1
|
Ochirbat S, Kan TC, Hsu CC, Huang TH, Chuang KH, Chen M, Cheng CC, Chang CC, Rahayu S, Chang J. The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers. Angiogenesis 2024; 27:827-843. [PMID: 39177676 DOI: 10.1007/s10456-024-09944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Nicotine acts as an angiogenic factor by stimulating endogenous cholinergic pathways. Several subtypes of nicotinic acetylcholine receptors (nAChRs) have been demonstrated to be closely correlated to the formation and progression of different types of cancers. Recently, several studies have found that nicotinic acetylcholine receptors α9 (α9-nAChRs) are highly expressed in breast tumors, especially in tumors derived from patients diagnosed at advanced stages. In vitro studies have demonstrated that activation of α9-nAChRs is associated with increased proliferation and migration of breast cancer. To study the tumor-promoting role of α9-nAChRs in breast cancers, we generated a novel anti-α9-nAChR and methoxy-polyethylene glycol (mPEG) bispecific antibody (α9 BsAb) for dissecting the molecular mechanism on α9-nAChR-mediated tumor progression. Unexpectedly, we discovered the angiogenic role of α9-nAChR in nicotine-induced neovascularization of tumors. It revealed α9 BsAbs reduced nicotine-induced endothelial cell tube formation, blood vessel development in Matrigel plug assay and angiogenesis in microtube array membrane murine model (MTAMs). To unbraid the molecular mechanism of α9-nAChR in nicotine-mediated angiogenesis, the α9 BsAbs were applied and revealed the inhibitory roles in nicotine-induced production of hypoxia-inducible factor-2 alpha (HIF-2α), vascular endothelial growth factor A (VEGF-A), phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2), vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase-9 (MMP9) from triple-negative breast cancer cells (MDA-MB-231), suggesting α9-nAChRs played an important role in nicotine-induced angiogenesis. To confirm our results, the shRNA targeting α9-nAChRs was designed and used to silence α9-nAChR expression and then evaluated the angiogenic role of α9-nAChRs. The results showed α9 shRNA also played an inhibitory effect in blocking the nicotine-induced angiogenic signaling. Taken together, α9-nAChR played a critical role in nicotine-induced angiogenesis and this bispecific antibody (α9 BsAb) may serve as a potential therapeutic candidate for treatments of the α9 positive cancers.
Collapse
Affiliation(s)
- Sonjid Ochirbat
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Tzu-Hsuan Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Chia Cheng
- Research Center of Radiation Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sri Rahayu
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jakarta, 13220, Indonesia
| | - Jungshan Chang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Choi NE, Park SC, Kim IR. Tivozanib-induced activation of the mitochondrial apoptotic pathway and suppression of epithelial-to-mesenchymal transition in oral squamous cell carcinoma. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:197-207. [PMID: 38682168 PMCID: PMC11058548 DOI: 10.4196/kjpp.2024.28.3.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 05/01/2024]
Abstract
The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.
Collapse
Affiliation(s)
- Nak-Eun Choi
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Si-Chan Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
3
|
Kalele K, Nyahatkar S, Mirgh D, Muthuswamy R, Adhikari MD, Anand K. Exosomes: A Cutting-Edge Theranostics Tool for Oral Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1400-1415. [PMID: 38394624 DOI: 10.1021/acsabm.3c01243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) secreted by cells. In cancer, they are key cellular messengers during cancer development and progression. Tumor-derived exosomes (TEXs) promote cancer progression. In oral cancer, the major complication is oral squamous cell carcinoma (OSCC). Exosomes show strong participation in several OSCC-related activities such as uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and drug and therapeutic resistance. It is also a potential biomarker source for oral cancer. Some therapeutic exosome sources such as stem cells, plants (it is more effective compared to others), and engineered exosomes reduce oral cancer development. This therapeutic approach is effective because of its specificity, biocompatibility, and cell-free therapy (it reduced side effects in cancer treatment). This article highlights exosome-based theranostics signatures in oral cancer, clinical trials, challenges of exosome-based oral cancer research, and future improvements. In the future, exosomes may become an effective and affordable solution for oral cancer.
Collapse
Affiliation(s)
- Ketki Kalele
- Neuron Institute of Applied Research, Rajapeth-Irwin Square Flyover, Amravati, Maharashtra 444601, India
| | - Sidhanti Nyahatkar
- VYWS Dental College & Hospital, WQMV+7X6, Tapovan-Wadali Road, Camp Rd, SRPF Colony, Amravati, Maharashtra 444602, India
| | - Divya Mirgh
- Department of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Raman Muthuswamy
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
4
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Kumar S, Dhar R, Kumar LBSS, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol 2023; 40:321. [PMID: 37798480 DOI: 10.1007/s12032-023-02176-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.
Collapse
Affiliation(s)
- Samruti Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Lokesh Babu Sirkali Suresh Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Gauresh Gurudas Shivji
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
7
|
Role of tumour-derived exosomes in metastasis. Biomed Pharmacother 2022; 147:112657. [DOI: 10.1016/j.biopha.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
|
8
|
Ajani OO, Iyaye KT, Ademosun OT. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – a review. RSC Adv 2022; 12:18594-18614. [PMID: 35873320 PMCID: PMC9231466 DOI: 10.1039/d2ra02896d] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity. This review aims to present the recent advances in chemistry, medicinal potential and pharmacological applications of quinoline motifs to unveil their substantial efficacies for future drug development. Essential information in all the current and available literature used was accessed and retrieved using different search engines and databases, including Scopus, ISI Web of Knowledge, Google and PUBMED. Numerous derivatives of the bioactive quinolines have been harnessed via expeditious synthetic approaches, as highlighted herein. This review reveals that quinoline is an indisputable pharmacophore due to its tremendous benefits in medicinal chemistry research and other valuable areas of human endeavour. The recent in vivo and in vitro screening reported by scientists is highlighted herein, which may pave the way for novel drug development. Owing to the array of information available and highlighted herein on the medicinal potential of quinoline and its functionalized derivatives, a new window of opportunity may be opened to medicinal chemists to access more biomolecular quinolines for future drug development. Quinoline, which consists of benzene fused with N-heterocyclic pyridine, has received considerable attention as a core template in drug design because of its broad spectrum of bioactivity.![]()
Collapse
Affiliation(s)
- Olayinka O. Ajani
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - King T. Iyaye
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| | - Olabisi T. Ademosun
- Department of Chemistry, Covenant University, Km 10, Idiroko Road, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
9
|
Shiau JP, Wu CC, Chang SJ, Pan MR, Liu W, Ou-Yang F, Chen FM, Hou MF, Shih SL, Luo CW. FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedicines 2021; 9:biomedicines9121789. [PMID: 34944605 PMCID: PMC8698860 DOI: 10.3390/biomedicines9121789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) remains a significant clinical challenge because of its high vascularity and metastatic and recurrent rates. Tumor angiogenesis is considered an important mediator in the regulation of tumor cell survival and metastasis in TNBC. Angiogenesis is induced by the binding of vascular endothelial growth factor to vascular endothelial growth factor receptor 2 (VEGFR2). Focal adhesion kinase (FAK) plays an important role in regulating various cell functions in normal and cancer cells. Previous studies have focused on investigating the function of endothelial FAK in tumor cell angiogenesis. However, the association between tumor FAK and VEGFR2 in tumor angiogenesis and the possible mechanisms of this remain unclear. In this study, we used a public database and human specimens to examine the association between FAK and VEGFR2. At the same time, we verified the association between FAK and VEGFR2 through several experimental methods, such as quantitative real-time polymerase chain reaction, Western blotting, and next-generation sequencing. In addition, we used the endothelial cell model, zebrafish, and xenograft animal models to investigate the role of FAK in TNBC angiogenesis. We found that FAK and VEGFR2 were positively correlated in patients with TNBC. VEGFR2 and several other angiogenesis-related genes were regulated by FAK. In addition, FAK regulated VEGFR2 and VEGF protein expression in TNBC cells. Functional assays showed that FAK knockdown inhibited endothelial tube formation and zebrafish angiogenesis. An animal model showed that FAK inhibitors could suppress tumor growth and tumor vascular formation. FAK promotes angiogenesis in TNBC cells by regulating VEGFR2 expression. Therefore, targeting FAK could be another antiangiogenic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Cheng-Che Wu
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Fu Ou-Yang
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shen-Liang Shih
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2260); Fax: +886-7-3165011
| |
Collapse
|
10
|
Efficacy and safety of tivozanib in recurrent, platinum-resistant ovarian, fallopian tube or primary peritoneal cancer, an NCCN phase II trial. Gynecol Oncol 2021; 163:57-63. [PMID: 34419285 DOI: 10.1016/j.ygyno.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/08/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Tivozanib is a potent selective pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor with a long half-life. This study assessed its activity in patients with recurrent, platinum-resistant ovarian, fallopian tube or primary peritoneal cancer (OC). METHODS This open-label phase II study used a Simon's two-stage design. Eligible patients had recurrent, platinum-resistant OC and measurable or detectable disease. There was no limit on the number of prior regimens. Treatment consisted of tivozanib 1.5 mg orally once daily for 21 days in a 28-day cycle. The primary endpoint was objective response rate (ORR). Secondary endpoints were progression-free survival (PFS), overall survival (OS), and toxicity assessment. RESULTS Thirty-one patients were enrolled, and 30 were treated. The median age was 59.5 years, and median number of prior regimens was 4 (range 1-9). Twenty-four patients were evaluable for response, and four (16.7%) achieved a partial response (PR; ORR = 16.7%). An additional fourteen (58.3%) patients had stable disease (SD). The clinical benefit rate (PR + SD) was 75.0%, and the median duration of objective response was 5.7 months. For all patients on trial, the median PFS was 4.1 months (95% confidence interval (CI): 1.7-5.8) and OS 8.6 months (95% CI: 5.4-12.5). There were no treatment-related deaths. Serious adverse events occurred in 13.3% of patients and included small intestinal perforation or obstruction and stroke. Grade 3-4 adverse events occurred in 60% of patients, including hypertension (26.7%) and fatigue (10%). CONCLUSIONS Tivozanib is effective in patients with recurrent OC, with moderate toxicity and no treatment-related deaths, supporting its further development.
Collapse
|
11
|
Abstract
The diarylurea is a scaffold of great importance in medicinal chemistry as it is present in numerous heterocyclic compounds with antithrombotic, antimalarial, antibacterial, and anti-inflammatory properties. Some diarylureas, serine-threonine kinase or tyrosine kinase inhibitors, were recently reported in literature. The first to come into the market as an anticancer agent was sorafenib, followed by some others. In this review, we survey progress over the past 10 years in the development of new diarylureas as anticancer agents.
Collapse
|
12
|
El-Adl K, El-Helby AGA, Ayyad RR, Mahdy HA, Khalifa MM, Elnagar HA, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg Med Chem 2020; 29:115872. [PMID: 33214036 DOI: 10.1016/j.bmc.2020.115872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hamdy A Elnagar
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt; National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
13
|
Soleymani Fard S, Yazdanbod M, Sotoudeh M, Bashash D, Mahmoodzadeh H, Saliminejad K, Mousavi SA, Ghaffari SH, Alimoghaddam K. Prognostic and Therapeutic Significance of Androgen Receptor in Patients with Gastric Cancer. Onco Targets Ther 2020; 13:9821-9837. [PMID: 33061460 PMCID: PMC7537849 DOI: 10.2147/ott.s265364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/29/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose The clinical studies carried out in the last few decades unequivocally introduced activated androgen receptor (AR) as a pathogenic feature of human malignancies which not only endows cancer cells with survival advantage, but also may be exploited for anticancer interventions. Patients and Methods In this study, we have investigated the expression profile of AR and EMT-related genes in fresh gastric cancer (GC), adjacent nontumor and normal gastric tissues, as well as the effect and molecular mechanisms of AR inhibition in GC cell lines. Results Amongst 60 GC patients, 66.7% overexpressed AR that was remarkably correlated with the overexpression of Snail, β-catenin, Twist1, and STAT3. AR overexpression was also remarkably associated with unfavorable outcome (HR=3.478, P=0.001); however, multivariate Cox regression analysis indicated that it was not an independent prognostic factor (HR=2.089, P=0.056). This study has investigated simultaneous assessment of AR and EMT-related genes expression and indicated that concurrent overexpression of AR and Snail is an independent unfavorable factor for GC overall survival after adjustment with other variables (HR=2.382, P=0.021). Interestingly, the inhibition of AR signaling by potent AR antagonist enzalutamide suppressed cell growth, migration and invasion of GC cells via regulation of apoptosis-, cell cycle-, and EMT-related gene expressions. Conclusion Our findings have clinical importance proposing AR as an important prognostic factor involved in GC progression and metastasis, and submit AR inhibition as an appealing therapeutic approach for GC patients, either as a single agent or in a combined-modal strategy.
Collapse
Affiliation(s)
- Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kalathil SG, Wang K, Hutson A, Iyer R, Thanavala Y. Tivozanib mediated inhibition of c-Kit/SCF signaling on Tregs and MDSCs and reversal of tumor induced immune suppression correlates with survival of HCC patients. Oncoimmunology 2020; 9:1824863. [PMID: 33101775 PMCID: PMC7553535 DOI: 10.1080/2162402x.2020.1824863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The immune modulatory effect of tivozanib, a tyrosine kinase inhibitor, and the underlying immune mechanisms impacting survival of HCC patients have not been investigated. Pre-clinical studies have shown that tivozanib reduces Tregs and MDSCs accumulation through inhibition of c-Kit/SCF axis. We rationalized that c-Kit/SCF axis antagonism by tivozanib may reverse tumor-induced immune suppression in HCC patients. The frequency of circulating Tregs, MDSCs, CTLA-4+Tregs, PD-1+T cells, c-Kit+pERK-2+Tregs, and c-Kit+pERK-2+MDSCs were quantified in HCC patients at baseline and two time points during tivozanib treatment. We report for the first time that reduction in Tregs after tivozanib treatment and increased levels of baseline CD4+PD-1+T cells correlated with significant improvement in overall survival (OS) of the patients and these signatures may be potential biomarkers of prognostic significance. This immune modulation resulted from tivozanib-mediated blockade of c-Kit/SCF signaling, impacting ERK2 phosphorylation on Tregs and MDSCs. Low pre-treatment CD4+T cells: Treg ratio and reduction in the frequencies of Foxp3+c-Kit+pERK+Tregs after tivozanib treatment correlated significantly with progression free survival. In a comparative analysis of tivozanib vs sorafenib treatment in HCC patients, we demonstrate that decrease in the baseline numbers or frequencies of Foxp3+Tregs, MDSCs and exhausted T cells was significantly greater following tivozanib treatment. Additionally, greater increase in CD4+T cell: Treg ratio after tivozanib treatment was associated with significant improvement in OS compared to sorafenib treatment, highlighting the greater efficacy of tivozanib. These insights may help identify patients who likely would benefit from c-Kit/SCF antagonism and inform efforts to improve the efficacy of tivozanib in combination with immunotherapy.
Collapse
Affiliation(s)
- Suresh Gopi Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Katy Wang
- Department of Biostatistics & Bioinformatics Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Alan Hutson
- Department of Biostatistics & Bioinformatics Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Renuka Iyer
- Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| |
Collapse
|
15
|
Zhao H, Li R, Wang X, Lu X, Hu M, Zhang J, Zhao X, Song X, Liu Y. The role of apatinib combined with paclitaxel (aluminum binding type) in platinum-resistant ovarian cancer. J Ovarian Res 2020; 13:113. [PMID: 32958014 PMCID: PMC7507263 DOI: 10.1186/s13048-020-00719-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess the anti-tumor activity and side effects of different dosages of paclitaxel (albumin binding type) (hereinafter referred to as nab-P) combined with Apatinib (hereinafter referred to as AP) in platinum-resistant ovarian cancer cell line and xenograft models. METHODS SKOV-3/DDP cell line was selected as the research object in cytology experiment. Firstly, we divided it into three groups for experiments to explore the individual effects of nab-P and AP. a): Control group, blank control, no drug intervention; b): nab-P group, nab-P 40 μmol/l; c): AP group, AP 50 μmol/l (Drug doses were IC-50 values that detected by MTT assay). Apoptosis related protein (Bax, bcl-2), vascular related protein(p-VEGFR-2), invasion related protein (MMP-2) expression were detected by Western blot and Cellular immunofluorescence, the invasion ability of tumor cells were detected by Transwell and Cell scratch test. Based on these dates, secondly, establishing different doses of nab-P combined with Ap to explore the curative effect of combination therapy. a): Control group, blank control, no drug intervention; b): Group-1, nab-P 5 μmol/l + AP 10 μmol/l, c): Group-2, nab-P 4.5 μmol/l + AP 10 μmol/l, d): Group-3, nab-P 4 μmol/l + AP 10 μmol/l, e): nab-P group, nab-P 5 μmol/l, f): AP group, AP 10 μmol/l (MTT assay). The combination index was analyzed by Compusyn software, Western blot, Immunofluescence, Transwell and Cell scratch test also were also chose to observe of inhibition effect. Thirdly, we used xenograft models to verify the results of cytological experiments. Tumor-forming BALB/c female nude mice were randomly divided into 4 groups, a): Control group, no drug intervention, only saline injection, b): nab-P 20 mg/kg + AP 150 mg/kg, c): nab-P 18 mg/kg + AP 150 mg/kg, d): nab-P 16 mg/kg + AP 150 mg/kg (The doses were guided by the pharmaceutical manufacturers). The tumor growth curve was analyzed during the experiment. And the apoptosis related protein (Bax, bcl-2), angiogenesis related protein (CD31, p-VEGFR-2) and invasion related protein (MMP-2) were observed by Western blot, Immunofluescence and Immunohistochemistry to analysis the ant-tumor effects. The quality of life in nude mice were observed to analysed the drug-induced side effects. RESULT In the separate medication section, (1) The IC-50 value of nab-P was 45.53 ± 4.06 μmol/l, while the AP was 50.66 ± 4.96 umol/L (48 h). (2) The expressions of bcl-2 (nab-P group, AP group), p-VEGFR-2 (AP group), MMP-2(nab-P group, AP group) were higher than Control group, while Bax (nab-P group, AP group) lower (P < 0.01). (3) The cell invasive ability was decreased after the nab-P and AP intervation (P < 0.01). In the combination medication section, (1) Compusyn showed the Combination index (Cl) were all below 1 (Cl < 1), that means nab-P and AP are synergism. (2) The combination IC-50 value was nab-P 5.28 μmol/l + AP 10.56 μmol/l (48 h). (3) In the detection of related protein expression, the combination of drugs can improve the anti-tumor effect, otherwise, after combined with AP, when nab-P were reduced dose in proper quantity, there were no obvious different in drug effect. (4) After reducing the doses of nab-P, the average food intake of nude mice increased from 4.50 g ± 0.17 to 5.55 g ± 0.13, and the one-hour activity increased from 6.11 min ±0.16 to 6.34 min ±0.13. CONCLUSION nab-P, a chemotherapeutic agent, can play an anti-tumor role in platinum-resistant ovarian cancer, but it can cause adverse effects that increase with dose. When combined with AP, the two drugs have synergistic effect, which can improve the anti-tumor effects of single drug. In addition, when combined with AP, the doses of nab-P can be appropriately reduced under the standard of recommended to reduce the toxicity of chemotherapy drugs, without affecting the anti-tumor effect.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, No. 56 Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, China.
| | - Rong Li
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, No. 56 Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, China
| | - Xiaoyan Wang
- Department of Gynecology, Shanxi Cancer Hospital, Taiyuan, China
| | - Xin Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, No. 56 Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, China
| | - Min Hu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, No. 56 Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, China
| | - Jinbin Zhang
- Department of Gynecology, Shanxi Cancer Hospital, Taiyuan, China
| | - Xia Zhao
- Shanxi province center for disease control and prevention, Taiyuan, China
| | - Xiaoqin Song
- The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yangyang Liu
- The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Anticancer Activity of Brevinin-2R Peptide and its Two Analogues Against Myelogenous Leukemia Cell Line as Natural Treatments: An In Vitro Study. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Momeny M, Alishahi Z, Eyvani H, Esmaeili F, Zaghal A, Ghaffari P, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol (Dordr) 2020; 43:81-93. [DOI: 10.1007/s13402-019-00473-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
|
18
|
Fogli S, Porta C, Del Re M, Crucitta S, Gianfilippo G, Danesi R, Rini BI, Schmidinger M. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: a comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs. Cancer Treat Rev 2020; 84:101966. [PMID: 32044644 DOI: 10.1016/j.ctrv.2020.101966] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Anti-angiogenic treatment is an important option that has changed the therapeutic landscape in various tumors, particularly in patients affected by renal cell carcinoma (RCC). Agents that block signaling pathways governing tumor angiogenesis have raised high expectations among clinicians. Vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) comprise a heterogeneous class of drugs with distinct pharmacological profiles, including potency, selectivity, pharmacokinetics and drug-drug interactions. Among them, tivozanib is one of the last TKIs introduced in the clinical practice; this drug selectively targets VEGFRs, it is characterized by a favorable pharmacokinetics and safety profile and has been approved as first-line treatment for patients with metastatic RCC (mRCC). In this article, we describe the clinical pharmacology of selected VEGFR-TKIs used for the treatment of mRCC, highlighting the relevant differences; moreover we aim to define the main pharmacologic characteristics of these drug.
Collapse
Affiliation(s)
- Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Brian I Rini
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manuela Schmidinger
- Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Inhibition of bromodomain and extraterminal domain reduces growth and invasive characteristics of chemoresistant ovarian carcinoma cells. Anticancer Drugs 2019; 29:1011-1020. [PMID: 30096128 DOI: 10.1097/cad.0000000000000681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination are the major reasons for low survival rate in the patients. The bromodomain and extraterminal domain (BET) proteins are known as epigenetic 'readers,' and their inhibitors are novel epigenetic strategies for cancer treatment. Accumulating body of evidence indicates that epigenetic modifications have critical roles in development of EOC, and overexpression of the BET family is a key step in the induction of important oncogenes. Here, we examined the mechanistic activity of I-BET151, a pan-inhibitor of the BET family, in therapy-resistant EOC cells. Our findings showed that I-BET151 diminished cell growth, clonogenic potential, and induced apoptosis. I-BET151 inhibited cell proliferation through down-modulation of FOXM1 and its targets aurora kinase B and cyclin B1. I-BET151 attenuated migration and invasion of the EOC cells by down-regulation of epithelial-mesenchymal transition markers fibronectin, ZEB2, and N-cadherin. I-BET151 synergistically enhanced cisplatin chemosensitivity by down-regulation of survivin and Bcl-2. Our data provide insights into the mechanistic activity of I-BET151 and suggest that BET inhibition has potential as a therapeutic strategy in therapy-resistant EOC. Further in vivo investigations on the therapeutic potential of I-BET151 in EOC are warranted.
Collapse
|
20
|
Katopodis P, Chudasama D, Wander G, Sales L, Kumar J, Pandhal M, Anikin V, Chatterjee J, Hall M, Karteris E. Kinase Inhibitors and Ovarian Cancer. Cancers (Basel) 2019; 11:E1357. [PMID: 31547471 PMCID: PMC6770231 DOI: 10.3390/cancers11091357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is fifth in the rankings of cancer deaths among women, and accounts for more deaths than any other gynecological malignancy. Despite some improvement in overall-(OS) and progression-free survival (PFS) following surgery and first-line chemotherapy, there is a need for development of novel and more effective therapeutic strategies. In this mini review, we provide a summary of the current landscape of the clinical use of tyrosine kinase inhibitors (TKIs) and mechanistic target of rapamycin (mTOR) inhibitors in ovarian cancer. Emerging data from phase I and II trials reveals that a combinatorial treatment that includes TKIs and chemotherapy agents seems promising in terms of PFS despite some adverse effects recorded; whereas the use of mTOR inhibitors seems less effective. There is a need for further research into the inhibition of multiple signaling pathways in ovarian cancer and progression to phase III trials for drugs that seem most promising.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK.
| | - Dimple Chudasama
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Gurleen Wander
- Chelsea and Westminster Hospital NHS Trust, London UB9 6JH, UK.
| | - Louise Sales
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Juhi Kumar
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Manreen Pandhal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK.
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, 119146 Moscow, Russia.
| | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Marcia Hall
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK.
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
21
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18:75. [PMID: 30940145 PMCID: PMC6444571 DOI: 10.1186/s12943-019-0991-5] [Citation(s) in RCA: 995] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-derived exosomes (TDEs) participate in formation and progression of different cancer processes, including tumor microenvironment (TME) remodeling, angiogenesis, invasion, metastasis and drug-resistance. Exosomes initiate or suppress various signaling pathways in the recipient cells via transmitting heterogeneous cargoes. In this review we discuss exosome biogenesis, exosome mediated metastasis and chemoresistance. Furthermore, tumor derived exosomes role in tumor microenvironment remodeling, and angiogenesis is reviewed. Also, exosome induction of epithelial mesenchymal transition (EMT) is highlighted. More importantly, we discuss extensively how exosomes regulate drug resistance in several cancers. Thus, understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-resistance and preventing metastasis as major factors of cancer mortality.
Collapse
Affiliation(s)
- Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA.
| |
Collapse
|
22
|
Zheng K, Xu M, Wang L, Yu X. Efficacy and safety of apatinib in advance osteosarcoma with pulmonary metastases: A single-center observational study. Medicine (Baltimore) 2018; 97:e11734. [PMID: 30075583 PMCID: PMC6081168 DOI: 10.1097/md.0000000000011734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study was designed to evaluate the efficacy and safety of apatinib in patients with advanced osteosarcoma and pulmonary metastases following failed first-line chemotherapy.There were 10 patients with osteosarcoma pulmonary metastases, whose first-line chemotherapy had failed, had received apatinib treatment as a single agent. All patients had at least 1 measurable lung tumor. Progression free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and treatment-related adverse effects (AEs) were reviewed and evaluated. Tumor response was assessed by response evaluation criteria in solid tumor criteria (RECIST). The 10 patients in this study received apatinib treatment for 2 to 16 months with a median of 7.5 months. The median PFS was 7.5 months. The 6-month, 8-month, and 10-month PFS rates were 60%, 40% and 26.6%, respectively. The median OS was 14 months. After 6-month apatinib treatment, 2 patients achieved partial response and 5 patients achieved stable disease, while 3 patients were evaluated as progression of the disease. At the 6-month follow-up, the ORR was 20.0% and the DCR was 70.0%. Hand-foot syndrome with grade 1/2 was the most common treatment-related AE. No drug-related severe AEs occurred.After failed first-line chemotherapy, apatinib as a single agent exhibited efficacy and acceptable safety in patients with advanced osteosarcoma and pulmonary metastases.
Collapse
|
23
|
Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, Sankanian G, Shamsaiegahkani S, Bashash D, Shahsavani N, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. TUMORI JOURNAL 2018; 105:84-91. [DOI: 10.1177/0300891618784790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide and despite an initial response to therapeutic agents, the majority of patients have chemoresistant disease. There is no treatment strategy with proven efficacy against chemoresistant EOC and in this setting, overcoming therapy resistance is the key to successful treatment. Methods: This study aimed to investigate expression of interleukin-6 (IL-6) (IL-6) and IL-6 receptor (IL-6R) in a panel of the EOC cell lines. To achieve this, the expression of IL-6 and its receptor were compared in the EOC cells using quantitative reverse transcription polymerase chain reaction. MTT assay was performed to obtain chemosensitivity of the EOC cells. Results: In this report, we show that expressions of IL6 and IL6R are higher in therapy-resistant EOC cells compared to sensitive ones. Higher expression of IL6 and its receptor correlated with resistance to certain chemotherapeutic agents. Moreover, our findings showed that combination of tocilizumab (Actemra; Roche), an anti-IL-6R monoclonal antibody, with carboplatin synergistically inhibited growth and proliferation of the EOC cells and the most direct axis for IL-6 gene expression was NF-κB pathway. Conclusion: Collectively, our findings suggest that blockade of the IL-6 signaling pathway with anti-IL-6 receptor antibody tocilizumab might resensitize the chemoresistant cells to the current chemotherapeutics.
Collapse
Affiliation(s)
- Hassan Yousefi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H. Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Poursheikhani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Javadikooshesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Shahsavani
- Department of Physiology and Pathophysiology, Spinal Cord Research Center, University of Manitoba, Winnipeg, Canada
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Momeny M, Yousefi H, Eyvani H, Moghaddaskho F, Salehi A, Esmaeili F, Alishahi Z, Barghi F, Vaezijoze S, Shamsaiegahkani S, Zarrinrad G, Sankanian G, Sabourinejad Z, Hamzehlou S, Bashash D, Aboutorabi ES, Ghaffari P, Dehpour AR, Tavangar SM, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Blockade of nuclear factor-κB (NF-κB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol 2018; 99:1-9. [DOI: 10.1016/j.biocel.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/18/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
|
25
|
Khatami F, Tavangar SM. Genetic and Epigenetic of Medullary Thyroid Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:142-50. [PMID: 29126344 PMCID: PMC5889499 DOI: 10.22034/ibj.22.3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Medullary thyroid carcinoma (MTC) is an infrequent, calcitonin producing neuroendocrine tumor and initiates from the parafollicular C cells of the thyroid gland. Several genetic and epigenetic alterations are collaterally responsible for medullary thyroid carcinogenesis. In this review article, we shed light on all the genetic and epigenetic hallmarks of MTC. From the genetic perspective, RET, HRAS, and KRAS are the most important genes that are characterized in MTC. From the epigenetic perspective, Ras-association domain family member 1A, telomerase reverse transcriptase promoter methylations, overexpression of histone methyltransferases, EZH2 and SMYD3, and wide ranging increase and decrease in non-coding RNAs can be responsible for medullary thyroid carcinogenesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem 2018; 447:77-92. [PMID: 29417338 DOI: 10.1007/s11010-018-3294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Cancer remains a global health problem and approximately 1.7 million new cancer cases are diagnosed every year worldwide. Although diverse molecules are currently being explored as targets for cancer therapy the tumor treatment and therapy is highly tricky. Secondary messengers are important for hormone-mediated signaling pathway. Cyclic AMP (cAMP), a secondary messenger responsible for various physiological processes regulates cell metabolism by activating Protein kinase A (PKA) and by targeting exchange protein directly activated by cAMP (EPAC). EPAC is present in two isoforms EPAC1 and EPAC2, which exhibit different tissue distribution and is involved in GDP/GTP exchange along with activating Rap1- and Rap2-mediated signaling pathways. EPAC is also known for its dual role in cancer as pro- and anti-proliferative in addition to metastasis. Results after perturbing EPAC activity suggests its involvement in cancer cell migration, proliferation, and cytoskeleton remodeling which makes it a potential therapeutic target for cancer treatments.
Collapse
|
27
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
28
|
Khatami F, Tavangar SM. Current Diagnostic Status of Pheochromocytomaand Future Perspective: A Mini Review. IRANIAN JOURNAL OF PATHOLOGY 2017; 12. [PMID: 29531562 PMCID: PMC5835385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors. The current diagnostic tools are based on biochemistry and histopathology results, but heterogeneity of diagnostic markers, signs and symptoms of PCCs bring a lot of difficulties for these two current methods. Unfortunately, microscopic understanding of PCCs is not adequate for its confident prognosis and management. There are data linking specific genotypes of PCCs tumors to specific locations, typical biochemical phenotypes or future clinical behaviors. The detection of a germ-line mutation possibly can guide us to an early diagnosis, appropriate treatment, and regular surveillance with better prognosis for patients but also and their family members. Moreover, the latest discoveries in gene sequencing, circulating DNA (ctDNA) and circulating tumor cells (CTCs) will support the exact molecular pathogenesis of PCCs to provide an important basis for future PCCs managements.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Dept. of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Information: Dr. Seyed Mohammad Tavangar, Dept. of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran, Tel: +98 21 84902187, Fax: +98 21 88633078, E-mail address:
| |
Collapse
|