1
|
Samarakoon V, Owuocha LF, Hammond J, Mitchum MG, Beamer LJ. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Biochem J 2024; 481:1557-1568. [PMID: 39373197 DOI: 10.1042/bcj20240338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
The enzyme serine hydroxymethyltransferase (SHMT) plays a key role in folate metabolism and is conserved in all kingdoms of life. SHMT is a pyridoxal 5'-phosphate (PLP) - dependent enzyme that catalyzes the conversion of L-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. Crystal structures of multiple members of the SHMT family have shown that the enzyme has a single conserved cis proline, which is located near the active site. Here, we have characterized a Pro to Ser amino acid variant (P285S) that affects this conserved cis proline in soybean SHMT8. P285S was identified as one of a set of mutations that affect the resistance of soybean to the agricultural pathogen soybean cyst nematode. We find that replacement of Pro285 by serine eliminates PLP-mediated catalytic activity of SHMT8, reduces folate binding, decreases enzyme stability, and affects the dimer-tetramer ratio of the enzyme in solution. Crystal structures at 1.9-2.2 Å resolution reveal a local reordering of the polypeptide chain that extends an α-helix and shifts a turn region into the active site. This results in a dramatically perturbed PLP-binding pose, where the ring of the cofactor is flipped by ∼180° with concomitant loss of conserved enzyme-PLP interactions. A nearby region of the polypeptide becomes disordered, evidenced by missing electron density for ∼10 residues. These structural perturbations are consistent with the loss of enzyme activity and folate binding and underscore the important role of the Pro285 cis-peptide in SHMT structure and function.
Collapse
Affiliation(s)
- Vindya Samarakoon
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jamie Hammond
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Lesa J Beamer
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
2
|
Wu X, Yang Z, Song C, Bu M, Li W, Duan J, Yang GF, Zhang A. Hydroxamate-Containing Bisphosphonates as Fosmidomycin Analogues: Design, Synthesis, and Proherbicide Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7684-7693. [PMID: 38532701 DOI: 10.1021/acs.jafc.3c07872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiguo Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Wu X, Bu M, Yang Z, Ping H, Song C, Duan J, Zhang A. Design and synthesis of fosmidomycin analogs containing aza-linkers and their biological activity evaluation. PEST MANAGEMENT SCIENCE 2024; 80:846-856. [PMID: 37794283 DOI: 10.1002/ps.7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway are attractive targets of a new mode of action for developing anti-infective drugs and herbicides, and inhibitors against 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), the second key enzyme in the pathway, have been intensively investigated; however, few works are reported regarding IspC inhibitors designed for new herbicide discovery. RESULTS A series of fosmidomycin (FOS) analogs were designed with nitrogen-containing linkers replacing the trimethylene linker between the two active substructures of FOS, phosphonic acid and hydroxamic acid. Synthesis followed a facile three-step route of sequential aza-Michael addition of α-amino acids to dibenzyl vinylphosphonate, amidation of the amino acid carboxyl with O-benzyl hydroxylamine, and simultaneous removal of the benzyl protective groups. Biological activity evaluation of IspC and model plants revealed that some compounds had moderate enzyme and model plant growth inhibition effects. In particular, compound 10g, which has a N-(4-fluorophenylethyl) nitrogen-containing linker, exhibited the best plant inhibition activities, superior to the control FOS against the model plants Arabidopsis thaliana, Brassica napus L., Amaranthus retroflexus and Echinochloa crus-galli. A dimethylallyl pyrophosphate rescue assay on A. thaliana confirmed that both 10g and FOS exert their herbicidal activity by blocking the MEP pathway. This result consistent with molecular docking, which confirmed 10g and FOS binding to the IspC active site in a similar way. CONCLUSION Compound 10g has excellent herbicidal activity and represents the first herbicide lead structure of a new mode of action that targets IspC enzyme in the MEP pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongrui Ping
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Hamid A, Mäser P, Mahmoud AB. Drug Repurposing in the Chemotherapy of Infectious Diseases. Molecules 2024; 29:635. [PMID: 38338378 PMCID: PMC10856722 DOI: 10.3390/molecules29030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Repurposing is a universal mechanism for innovation, from the evolution of feathers to the invention of Velcro tape. Repurposing is particularly attractive for drug development, given that it costs more than a billion dollars and takes longer than ten years to make a new drug from scratch. The COVID-19 pandemic has triggered a large number of drug repurposing activities. At the same time, it has highlighted potential pitfalls, in particular when concessions are made to the target product profile. Here, we discuss the pros and cons of drug repurposing for infectious diseases and analyze different ways of repurposing. We distinguish between opportunistic and rational approaches, i.e., just saving time and money by screening compounds that are already approved versus repurposing based on a particular target that is common to different pathogens. The latter can be further distinguished into divergent and convergent: points of attack that are divergent share common ancestry (e.g., prokaryotic targets in the apicoplast of malaria parasites), whereas those that are convergent arise from a shared lifestyle (e.g., the susceptibility of bacteria, parasites, and tumor cells to antifolates due to their high rate of DNA synthesis). We illustrate how such different scenarios can be capitalized on by using examples of drugs that have been repurposed to, from, or within the field of anti-infective chemotherapy.
Collapse
Affiliation(s)
- Amal Hamid
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Abdelhalim Babiker Mahmoud
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Wu X, Yang Z, Bu M, Duan J, Zhang A. Design, Synthesis and Bioactivity Evaluation of Heterocycle-Containing Mono- and Bisphosphonic Acid Compounds. Molecules 2023; 28:7509. [PMID: 38005231 PMCID: PMC10673511 DOI: 10.3390/molecules28227509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Fosmidomycin (FOS) is a naturally occurring compound active against the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, and using it as a template for lead structure design is an effective strategy to develop new active compounds. In this work, by replacing the hydroxamate unit of FOS with pyrazole, isoxazole and the related heterocycles that also have metal ion binding affinity, while retaining the monophosphonic acid in FOS or replacing it with a bisphosphonic acid group, heterocycle-containing mono- and bisphosphonic acid compounds as FOS analogs were designed. The key steps involved in the facile synthesis of these FOS analogs included the Michael addition of diethyl vinylphosphonate or tetraethyl vinylidenebisphosphonate to β-dicarbonyl compounds and the subsequent cyclic condensation with hydrazine or hydroxylamine. Two additional isoxazolinone-bearing FOS analogs were synthesized via the Michaelis-Becker reaction with diethyl phosphite as a key step. The bioactivity evaluation on model plants demonstrated that several compounds have better herbicidal activities compared to FOS, with the most active compound showing a 3.7-fold inhibitory activity on Arabidopsis thaliana, while on the roots and stalks of Brassica napus L. and Echinochloa crus-galli in a pre-emergence inhibitory activity test, the activities of this compound were found to be 3.2- and 14.3-fold and 5.4- and 9.4-fold, respectively, and in a post-emergency activity test on Amaranthus retroflexus and Echinochloa crus-galli, 2.2- and 2.0-fold inhibition activities were displayed. Despite the significant herbicidal activity, this compound exhibited a DXR inhibitory activity lower than that of FOS but comparable to that of other non-hydroxamate DXR inhibitors, and the dimethylallyl pyrophosphate rescue assay gave no statistical significance, suggesting that a different target might be involved in the inhibiting process. This work demonstrates that using bioisosteric replacement can be considered as a valuable strategy to discover new FOS analogs that may have high herbicidal activities.
Collapse
Affiliation(s)
| | | | | | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| |
Collapse
|
6
|
Mackie ERR, Barrow AS, Giel MC, Hulett MD, Gendall AR, Panjikar S, Soares da Costa TP. Repurposed inhibitor of bacterial dihydrodipicolinate reductase exhibits effective herbicidal activity. Commun Biol 2023; 6:550. [PMID: 37217566 DOI: 10.1038/s42003-023-04895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.
Collapse
Affiliation(s)
- Emily R R Mackie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mark D Hulett
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC, 3168, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, VIC, 3800, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
7
|
Hickman DT, Comont D, Rasmussen A, Birkett MA. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol Evol 2023; 13:e10018. [PMID: 37091561 PMCID: PMC10121234 DOI: 10.1002/ece3.10018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Allelopathy, that is, plant-plant inhibition via the release of secondary metabolites into the environment, has potential for the management of weeds by circumventing herbicide resistance. However, mechanisms underpinning allelopathy are notoriously difficult to elucidate, hindering real-world application either in the form of commercial bioherbicides or allelopathic crops. Such limited application is exemplified by evidence of limited knowledge of the potential benefits of allelopathy among end users. Here, we examine potential applications of this phenomenon, paying attention to novel approaches and influential factors requiring greater consideration, with the intention of improving the reputation and uptake of allelopathy. Avenues to facilitate more effective allelochemical discovery are also considered, with a view to stimulating the identification of new compounds and allelopathic species. Synthesis and Applications: We conclude that tackling increasing weed pressure on agricultural productivity would benefit from greater integration of the phenomenon of allelopathy, which in turn would be greatly served by a multi-disciplinary and exhaustive approach, not just through more effective isolation of the interactions involved, but also through greater consideration of factors which may influence them in the field, facilitating optimization of their benefits for weed management.
Collapse
Affiliation(s)
- Darwin T. Hickman
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
8
|
Haywood J, Breese KJ, Zhang J, Waters MT, Bond CS, Stubbs KA, Mylne JS. A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action. Nat Commun 2022; 13:5563. [PMID: 36137996 PMCID: PMC9500038 DOI: 10.1038/s41467-022-33185-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.
Collapse
Affiliation(s)
- Joel Haywood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Jingjing Zhang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Joshua S Mylne
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Pires DEV, Stubbs KA, Mylne JS, Ascher DB. cropCSM: designing safe and potent herbicides with graph-based signatures. Brief Bioinform 2022; 23:bbac042. [PMID: 35211724 PMCID: PMC9155605 DOI: 10.1093/bib/bbac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Herbicides have revolutionised weed management, increased crop yields and improved profitability allowing for an increase in worldwide food security. Their widespread use, however, has also led to a rise in resistance and concerns about their environmental impact. Despite the need for potent and safe herbicidal molecules, no herbicide with a new mode of action has reached the market in 30 years. Although development of computational approaches has proven invaluable to guide rational drug discovery pipelines, leading to higher hit rates and lower attrition due to poor toxicity, little has been done in contrast for herbicide design. To fill this gap, we have developed cropCSM, a computational platform to help identify new, potent, nontoxic and environmentally safe herbicides. By using a knowledge-based approach, we identified physicochemical properties and substructures enriched in safe herbicides. By representing the small molecules as a graph, we leveraged these insights to guide the development of predictive models trained and tested on the largest collected data set of molecules with experimentally characterised herbicidal profiles to date (over 4500 compounds). In addition, we developed six new environmental and human toxicity predictors, spanning five different species to assist in molecule prioritisation. cropCSM was able to correctly identify 97% of herbicides currently available commercially, while predicting toxicity profiles with accuracies of up to 92%. We believe cropCSM will be an essential tool for the enrichment of screening libraries and to guide the development of potent and safe herbicides. We have made the method freely available through a user-friendly webserver at http://biosig.unimelb.edu.au/crop_csm.
Collapse
Affiliation(s)
- Douglas E V Pires
- School of Computing and Information Systems at the University of Melbourne
| | - Keith A Stubbs
- School of Molecular Sciences at the University of Western Australia
| | - Joshua S Mylne
- Curtin University and Deputy Director of the Centre for Crop and Disease Management
| | - David B Ascher
- University of Queensland, and head of Computational Biology and Clinical Informatics at the Baker Institute and Systems
| |
Collapse
|
11
|
Sukhoverkov KV, Breese KJ, Debowski AW, Murcha MW, Stubbs KA, Mylne JS. Inhibition of chloroplast translation as a new target for herbicides. RSC Chem Biol 2022; 3:37-43. [PMID: 35128407 PMCID: PMC8729176 DOI: 10.1039/d1cb00192b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
The rise in herbicide resistance over recent decades threatens global agriculture and food security and so discovery of new modes of action is increasingly important. Here we reveal linezolid, an oxazolidinone antibiotic that inhibits microbial translation, is also herbicidal. To validate the herbicidal mode of action of linezolid we confirmed its micromolar inhibition is specific to chloroplast translation and did not affect photosynthesis directly. To assess the herbicide potential of linezolid, testing against a range of weed and crop species found it effective pre- and post-emergence. Using structure-activity analysis we identified the critical elements for herbicidal activity, but importantly also show, using antimicrobial susceptibility assays, that separation of antibacterial and herbicidal activities was possible. Overall these results validate chloroplast translation as a viable herbicidal target.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Karen J Breese
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Aleksandra W Debowski
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- School of Biomedical Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Monika W Murcha
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
12
|
Sukhoverkov KV, Mylne JS. Systematic, small-scale screening with Arabidopsis reveals herbicides synergies that extend to lettuce. PEST MANAGEMENT SCIENCE 2021; 77:4930-4941. [PMID: 34184403 DOI: 10.1002/ps.6533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Combining herbicides into a mixture is a common approach used to overcome the potential for herbicide resistance in weeds. Many herbicide mixtures can be antagonistic and they are rarely synergistic. Here, 24 commercial herbicides, each representing a different mode of action were used to create a matrix of all 276 unique combinations to search for new synergies in agar using Arabidopsis thaliana. RESULTS Herbicides were used at an appropriate sublethal dose such that any synergies gave visible growth inhibition. We found five synergies including three new ones, namely mesotrione-norflurazon, mesotrione-clethodim and clomazone-paraquat. All three were reproducible in soil-grown conditions. Interestingly, the three new combinations all included a bleaching herbicide, suggesting that synergy might be a class-specific phenomenon. We also found that mesotrione-norflurazon and mesotrione-clethodim combinations were also synergistic against lettuce (Lactuca sativa), but not tef (Eragrostis tef). CONCLUSION Our study shows that screening herbicide mixtures against A. thaliana is an efficient approach for finding rare herbicide synergies.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
In vivo and in vitro evaluation of the effect of glyphosate (Roundup) on Toxoplasma gondii. J Parasit Dis 2021; 45:715-732. [PMID: 34475653 DOI: 10.1007/s12639-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022] Open
Abstract
Apicoplast, a derived non-photosynthetic plastid, which is found in most Apicomplexa, provides essential functions to parasites. The shikimate pathway is localized in the plant chloroplast as a remarkable route for the survival of the Toxoplasma. In this study, in vivo and in vitro effects of glyphosate (Roundup, Herbicide), as an inhibitor of the enzyme, were evaluated on T. gondii. Tachyzoites of RH strain were incubated for 1.5 h in various concentrations (1-128 µg/ml) of glyphosate. The parasite was cultivated in the cell monolayer of the heLa cell, and then the cultures were exposed to various concentrations. To evaluate the therapeutic quality, 2 × 105 tachyzoites were intradermally inoculated into ten mice from each group. Four doses of the compound were daily administrated every 24 h after inoculation due 10 days continuously. Also, two other groups were assigned as the positive and negative control. In flow cytometry, the highest mortality rate was related to concentrations of 128 and 256 μg/ml, 18.29% and 18.64%, respectively, while the mortality rate was 0.03% in the negative control (P value > 0.05). Based on microscopic observation of the stained touch smear of the liver, all treated mice were killed by the parasite. This compound also had no lethal effect on the mice. According to the results of this study, glyphosate is not a good candidate for the treatment of toxoplasmosis. It seems that the parasite has another pathway for providing the essential amino acids.
Collapse
|
14
|
Wallace MD, Debowski AW, Sukhoverkov KV, Mylne JS, Stubbs KA. Herbicidal activity of fluoroquinolone derivatives. PLANT DIRECT 2021; 5:e348. [PMID: 34541445 PMCID: PMC8438536 DOI: 10.1002/pld3.348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Development of herbicides with novel modes of action is crucial for weed control and to hinder herbicide resistance. An attractive novel herbicidal target is plant DNA gyrase, which has been demonstrated to be effectively inhibited by the known antimicrobial ciprofloxacin. Despite this good herbicidal activity, ciprofloxacin is not suitable as a herbicide due to its antimicrobial activity; therefore, a diverse library of analogues was analyzed to gain insight into the aspects required for herbicidal activity. This analysis revealed that significant structural modifications were tolerated and that the fluoride at C-6 and a cyclic amino group at C-7 were not crucial for herbicidal activity. The analysis also revealed that these modifications also affected the antibacterial activity with one compound demonstrating good herbicidal activity and weak antibacterial activity, against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Michael D. Wallace
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Aleksandra W. Debowski
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Biomedical SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Kirill V. Sukhoverkov
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyWAAustralia
| | - Joshua S. Mylne
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyWAAustralia
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Keith A. Stubbs
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
15
|
Tivendale ND, Fenske R, Duncan O, Millar AH. In vivo homopropargylglycine incorporation enables sampling, isolation and characterization of nascent proteins from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1260-1276. [PMID: 34152049 DOI: 10.1111/tpj.15376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Determining which proteins are actively synthesized at a given point in time and extracting a representative sample for analysis is important to understand plant responses. Here we show that the methionine (Met) analogue homopropargylglycine (HPG) enables Bio-Orthogonal Non-Canonical Amino acid Tagging (BONCAT) of a small sample of the proteins being synthesized in Arabidopsis plants or cell cultures, facilitating their click-chemistry enrichment for analysis. The sites of HPG incorporation could be confirmed by peptide mass spectrometry at Met sites throughout protein amino acid sequences and correlation with independent studies of protein labelling with 15 N verified the data. We provide evidence that HPG-based BONCAT tags a better sample of nascent plant proteins than azidohomoalanine (AHA)-based BONCAT in Arabidopsis and show that the AHA induction of Met metabolism and greater inhibition of cell growth rate than HPG probably limits AHA incorporation at Met sites in Arabidopsis. We show HPG-based BONCAT provides a verifiable method for sampling, which plant proteins are being synthesized at a given time point and enriches a small portion of new protein molecules from the bulk protein pool for identification, quantitation and subsequent biochemical analysis. Enriched nascent polypeptides samples were found to contain significantly fewer common post-translationally modified residues than the same proteins from whole plant extracts, providing evidence for age-related accumulation of post-translational modifications in plants.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Owen Duncan
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
Amrane D, Primas N, Arnold CS, Hutter S, Louis B, Sanz-Serrano J, Azqueta A, Amanzougaghene N, Tajeri S, Mazier D, Verhaeghe P, Azas N, Botté C, Vanelle P. Antiplasmodial 2-thiophenoxy-3-trichloromethyl quinoxalines target the apicoplast of Plasmodium falciparum. Eur J Med Chem 2021; 224:113722. [PMID: 34364164 DOI: 10.1016/j.ejmech.2021.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
The identification of a plant-like Achille's Heel relict, i.e. the apicoplast, that is essential for Plasmodium spp., the causative agent of malaria lead to an attractive drug target for new antimalarials with original mechanism of action. Although it is not photosynthetic, the apicoplast retains several anabolic pathways that are indispensable for the parasite. Based on previously identified antiplasmodial hit-molecules belonging to the 2-trichloromethylquinazoline and 3-trichloromethylquinoxaline series, we report herein an antiplasmodial Structure-Activity Relationships (SAR) study at position two of the quinoxaline ring of 16 newly synthesized compounds. Evaluation of their activity toward the multi-resistant K1 Plasmodium falciparum strain and cytotoxicity on the human hepatocyte HepG2 cell line revealed a hit compound (3k) with a PfK1 EC50 value of 0.3 μM and a HepG2 CC50 value of 56.0 μM (selectivity index = 175). Moreover, hit-compound 3k was not cytotoxic on VERO or CHO cell lines and was not genotoxic in the in vitro comet assay. Activity cliffs were observed when the trichloromethyl group was replaced by CH3, CF3 or H, showing that this group played a key role in the antiplasmodial activity. Biological investigations performed to determine the target and mechanism of action of the compound 3k strongly suggest that the apicoplast is the putative target as showed by severe alteration of apicoplaste biogenesis and delayed death response. Considering that there are very few molecules that affect the Plasmodium apicoplast, our work provides, for the first time, evidence of the biological target of trichloromethylated derivatives.
Collapse
Affiliation(s)
- Dyhia Amrane
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France; APHM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| | | | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, 13005, Marseille Cedex 05, France
| | - Béatrice Louis
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, CP 31008, Pamplona, Navarra, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, CP 31008, Pamplona, Navarra, Spain; Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008, Pamplona, Spain
| | - Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Pierre Verhaeghe
- LCC-CNRS Université de Toulouse, CNRS, UPS, 31400, Toulouse, France; CHU de Toulouse, Service Pharmacie, 330 Avenue de Grande-Bretagne, 31059, Toulouse Cedex 9, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, 13005, Marseille Cedex 05, France
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France.
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France; APHM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| |
Collapse
|
17
|
Soares da Costa TP, Hall CJ, Panjikar S, Wyllie JA, Christoff RM, Bayat S, Hulett MD, Abbott BM, Gendall AR, Perugini MA. Towards novel herbicide modes of action by inhibiting lysine biosynthesis in plants. eLife 2021; 10:69444. [PMID: 34313586 PMCID: PMC8341977 DOI: 10.7554/elife.69444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS was identified using a high-throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide-resistant weeds.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Jessica A Wyllie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, Australia.,Australian Research Council Research Hub for Medicinal Agriculture, Bundoora, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
18
|
Amrane D, Arnold CS, Hutter S, Sanz-Serrano J, Collia M, Azqueta A, Paloque L, Cohen A, Amanzougaghene N, Tajeri S, Franetich JF, Mazier D, Benoit-Vical F, Verhaeghe P, Azas N, Vanelle P, Botté C, Primas N. 2-Phenoxy-3-Trichloromethylquinoxalines Are Antiplasmodial Derivatives with Activity against the Apicoplast of Plasmodium falciparum. Pharmaceuticals (Basel) 2021; 14:ph14080724. [PMID: 34451821 PMCID: PMC8400257 DOI: 10.3390/ph14080724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure–activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds. The biological evaluation highlighted a hit compound (3i) with a potent PfK1 EC50 value of 0.2 µM and a HepG2 CC50 value of 32 µM (Selectivity index = 160). Nitro-containing (3i) was not genotoxic, both in the Ames test and in vitro comet assay. Activity cliffs were observed when the 2-CCl3 group was replaced, showing that it played a key role in the antiplasmodial activity. Investigation of the mechanism of action showed that 3i presents a drug response by targeting the apicoplast and a quick-killing mechanism acting on another target site.
Collapse
Affiliation(s)
- Dyhia Amrane
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
| | | | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
| | - Miguel Collia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Lucie Paloque
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, MAAP, Inserm ERL 1289, 31400 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Anita Cohen
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Françoise Benoit-Vical
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, MAAP, Inserm ERL 1289, 31400 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- CHU de Toulouse, Service Pharmacie, 330 Avenue de Grande-Bretagne, CEDEX 9, 31059 Toulouse, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
- APHM, Hôpital Conception, Service Central de la Qualité et de l’Information Pharmaceutiques, 13005 Marseille, France
- Correspondence: (P.V.); (C.B.); (N.P.)
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, 38700 La Tronche, France;
- Correspondence: (P.V.); (C.B.); (N.P.)
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
- APHM, Hôpital Conception, Service Central de la Qualité et de l’Information Pharmaceutiques, 13005 Marseille, France
- Correspondence: (P.V.); (C.B.); (N.P.)
| |
Collapse
|
19
|
Abdullah HSTSH, Chia PW, Omar D, Chuah TS. Herbicidal properties of antihypertensive drugs: calcium channel blockers. Sci Rep 2021; 11:14227. [PMID: 34244589 PMCID: PMC8270911 DOI: 10.1038/s41598-021-93662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Herbicide resistance is a worldwide problem in weed control. This prompts researchers to look for new modes of action to slow down the evolution of herbicide-resistant weeds. This research aims to determine the herbicidal action of thiazolo[3,2-a]pyrimidines derivatives, which are well known as antihypertensive drugs. The phytotoxic effects of ten compounds were investigated using leaf disc discoloration test and seed germination bioassay. At concentrations of 125 to 250 mg/L, the 5-(3-Fluoro-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (c) was highly active against Oldenlandia verticillata and Eleusine indica. At application rates of 1.25 to 2.5 kg ai/ha, formulated c demonstrated selective post-emergence and pre-emergence herbicidal activity against O. verticillata, E. indica and Cyperus iria. In the crop tolerance test, formulated c outperformed the commercial herbicide diuron, with aerobic Oryza sativa being the most tolerant, followed by Zea mays, and Brassica rapa. The addition of calcium chloride partially nullified compound c's inhibitory effects on weed shoot growth, indicating that it has potential as a calcium channel blocker. Compound c acted by triggering electrolyte leakage without affecting photosystem II. These findings imply that c could be explored further as a template for developing new herbicides with novel modes of action.
Collapse
Affiliation(s)
| | - Poh Wai Chia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Dzolkhifli Omar
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tse Seng Chuah
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Arau, Perlis, Malaysia.
| |
Collapse
|
20
|
Chia MA, Ameh I, Agee JT, Otogo RA, Shaba AF, Bashir H, Umar F, Yisa AG, Uyovbisere EE, Sha'aba RI. Effects of the antimalarial lumefantrine on Lemna minor, Raphidocelis subcapitata and Chlorella vulgaris. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103635. [PMID: 33716093 DOI: 10.1016/j.etap.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 μg l-1 and 16-10000 μg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.
Collapse
Affiliation(s)
| | - Ilu Ameh
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Jerry Tersoo Agee
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Hadiza Bashir
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima Umar
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
21
|
Sukhoverkov KV, Corral MG, Leroux J, Haywood J, Johnen P, Newton T, Stubbs KA, Mylne JS. Improved herbicide discovery using physico-chemical rules refined by antimalarial library screening. RSC Adv 2021; 11:8459-8467. [PMID: 35423398 PMCID: PMC8695207 DOI: 10.1039/d1ra00914a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Herbicides have physico-chemical properties not unlike orally-delivered human drugs, but are known to diverge in their limits for proton donors, partition coefficients and molecular weight. To further refine rules specific for herbicides, we exploited the close evolutionary relationship between Plasmodium falciparum and plants by screening the entire Malaria Box, a chemical library of novel chemical scaffolds with activity against the blood stage of P. falciparum. Initial screening against Arabidopsis thaliana on agar media and subsequently on soil demonstrated the crucial nature of log P and formal charge are to active molecules. Using this information, a weighted scoring system was applied to a large chemical library of liver-stage effective antimalarial leads, and of the six top-scoring compounds, one had potency comparable to that of commercial herbicides. This novel compound, MMV1206386, has no close structural analogues among commercial herbicides. Physiological profiling suggested that MMV1206386 has a new mode of action and overall demonstrates how weighted rules can help during herbicide discovery programs.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Maxime G Corral
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Julie Leroux
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joel Haywood
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | | | - Trevor Newton
- BASF SE Speyerer Straße 2 67117 Limburgerhof Germany
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| |
Collapse
|
22
|
Pullella GA, Wdowiak AP, Sykes ML, Lucantoni L, Sukhoverkov KV, Zulfiqar B, Sobolev AN, West NP, Mylne JS, Avery VM, Piggott MJ. Total Synthesis of the Antimalarial Ascidian Natural Product Albopunctatone. Org Lett 2019; 21:5519-5523. [DOI: 10.1021/acs.orglett.9b01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Melissa L. Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Nicholas P. West
- Tuberculosis Research Laboratory, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | - Vicky M. Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | |
Collapse
|
23
|
Beckie HJ, Ashworth MB, Flower KC. Herbicide Resistance Management: Recent Developments and Trends. PLANTS 2019; 8:plants8060161. [PMID: 31181770 PMCID: PMC6631825 DOI: 10.3390/plants8060161] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
This review covers recent developments and trends in herbicide-resistant (HR) weed management in agronomic field crops. In countries where input-intensive agriculture is practiced, these developments and trends over the past decade include renewed efforts by the agrichemical industry in herbicide discovery, cultivation of crops with combined (stacked) HR traits, increasing reliance on preemergence vs. postemergence herbicides, breeding for weed-competitive crop cultivars, expansion of harvest weed seed control practices, and advances in site-specific or precision weed management. The unifying framework or strategy underlying these developments and trends is mitigation of viable weed seeds into the soil seed bank and maintaining low weed seed banks to minimize population proliferation, evolution of resistance to additional herbicidal sites of action, and spread. A key question going forward is: how much weed control is enough to consistently achieve the goal of low weed seed banks? The vision for future HR weed management programs must be sustained crop production and profitability with reduced herbicide (particularly glyphosate) dependency.
Collapse
Affiliation(s)
- Hugh J Beckie
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Michael B Ashworth
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Ken C Flower
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
24
|
Dahabiyeh LA, Bustanji Y, Taha MO. The herbicide quinclorac as potent lipase inhibitor: Discovery via virtual screening and in vitro/in vivo validation. Chem Biol Drug Des 2019; 93:787-797. [PMID: 30570819 DOI: 10.1111/cbdd.13463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
Lipolysis is primarily controlled by the stepwise action of hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL) to release free fatty acids and glycerol. A high level of circulating free fatty acids is well-known to mediate insulin resistance. Thus, the need to discover lipase inhibitors against both enzyme systems remains urgent. Agrochemicals are tightly regulated chemicals and therefore are potential source of new medicinal agents. Accordingly, we implemented a computational workflow to search for new lipase inhibitory leads by virtually screening commercial agrochemicals against HSL and MGL employing binding pharmacophores and docking experiments. Ten agrochemicals were identified as potential lipase inhibitors, out of which quinclorac, a safe herbicide, achieved high-ranking score. Subsequent in vitro evaluation against rat epididymal lipase activity showed quinclorac to exhibit nanomolar anti-lipase IC50 . Subsequent in vivo testing showed quinclorac to significantly decrease blood glycerol levels after acute exposure (150 mg/kg) and multiple dosing (50 or 25 mg/kg) (p < 0.05).
Collapse
Affiliation(s)
- Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Yasser Bustanji
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
25
|
Rogée S, Larrous F, Jochmans D, Ben-Khalifa Y, Neyts J, Bourhy H. Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Res 2019; 161:1-9. [DOI: 10.1016/j.antiviral.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
|
26
|
Inhibitory effects of the phytohormone inhibitors fluridone and inabenfide against Babesia gibsoni in vitro. Vet Parasitol 2019; 265:19-23. [DOI: 10.1016/j.vetpar.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022]
|
27
|
Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, Lawton-Rauh A, Malone JM, McElroy JS, Merotto A, Westra P, Preston C, Vila-Aiub MM, Busi R, Tranel PJ, Reinhardt C, Saski C, Beffa R, Neve P, Gaines TA. The power and potential of genomics in weed biology and management. PEST MANAGEMENT SCIENCE 2018; 74:2216-2225. [PMID: 29687580 DOI: 10.1002/ps.5048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/11/2023]
Abstract
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | | | - Kateřina Hamouzová
- Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - Amy Lawton-Rauh
- Department of Genetics and Biochemistry, 316 Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jenna M Malone
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Christopher Preston
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - Martin M Vila-Aiub
- Facultad de Agronomía, Departamento de Ecología, IFEVA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Carl Reinhardt
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher Saski
- Clemson University Genomics and Computational Biology Laboratory, Clemson University, Clemson, SC, USA
| | - Roland Beffa
- Bayer AG, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Paul Neve
- Biointeractions & Crop Protection Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana. PEST MANAGEMENT SCIENCE 2018; 74:1558-1563. [PMID: 29377434 DOI: 10.1002/ps.4872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. RESULTS Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. CONCLUSION We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maxime G Corral
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Julie Leroux
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | | | | | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
29
|
Corral MG, Haywood J, Stehl LH, Stubbs KA, Murcha MW, Mylne JS. Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:727-742. [PMID: 29876984 DOI: 10.1111/tpj.13983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the malarial parasite Plasmodium, are bifunctional, possessing DHFR and thymidylate synthase (TS) domains. Here using genetic knockout lines we confirmed that either DHFR-TS1 or DHFR-TS2 (but not DHFR-TS3) was essential for seed development. Screening mutated Arabidopsis thaliana seeds for resistance to antimalarial DHFR-inhibitor drugs pyrimethamine and cycloguanil identified causal lesions in DHFR-TS1 and DHFR-TS2, respectively, near the predicted substrate-binding site. The different drug resistance profiles for the plants, enabled by the G137D mutation in DHFR-TS1 and the A71V mutation in DHFR-TS2, were consistent with biochemical studies using recombinant proteins and could be explained by structural models. These findings provide a great improvement in our understanding of plant DHFR-TS and suggest how plant-specific inhibitors might be developed, as DHFR is not currently targeted by commercial herbicides.
Collapse
Affiliation(s)
- Maxime G Corral
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Luca H Stehl
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Faculty of Biology, The University of Freiburg, Schaenzlestrasse 1, Freiburg, 79104, Germany
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
30
|
Chen JJ, Rateb ME, Love MS, Xu Z, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, McNamara CW, Shen B. Herbicidins from Streptomyces sp. CB01388 Showing Anti- Cryptosporidium Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:791-797. [PMID: 29469575 DOI: 10.1021/acs.jnatprod.7b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high-content imaging assay was used to screen the fraction collection of the Natural Product Library at The Scripps Research Institute for inhibitors of Cryptosporidium parvum. A chemical investigation of one strain, Streptomyces sp. CB01388, resulted in the isolation of six herbicidins (1-6), one of which is new (herbicidin L, 1). Five of the six herbicidins (1-3, 5, 6) showed moderate inhibitory activity against C. parvum, with 1 and 6 comparable to the FDA-approved drug nitazoxanide, and 2-6 showed no toxicity to the host HCT-8 cells and human HEK293T and HepG2 cells. These findings highlight the herbicidin scaffold for anti- Cryptosporidium drug development.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Mostafa E Rateb
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Melissa S Love
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Zhengren Xu
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Dong Yang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Case W McNamara
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
31
|
Wallace MD, Waraich NF, Debowski AW, Corral MG, Maxwell A, Mylne JS, Stubbs KA. Developing ciprofloxacin analogues against plant DNA gyrase: a novel herbicide mode of action. Chem Commun (Camb) 2018; 54:1869-1872. [DOI: 10.1039/c7cc09518j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of ciprofloxacin analogues against plant DNA gyrase, a novel herbicidal target, with increased herbicidal activity and diminished antibacterial activity is described.
Collapse
Affiliation(s)
- Michael D. Wallace
- School of Molecular Sciences
- University of Western Australia
- Crawley
- Australia
| | - Nidda F. Waraich
- Department of Biological Chemistry
- John Innes Centre
- Norwich Research Park
- Norwich
- UK
| | - Aleksandra W. Debowski
- School of Molecular Sciences
- University of Western Australia
- Crawley
- Australia
- School of Biomedical Sciences
| | - Maxime G. Corral
- School of Molecular Sciences
- University of Western Australia
- Crawley
- Australia
- ARC Centre of Excellence in Plant Energy Biology
| | - Anthony Maxwell
- Department of Biological Chemistry
- John Innes Centre
- Norwich Research Park
- Norwich
- UK
| | - Joshua S. Mylne
- School of Molecular Sciences
- University of Western Australia
- Crawley
- Australia
- ARC Centre of Excellence in Plant Energy Biology
| | - Keith A. Stubbs
- School of Molecular Sciences
- University of Western Australia
- Crawley
- Australia
| |
Collapse
|
32
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. Exploiting the Evolutionary Relationship between Malarial Parasites and Plants To Develop New Herbicides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxime G. Corral
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Julie Leroux
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | | | | | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Joshua S. Mylne
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|
33
|
Corral MG, Leroux J, Tresch S, Newton T, Stubbs KA, Mylne JS. Exploiting the Evolutionary Relationship between Malarial Parasites and Plants To Develop New Herbicides. Angew Chem Int Ed Engl 2017; 56:9881-9885. [DOI: 10.1002/anie.201705400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Maxime G. Corral
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Julie Leroux
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | | | | | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Joshua S. Mylne
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- ARC Centre of Excellence in Plant Energy Biology University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|