensive understanding of the dynamic fate of ammonium (NH4+-N) and nitrate (NO3--N) processing and the underlying mechanisms are still lacking, particularly in arid to semi-arid degraded ecosystems. We compared and quantified the changes in the rates of net ammonification (Ra), nitrification (Rn) and total mineralization (Rm) and the abundance of bacteria, archaea, and microbial genes related to N transformation on the northern Loess Plateau of China across a 40-year chronosequence of farmland undergoing spontaneous restoration. We found that Ra, Rn, and Rm decreased in grassland soils (0-30-y sites) of different ages and exhibited significant increases at the 40-y sites. The capabilities of the soil to deliver NH4+-N and NO3--N were not a limiting factor during the growing season after 40years of vegetation recovery. Soil mineral nitrogen may be not suitable for predicting and assessing the long-term (approximately 40years) restoration success and progress. The abundance of functional N genes showed differences in sensitivity to natural vegetation recovery of abandoned farmland, which likely reflects the fact that the multi-pathways driven by N functional microbial communities had a large influence on the dynamic fate of NH4+-N and NO3--N. Quantitative response relationships between net N transformation rates and microbial genes related to N transformation were established, and these relationships confirmed that different N transformation processes were strongly linked with certain N functional genes, and collaboratively contributed to N transformation as vegetation recovery progressed. Specifically, Ra was controlled by AOA-amoA, AOB-amoA, and nxrA; Rn was governed by napA, narG, nirK, nirS, and nosZ; and Rm was controlled by nifH, apr, AOA-amoA, AOB-amoA, nirS, and nirK.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Na Deng
- State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Duoyang Wu
- State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Shu Hu
- State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Meng Kou
- College of Natural Resources & Environment and History & Culture, Xianyang Normal University, Shaanxi, Xianyang 712000, China
| |
Collapse
|
47
|
Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function. Processes (Basel) 2017. [DOI: 10.3390/pr5040065] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal rates high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.
Collapse
|
48
|
Jurburg SD, Nunes I, Brejnrod A, Jacquiod S, Priemé A, Sørensen SJ, Van Elsas JD, Salles JF. Legacy Effects on the Recovery of Soil Bacterial Communities from Extreme Temperature Perturbation. Front Microbiol 2017; 8:1832. [PMID: 28993764 PMCID: PMC5622210 DOI: 10.3389/fmicb.2017.01832] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/06/2017] [Indexed: 02/01/2023] Open
Abstract
The type and frequency of disturbances experienced by soil microbiomes is expected to increase given predicted global climate change scenarios and intensified anthropogenic pressures on ecosystems. While the direct effect of multiple disturbances to soil microbes has been explored in terms of function, their effect on the recovery of microbial community composition remains unclear. Here, we used soil microcosm experiments and multiple model disturbances to explore their short-term effect on the recovery of soil microbiota after identical or novel stresses. Soil microcosms were exposed to a heat shock to create an initial effect. Upon initial community recovery (25 days after stress), they were subjected to a second stress, either a heat or a cold shock, and they were monitored for additional 25 days. To carefully verify the bacterial response to the disturbances, we monitored changes in community composition throughout the experiment using 16S rRNA gene transcript amplicon sequencing. The application of a heat shock to soils with or without the initial heat shock resulted in similar successional dynamics, but these dynamics were faster in soils with a prior heat shock. The application of a cold shock had negligible effects on previously undisturbed soils but, in combination with an initial heat shock, caused the largest shift in the community composition. Our findings show that compounded perturbation affects bacterial community recovery by altering community structure and thus, the community's response during succession. By altering dominance patterns, disturbance legacy affects the microbiome's ability to recover from further perturbation within the 25 days studied. Our results highlight the need to consider the soil's disturbance history in the development of soil management practices in order to maintain the system's resilience.
Collapse
Affiliation(s)
- Stephanie D. Jurburg
- Microbial Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
- Bioinformatics group, Bioveterinary Institute, Wageningen University and ResearchWageningen, Netherlands
| | - Inês Nunes
- Section of Microbiology, University of CopenhagenCopenhagen, Denmark
- Microbe Technology Department, NovozymesCopenhagen, Denmark
| | - Asker Brejnrod
- Section of Microbiology, University of CopenhagenCopenhagen, Denmark
| | - Samuel Jacquiod
- Section of Microbiology, University of CopenhagenCopenhagen, Denmark
| | - Anders Priemé
- Section of Microbiology, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, University of CopenhagenCopenhagen, Denmark
| | - Jan Dirk Van Elsas
- Microbial Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Joana F. Salles
- Microbial Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| |
Collapse
|