1
|
Orr KP, Diao J, Dey K, Hameed M, Dubajić M, Gilbert HL, Selby TA, Zelewski SJ, Han Y, Fitzsimmons MR, Roose B, Li P, Fan J, Jiang H, Briscoe J, Robinson IK, Stranks SD. Strain Heterogeneity and Extended Defects in Halide Perovskite Devices. ACS ENERGY LETTERS 2024; 9:3001-3011. [PMID: 38911532 PMCID: PMC11190982 DOI: 10.1021/acsenergylett.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Strain is an important property in halide perovskite semiconductors used for optoelectronic applications because of its ability to influence device efficiency and stability. However, descriptions of strain in these materials are generally limited to bulk averages of bare films, which miss important property-determining heterogeneities that occur on the nanoscale and at interfaces in multilayer device stacks. Here, we present three-dimensional nanoscale strain mapping using Bragg coherent diffraction imaging of individual grains in Cs0.1FA0.9Pb(I0.95Br0.05)3 and Cs0.15FA0.85SnI3 (FA = formamidinium) halide perovskite absorbers buried in full solar cell devices. We discover large local strains and striking intragrain and grain-to-grain strain heterogeneity, identifying distinct islands of tensile and compressive strain inside grains. Additionally, we directly image dislocations with surprising regularity in Cs0.15FA0.85SnI3 grains and find evidence for dislocation-induced antiphase boundary formation. Our results shine a rare light on the nanoscale strains in these materials in their technologically relevant device setting.
Collapse
Affiliation(s)
- Kieran
W. P. Orr
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Jiecheng Diao
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Krishanu Dey
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Madsar Hameed
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Miloš Dubajić
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Hayley L. Gilbert
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K.
| | - Thomas A. Selby
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Szymon J. Zelewski
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Yutong Han
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Melissa R. Fitzsimmons
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Bart Roose
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Peng Li
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, U.K.
| | - Jiadong Fan
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Huaidong Jiang
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Joe Briscoe
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Ian K. Robinson
- London
Centre
for Nanotechnology, University College London, London WC1E 6BT, U.K.
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11793, United States
| | - Samuel D. Stranks
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
2
|
Chatelier C, Atlan C, Dupraz M, Leake S, Li N, Schülli TU, Levi M, Rabkin E, Favre L, Labat S, Eymery J, Richard MI. Unveiling Core-Shell Structure Formation in a Ni 3Fe Nanoparticle with In Situ Multi-Bragg Coherent Diffraction Imaging. ACS NANO 2024; 18:13517-13527. [PMID: 38753950 DOI: 10.1021/acsnano.3c11534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm Ni3Fe nanoparticle, i.e., its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a Ni3Fe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.
Collapse
Affiliation(s)
- Corentin Chatelier
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Clément Atlan
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Maxime Dupraz
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Steven Leake
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Ni Li
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tobias U Schülli
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Mor Levi
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Luc Favre
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, F-13397 Marseille, France
| | - Stéphane Labat
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, F-13397 Marseille, France
| | - Joël Eymery
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
| | - Marie-Ingrid Richard
- Université Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 Rue des Martyrs, F-38000 Grenoble, France
- ESRF─The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
3
|
Burgmann S, Lid M, Johnsen H, Vedvik N, Haugen B, Provine J, van Helvoort A, Torgersen J. New avenues for residual stress analysis in ultrathin atomic layer deposited free-standing membranes through release of micro-cantilevers. Heliyon 2024; 10:e26420. [PMID: 38434070 PMCID: PMC10906182 DOI: 10.1016/j.heliyon.2024.e26420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The fabrication of thinnest, yet undeformed membrane structures with nanometer resolution is a prerequisite for a variety of Microelectromechanical systems (MEMS). However, functionally relevant thin films are susceptible to growth-generated stress. To tune the performance and reach large aspect ratios, knowledge of the intrinsic material properties is indispensable. Here, we present a new method for stress evaluation through releasing defined micro-cantilever segments by focused ion beam (FIB) milling from a predefined free-standing membrane structure. Thereby, the cantilever segment is allowed to equilibrate to a stress-released state through measurable strain in the form of a resulting radius of curvature. This radius can be back-calculated to the residual stress state. The method was tested on a 20 nm and 50 nm thick tunnel-like ALD Image 1 membrane structure, revealing a significant amount of residual stress with 866 MPa and 6104 MPa, respectively. Complementary finite element analysis to estimate the stress distribution in the structure showed a 97% and 90% agreement in out-of-plane deflection for the 20 nm and 50 nm membranes, respectively. This work reveals the possibilities of releasing entire membrane segments from thin film membranes with a significant amount of residual stress and to use the resulting bending behavior for evaluating stress and strain by measuring their deformation.
Collapse
Affiliation(s)
- S. Burgmann
- Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | - M.J. Lid
- Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | - H.J.D. Johnsen
- Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | - N.P. Vedvik
- Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | - B. Haugen
- Department of Mechanical and Industrial Engineering, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | | | - A.T.J. van Helvoort
- Department of Physics, NTNU, Trondheim, Norwegian University of Science and Technology, Norway
| | - J. Torgersen
- Chair of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Germany
| |
Collapse
|
4
|
Richard MI, Labat S, Dupraz M, Carnis J, Gao L, Texier M, Li N, Wu L, Hofmann JP, Levi M, Leake SJ, Lazarev S, Sprung M, Hensen EJM, Rabkin E, Thomas O. Anomalous Glide Plane in Platinum Nano- and Microcrystals. ACS NANO 2023; 17:6113-6120. [PMID: 36926832 DOI: 10.1021/acsnano.3c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
At the nanoscale, the properties of materials depend critically on the presence of crystal defects. However, imaging and characterizing the structure of defects in three dimensions inside a crystal remain a challenge. Here, by using Bragg coherent diffraction imaging, we observe an unexpected anomalous {110} glide plane in two Pt submicrometer crystals grown by very different processes and having very different morphologies. The structure of the defects (type, associated glide plane, and lattice displacement) is imaged in these faceted Pt crystals. Using this noninvasive technique, both plasticity and unusual defect behavior can be probed at the nanoscale.
Collapse
Affiliation(s)
- Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG/MEM/NRX, Grenoble 38054, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Stéphane Labat
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Maxime Dupraz
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
- Univ. Grenoble Alpes, CEA Grenoble, NRX, 17 Avenue des Martyrs 38000 Grenoble, France
| | - Jérôme Carnis
- Univ. Grenoble Alpes, CEA Grenoble, IRIG/MEM/NRX, Grenoble 38054, France
| | - Lu Gao
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michaël Texier
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Ni Li
- Univ. Grenoble Alpes, CEA Grenoble, NRX, 17 Avenue des Martyrs 38000 Grenoble, France
| | - Longfei Wu
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Mor Levi
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Steven J Leake
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Emiel J M Hensen
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Olivier Thomas
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| |
Collapse
|
5
|
Luo Y, Wu Y. Defect Engineering of Nanomaterials for Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1116. [PMID: 36986010 PMCID: PMC10057013 DOI: 10.3390/nano13061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Defect chemistry is a branch of materials science that deals with the study of the properties and behavior of defects in crystalline solids [...].
Collapse
Affiliation(s)
- Yang Luo
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yinghong Wu
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8008, Switzerland
| |
Collapse
|
6
|
Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography. Nat Commun 2021; 12:7059. [PMID: 34862390 PMCID: PMC8642407 DOI: 10.1038/s41467-021-27224-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Small ion-irradiation-induced defects can dramatically alter material properties and speed up degradation. Unfortunately, most of the defects irradiation creates are below the visibility limit of state-of-the-art microscopy. As such, our understanding of their impact is largely based on simulations with major unknowns. Here we present an x-ray crystalline microscopy approach, able to image with high sensitivity, nano-scale 3D resolution and extended field of view, the lattice strains and tilts in crystalline materials. Using this enhanced Bragg ptychography tool, we study the damage helium-ion-irradiation produces in tungsten, revealing a series of crystalline details in the 3D sample. Our results lead to the conclusions that few-atom-large 'invisible' defects are likely isotropic in orientation and homogeneously distributed. A partially defect-denuded region is observed close to a grain boundary. These findings open up exciting perspectives for the modelling of irradiation damage and the detailed analysis of crystalline properties in complex materials.
Collapse
|
7
|
Carnis J, Kirner F, Lapkin D, Sturm S, Kim YY, Baburin IA, Khubbutdinov R, Ignatenko A, Iashina E, Mistonov A, Steegemans T, Wieck T, Gemming T, Lubk A, Lazarev S, Sprung M, Vartanyants IA, Sturm EV. Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. NANOSCALE 2021; 13:10425-10435. [PMID: 34028473 DOI: 10.1039/d1nr01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
Collapse
Affiliation(s)
- Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Felizitas Kirner
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Sebastian Sturm
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ekaterina Iashina
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | - Alexander Mistonov
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | | | - Thomas Wieck
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Axel Lubk
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050 Tomsk, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Elena V Sturm
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Godard P. On the use of the scattering amplitude in coherent X-ray Bragg diffraction imaging. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Lens-less imaging of crystals with coherent X-ray diffraction offers some unique possibilities for strain-field characterization. It relies on numerically retrieving the phase of the scattering amplitude from a crystal illuminated with coherent X-rays. In practice, the algorithms encode this amplitude as a discrete Fourier transform of an effective or Bragg electron density. This short article suggests a detailed route from the classical expression of the (continuous) scattering amplitude to this discrete function. The case of a heterogeneous incident field is specifically detailed. Six assumptions are listed and quantitatively discussed when no such analysis was found in the literature. Details are provided for two of them: the fact that the structure factor varies in the vicinity of the probed reciprocal lattice vector, and the polarization factor, which is heterogeneous along the measured diffraction patterns. With progress in X-ray sources, data acquisition and analysis, it is believed that some approximations will prove inappropriate in the near future.
Collapse
|
9
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Yang D, Phillips NW, Song K, Harder RJ, Cha W, Hofmann F. Annealing of focused ion beam damage in gold microcrystals: an in situ Bragg coherent X-ray diffraction imaging study. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:550-565. [PMID: 33650568 PMCID: PMC7941296 DOI: 10.1107/s1600577520016264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380-410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.
Collapse
Affiliation(s)
- David Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Nicholas W. Phillips
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Kay Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Ross J. Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
11
|
Zhang W, Zhang K, Wang W, Chen Y. Detection of ion implantation in focused ion beam processing by scattering-type scanning near-field optical microscopy. OPTICS LETTERS 2021; 46:649-652. [PMID: 33528431 DOI: 10.1364/ol.409718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
We employed scattering-type scanning near-field optical microscopy (s-SNOM) to explore the implantation of gallium ions in a silicon substrate after focused ion beam (FIB) etching. Different ion doses were applied, and the s-SNOM amplitude image contrast between the processed and unprocessed regions was investigated. The results demonstrate that the contrast decreases along with the increase of the ion dose. A similar dependence of the residual gallium element concentration on the ion dose is found from the energy dispersive spectroscopy. Such comparisons imply that s-SNOM imaging is sensitive to the implanted ions. The s-SNOM aided analysis of FIB etching can benefit the fabrication optimization, especially when the processed materials' properties are of critical importance.
Collapse
|
12
|
Passos AR, Rochet A, Manente LM, Suzana AF, Harder R, Cha W, Meneau F. Three-dimensional strain dynamics govern the hysteresis in heterogeneous catalysis. Nat Commun 2020; 11:4733. [PMID: 32948780 PMCID: PMC7501851 DOI: 10.1038/s41467-020-18622-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding catalysts strain dynamic behaviours is crucial for the development of cost-effective, efficient, stable and long-lasting catalysts. Here, we reveal in situ three-dimensional strain evolution of single gold nanocrystals during a catalytic CO oxidation reaction under operando conditions with coherent X-ray diffractive imaging. We report direct observation of anisotropic strain dynamics at the nanoscale, where identically crystallographically-oriented facets are qualitatively differently affected by strain leading to preferential active sites formation. Interestingly, the single nanoparticle elastic energy landscape, which we map with attojoule precision, depends on heating versus cooling cycles. The hysteresis observed at the single particle level is following the normal/inverse hysteresis loops of the catalytic performances. This approach opens a powerful avenue for studying, at the single particle level, catalytic nanomaterials and deactivation processes under operando conditions that will enable profound insights into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Aline R Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Amélie Rochet
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Luiza M Manente
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Ana F Suzana
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
- Instituto de Química, UNESP, Rua Professor Francisco Degni, 14800-900, Araraquara, SP, Brazil
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Florian Meneau
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
13
|
Li N, Labat S, Leake SJ, Dupraz M, Carnis J, Cornelius TW, Beutier G, Verdier M, Favre-Nicolin V, Schülli TU, Thomas O, Eymery J, Richard MI. Mapping Inversion Domain Boundaries along Single GaN Wires with Bragg Coherent X-ray Imaging. ACS NANO 2020; 14:10305-10312. [PMID: 32806035 DOI: 10.1021/acsnano.0c03775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gallium nitride (GaN) is of technological importance for a wide variety of optoelectronic applications. Defects in GaN, like inversion domain boundaries (IDBs), significantly affect the electrical and optical properties of the material. We report, here, on the structural configurations of planar inversion domain boundaries inside n-doped GaN wires measured by Bragg coherent X-ray diffraction imaging. Different complex domain configurations are revealed along the wires with a 9 nm in-plane spatial resolution. We demonstrate that the IDBs change their direction of propagation along the wires, promoting Ga-terminated domains and stabilizing into {11̅00}, that is, m-planes. The atomic phase shift between the Ga- and N-terminated domains was extracted using phase-retrieval algorithms, revealing an evolution of the out-of-plane displacement (∼5 pm, at maximum) between inversion domains along the wires. This work provides an accurate inner view of planar defects inside small crystals.
Collapse
Affiliation(s)
- Ni Li
- Univiversité Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Stéphane Labat
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Steven J Leake
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Maxime Dupraz
- Univiversité Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jérôme Carnis
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas W Cornelius
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Guillaume Beutier
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Marc Verdier
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | | | - Tobias U Schülli
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olivier Thomas
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Joël Eymery
- Univiversité Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
| | - Marie-Ingrid Richard
- Univiversité Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, 17 rue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
14
|
Nanoscale Mapping of Heterogeneous Strain and Defects in Individual Magnetic Nanocrystals. CRYSTALS 2020. [DOI: 10.3390/cryst10080658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We map the three-dimensional strain heterogeneity within a single core-shell Ni nanoparticle using Bragg coherent diffractive imaging. We report the direct observation of both uniform displacements and strain within the crystalline core Ni region. We identify non-uniform displacements and dislocation morphologies across the core–shell interface, and within the outer shell at the nanoscale. By tracking individual dislocation lines in the outer shell region, and comparing the relative orientation between the Burgers vector and dislocation lines, we identify full and partial dislocations. The full dislocations are consistent with elasticity theory in the vicinity of a dislocation while the partial dislocations deviate from this theory. We utilize atomistic computations and Landau–Lifshitz–Gilbert simulation and density functional theory to confirm the equilibrium shape of the particle and the nature of the (111) displacement field obtained from Bragg coherent diffraction imaging (BCDI) experiments. This displacement field distribution within the core-region of the Ni nanoparticle provides a uniform distribution of magnetization in the core region. We observe that the absence of dislocations within the core-regions correlates with a uniform distribution of magnetization projections. Our findings suggest that the imaging of defects using BCDI could be of significant importance for giant magnetoresistance devices, like hard disk-drive read heads, where the presence of dislocations can affect magnetic domain wall pinning and coercivity.
Collapse
|
15
|
Maddali S, Li P, Pateras A, Timbie D, Delegan N, Crook AL, Lee H, Calvo-Almazan I, Sheyfer D, Cha W, Heremans FJ, Awschalom DD, Chamard V, Allain M, Hruszkewycz SO. General approaches for shear-correcting coordinate transformations in Bragg coherent diffraction imaging. Part I. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720001363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This two-part article series provides a generalized description of the scattering geometry of Bragg coherent diffraction imaging (BCDI) experiments, the shear distortion effects inherent in the 3D image obtained from presently used methods and strategies to mitigate this distortion. Part I starts from fundamental considerations to present the general real-space coordinate transformation required to correct this shear, in a compact operator formulation that easily lends itself to implementation with available software packages. Such a transformation, applied as a final post-processing step following phase retrieval, is crucial for arriving at an undistorted, correctly oriented and physically meaningful image of the 3D crystalline scatterer. As the relevance of BCDI grows in the field of materials characterization, the available sparse literature that addresses the geometric theory of BCDI and the subsequent analysis methods are generalized here. This geometrical aspect, specific to coherent Bragg diffraction and absent in 2D transmission CDI experiments, gains particular importance when it comes to spatially resolved characterization of 3D crystalline materials in a reliable nondestructive manner. This series of articles describes this theory, from the diffraction in Bragg geometry to the corrections needed to obtain a properly rendered digital image of the 3D scatterer. Part I of this series provides the experimental BCDI community with the general form of the 3D real-space distortions in the phase-retrieved object, along with the necessary post-retrieval correction method. Part II builds upon the geometric theory developed in Part I with the formalism to correct the shear distortions directly on an orthogonal grid within the phase-retrieval algorithm itself, allowing more physically realistic constraints to be applied. Taken together, Parts I and II provide the X-ray science community with a set of generalized BCDI shear-correction techniques crucial to the final rendering of a 3D crystalline scatterer and for the development of new BCDI methods and experiments.
Collapse
|
16
|
Clark RN, Burrows R, Patel R, Moore S, Hallam KR, Flewitt PE. Nanometre to micrometre length-scale techniques for characterising environmentally-assisted cracking: An appraisal. Heliyon 2020; 6:e03448. [PMID: 32190752 PMCID: PMC7068651 DOI: 10.1016/j.heliyon.2020.e03448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/13/2019] [Accepted: 02/14/2020] [Indexed: 11/26/2022] Open
Abstract
The appraisal is strongly focussed on challenges associated with the nuclear sector, however these are representative of what is generally encountered by a range of engineering applications. Ensuring structural integrity of key nuclear plant components is essential for both safe and economic operation. Structural integrity assessments require knowledge of the mechanical and physical properties of materials, together with an understanding of mechanisms that can limit the overall operating life. With improved mechanistic understanding comes the ability to develop predictive models of the service life of components. Such models often require parameters which can be provided only by characterisation of processes occurring in situ over a range of scales, with the sub-micrometre-scale being particularly important, but also challenging. This appraisal reviews the techniques currently available to characterise microstructural features at the nanometre to micrometre length-scale that can be used to elucidate mechanisms that lead to the early stages of environmentally-assisted crack formation and subsequent growth. Following an appraisal of the techniques and their application, there is a short discussion and consideration for future opportunities.
Collapse
Affiliation(s)
- Ronald N. Clark
- National Nuclear Laboratory Limited, 102B, Stonehouse Park, Sperry Way, Stonehouse, Gloucestershire, GL10 3UT, United Kingdom
| | - Robert Burrows
- National Nuclear Laboratory Limited, 102B, Stonehouse Park, Sperry Way, Stonehouse, Gloucestershire, GL10 3UT, United Kingdom
| | - Rajesh Patel
- National Nuclear Laboratory Limited, 102B, Stonehouse Park, Sperry Way, Stonehouse, Gloucestershire, GL10 3UT, United Kingdom
| | - Stacy Moore
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Keith R. Hallam
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Peter E.J. Flewitt
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
- University of Bristol, School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
17
|
Carnis J, Gao L, Labat S, Kim YY, Hofmann JP, Leake SJ, Schülli TU, Hensen EJM, Thomas O, Richard MI. Towards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: artefacts and sign convention in reconstructions. Sci Rep 2019; 9:17357. [PMID: 31758040 PMCID: PMC6874548 DOI: 10.1038/s41598-019-53774-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique to image the local displacement field and strain in nanocrystals, in three dimensions with nanometric spatial resolution. However, BCDI relies on both dataset collection and phase retrieval algorithms that can induce artefacts in the reconstruction. Phase retrieval algorithms are based on the fast Fourier transform (FFT). We demonstrate how to calculate the displacement field inside a nanocrystal from its reconstructed phase depending on the mathematical convention used for the FFT. We use numerical simulations to quantify the influence of experimentally unavoidable detector deficiencies such as blind areas or limited dynamic range as well as post-processing filtering on the reconstruction. We also propose a criterion for the isosurface determination of the object, based on the histogram of the reconstructed modulus. Finally, we study the capability of the phasing algorithm to quantitatively retrieve the surface strain (i.e., the strain of the surface voxels). This work emphasizes many aspects that have been neglected so far in BCDI, which need to be understood for a quantitative analysis of displacement and strain based on this technique. It concludes with the optimization of experimental parameters to improve throughput and to establish BCDI as a reliable 3D nano-imaging technique.
Collapse
Affiliation(s)
- Jérôme Carnis
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France.
- ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France.
| | - Lu Gao
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Stéphane Labat
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany
| | - Jan P Hofmann
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Steven J Leake
- ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Tobias U Schülli
- ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Emiel J M Hensen
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Olivier Thomas
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France
| | - Marie-Ingrid Richard
- Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France
- ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
18
|
Yang D, Phillips NW, Hofmann F. Mapping data between sample and detector conjugated spaces in Bragg coherent diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2055-2063. [PMID: 31721751 DOI: 10.1107/s160057751901302x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Bragg coherent X-ray diffraction imaging (BCDI) is a non-destructive, lensless method for 3D-resolved, nanoscale strain imaging in micro-crystals. A challenge, particularly for new users of the technique, is accurate mapping of experimental data, collected in the detector reciprocal space coordinate frame, to more convenient orthogonal coordinates, e.g. attached to the sample. This is particularly the case since different coordinate conventions are used at every BCDI beamline. The reconstruction algorithms and mapping scripts composed for individual beamlines are not readily interchangeable. To overcome this, a BCDI experiment simulation with a plugin script that converts all beamline angles to a universal, right-handed coordinate frame is introduced, making it possible to condense any beamline geometry into three rotation matrices. The simulation translates a user-specified 3D complex object to different BCDI-related coordinate frames. It also allows the generation of synthetic coherent diffraction data that can be inserted into any BCDI reconstruction algorithm to reconstruct the original user-specified object. Scripts are provided to map from sample space to detector conjugated space, detector conjugated space to sample space and detector conjugated space to detector conjugated space for a different reflection. This provides the reader with the basis for a flexible simulation tool kit that is easily adapted to different geometries. It is anticipated that this will find use in the generation of tailor-made supports for phasing of challenging data and exploration of novel geometries or data collection modalities.
Collapse
Affiliation(s)
- David Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Nicholas W Phillips
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
19
|
Garg V, Chou T, Liu A, De Marco A, Kamaliya B, Qiu S, Mote RG, Fu J. Weaving nanostructures with site-specific ion induced bidirectional bending. NANOSCALE ADVANCES 2019; 1:3067-3077. [PMID: 36133581 PMCID: PMC9418629 DOI: 10.1039/c9na00382g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/13/2023]
Abstract
Site-specific ion-irradiation is a promising tool fostering strain-engineering of freestanding nanostructures to realize 3D-configurations towards various functionalities. We first develop a novel approach of fabricating freestanding 3D silicon nanostructures by low dose ion-implantation followed by chemical-etching. The fabricated nanostructures can then be deformed bidirectionally by varying the local irradiation of kiloelectronvolt gallium ions. By further tuning the ion-dose and energy, various nanostructure configurations can be realized, thus extending its horizon to new functional 3D-nanostructures. It has been revealed that at higher-energies (∼30 kV), the nanostructures can exhibit two-stage bidirectional-bending in contrast to the bending towards the incident-ions at lower-energies (∼16), implying an effective transfer of kinetic-energy. Computational studies show that the spatial-distribution of implanted-ions, dislocated silicon atoms, has potentially contributed to the local development of stresses. Nanocharacterization confirms the formation of two distinguishable ion-irradiated and un-irradiated regions, while the smoothened morphology of the irradiated-surface suggested that the bending is also coupled with sputtering at higher ion-doses. The bending effects associated with local ion irradiation in contrast to global ion irradiation are presented, with the mechanism elucidated. Finally, weaving of nanostructures is demonstrated through strain-engineering for new nanoscale artefacts such as ultra-long fully-bent nanowires, nano-hooks, and nano-meshes. The aligned growth of bacterial-cells is observed on the fabricated nanowires, and a mesh based "bacterial-trap" for site-specific capture of bacterial cells is demonstrated emphasizing the versatile nature of the current approach.
Collapse
Affiliation(s)
- Vivek Garg
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical Engineering, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Tsengming Chou
- Laboratory of Multiscale Imaging, Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Amelia Liu
- Monash Centre for Electron Microscopy, Monash University Clayton VIC 3800 Australia
| | - Alex De Marco
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Bhaveshkumar Kamaliya
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
- Department Physics, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Shi Qiu
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Rakesh G Mote
- Department of Mechanical Engineering, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| |
Collapse
|
20
|
Ihli J, Clark JN, Kanwal N, Kim YY, Holden MA, Harder RJ, Tang CC, Ashbrook SE, Robinson IK, Meldrum FC. Visualization of the effect of additives on the nanostructures of individual bio-inspired calcite crystals. Chem Sci 2019; 10:1176-1185. [PMID: 30774916 PMCID: PMC6349071 DOI: 10.1039/c8sc03733g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Soluble additives provide a versatile strategy for controlling crystallization processes, enabling selection of properties including crystal sizes, morphologies, and structures. The additive species can also be incorporated within the crystal lattice, leading for example to enhanced mechanical properties. However, while many techniques are available for analyzing particle shape and structure, it remains challenging to characterize the structural inhomogeneities and defects introduced into individual crystals by these additives, where these govern many important material properties. Here, we exploit Bragg coherent diffraction imaging to visualize the effects of soluble additives on the internal structures of individual crystals on the nanoscale. Investigation of bio-inspired calcite crystals grown in the presence of lysine or magnesium ions reveals that while a single dislocation is observed in calcite crystals grown in the presence of lysine, magnesium ions generate complex strain patterns. Indeed, in addition to the expected homogeneous solid solution of Mg ions in the calcite lattice, we observe two zones comprising alternating lattice contractions and relaxation, where comparable alternating layers of high magnesium calcite have been observed in many magnesium calcite biominerals. Such insight into the structures of nanocomposite crystals will ultimately enable us to understand and control their properties.
Collapse
Affiliation(s)
- Johannes Ihli
- School of Chemistry , University of Leeds , Leeds LS2 9JT , UK . ;
| | - Jesse N Clark
- Stanford PULSE Institute , SLAC National Accelerator , Menlo Park , California 94025 , USA
| | - Nasima Kanwal
- School of Chemistry and EaStCHEM , University of St. Andrews , North Haugh , St. Andrews , KY16 9ST , UK
| | - Yi-Yeoun Kim
- School of Chemistry , University of Leeds , Leeds LS2 9JT , UK . ;
| | - Mark A Holden
- School of Chemistry , University of Leeds , Leeds LS2 9JT , UK . ;
| | - Ross J Harder
- Advanced Photon Source , Argonne , Illinois 60439 , USA
| | - Chiu C Tang
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , UK
| | - Sharon E Ashbrook
- School of Chemistry and EaStCHEM , University of St. Andrews , North Haugh , St. Andrews , KY16 9ST , UK
| | - Ian K Robinson
- London Centre for Nanotechnology , University College London , London WC1H 0AH , UK
- Condensed Matter Physics and Materials Science , Brookhaven National Lab. Upton , NY 11973-5000 , USA
| | - Fiona C Meldrum
- School of Chemistry , University of Leeds , Leeds LS2 9JT , UK . ;
| |
Collapse
|
21
|
Mordehai D, David O, Kositski R. Nucleation-Controlled Plasticity of Metallic Nanowires and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706710. [PMID: 29962014 DOI: 10.1002/adma.201706710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Nanowires and nanoparticles are envisioned as important elements of future technology and devices, owing to their unique mechanical properties. Metallic nanowires and nanoparticles demonstrate outstanding size-dependent strength since their deformation is dislocation nucleation-controlled. In this context, the recent experimental and computational studies of nucleation-controlled plasticity are reviewed. The underlying microstructural mechanisms that govern the strength of nanowires and the origin of their stochastic nature are also discussed. Nanoparticles, in which the stress state under compression is nonuniform, exhibit a shape-dependent strength. Perspectives on improved methods to study nucleation-controlled plasticity are discussed, as well the insights gained for microstructural-based design of mechanical properties at the nanoscale.
Collapse
Affiliation(s)
- Dan Mordehai
- Department of Mechanical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Omer David
- Department of Mechanical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Roman Kositski
- Department of Mechanical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| |
Collapse
|
22
|
Poulsen H, Cook P, Leemreize H, Pedersen A, Yildirim C, Kutsal M, Jakobsen A, Trujillo J, Ormstrup J, Detlefs C. Reciprocal space mapping and strain scanning using X-ray diffraction microscopy. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576718011378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Dark-field X-ray microscopy is a new full-field imaging technique for nondestructively mapping the structure of deeply embedded crystalline elements in three dimensions. Placing an objective in the diffracted beam generates a magnified projection image of a local volume. By placing a detector in the back focal plane, high-resolution reciprocal space maps are generated for the local volume. Geometrical optics is used to provide analytical expressions for the resolution and range of the reciprocal space maps and the associated field of view in the sample plane. To understand the effects of coherence a comparison is made with wavefront simulations using the fractional Fourier transform. Reciprocal space mapping is demonstrated experimentally at an X-ray energy of 15.6 keV. The resolution function exhibits suppressed streaks and an FWHM resolution in all directions of ΔQ/Q = 4 × 10−5 or better. It is demonstrated by simulations that scanning a square aperture in the back focal plane enables strain mapping with no loss in resolution to be combined with a spatial resolution of 100 nm.
Collapse
|
23
|
Shin J, Cornelius TW, Labat S, Lauraux F, Richard MI, Richter G, Blanchard NP, Gianola DS, Thomas O. In situ Bragg coherent X-ray diffraction during tensile testing of an individual Au nanowire. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576718004910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Systematic tensile tests were performed on single defect-free 〈110〉 Au nanowires grown by physical vapor deposition while simultaneously recording three-dimensional Bragg peaks using coherent X-rays. The trajectory of three-dimensional Bragg peaks in reciprocal space during tensile testing allowed for measurements of the evolution of strains and rotations of the nanowire, thus sensitively uncovering the full deformation geometry of the nanowire. The transition from elastic to plastic deformation is accompanied by rotations of the nanowire as quantified by analysis of the motion of Bragg peaks, showing the importance of boundary conditions in interpreting nanoscale mechanical deformations.
Collapse
|
24
|
Cherukara MJ, Schulmann DS, Sasikumar K, Arnold AJ, Chan H, Sadasivam S, Cha W, Maser J, Das S, Sankaranarayanan SKRS, Harder RJ. Three-Dimensional Integrated X-ray Diffraction Imaging of a Native Strain in Multi-Layered WSe 2. NANO LETTERS 2018; 18:1993-2000. [PMID: 29451799 DOI: 10.1021/acs.nanolett.7b05441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Emerging two-dimensional (2-D) materials such as transition-metal dichalcogenides show great promise as viable alternatives for semiconductor and optoelectronic devices that progress beyond silicon. Performance variability, reliability, and stochasticity in the measured transport properties represent some of the major challenges in such devices. Native strain arising from interfacial effects due to the presence of a substrate is believed to be a major contributing factor. A full three-dimensional (3-D) mapping of such native nanoscopic strain over micron length scales is highly desirable for gaining a fundamental understanding of interfacial effects but has largely remained elusive. Here, we employ coherent X-ray diffraction imaging to directly image and visualize in 3-D the native strain along the (002) direction in a typical multilayered (∼100-350 layers) 2-D dichalcogenide material (WSe2) on silicon substrate. We observe significant localized strains of ∼0.2% along the out-of-plane direction. Experimentally informed continuum models built from X-ray reconstructions trace the origin of these strains to localized nonuniform contact with the substrate (accentuated by nanometer scale asperities, i.e., surface roughness or contaminants); the mechanically exfoliated stresses and strains are localized to the contact region with the maximum strain near surface asperities being more or less independent of the number of layers. Machine-learned multimillion atomistic models show that the strain effects gain in prominence as we approach a few- to single-monolayer limit. First-principles calculations show a significant band gap shift of up to 125 meV per percent of strain. Finally, we measure the performance of multiple WSe2 transistors fabricated on the same flake; a significant variability in threshold voltage and the "off" current setting is observed among the various devices, which is attributed in part to substrate-induced localized strain. Our integrated approach has broad implications for the direct imaging and quantification of interfacial effects in devices based on layered materials or heterostructures.
Collapse
|
25
|
Park J, Mangeri J, Zhang Q, Yusuf MH, Pateras A, Dawber M, Holt MV, Heinonen OG, Nakhmanson S, Evans PG. Domain alignment within ferroelectric/dielectric PbTiO 3/SrTiO 3 superlattice nanostructures. NANOSCALE 2018; 10:3262-3271. [PMID: 29384166 DOI: 10.1039/c7nr07203a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.
Collapse
Affiliation(s)
- Joonkyu Park
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dupraz M, Beutier G, Cornelius TW, Parry G, Ren Z, Labat S, Richard MI, Chahine GA, Kovalenko O, De Boissieu M, Rabkin E, Verdier M, Thomas O. 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal. NANO LETTERS 2017; 17:6696-6701. [PMID: 29052998 DOI: 10.1021/acs.nanolett.7b02680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.
Collapse
Affiliation(s)
- M Dupraz
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - G Beutier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - T W Cornelius
- Aix Marseille Université, Université de Toulon, CNRS , IM2NP UMR 7334, F-13397 Marseille Cedex 20, France
| | - G Parry
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - Z Ren
- Aix Marseille Université, Université de Toulon, CNRS , IM2NP UMR 7334, F-13397 Marseille Cedex 20, France
| | - S Labat
- Aix Marseille Université, Université de Toulon, CNRS , IM2NP UMR 7334, F-13397 Marseille Cedex 20, France
| | - M-I Richard
- Aix Marseille Université, Université de Toulon, CNRS , IM2NP UMR 7334, F-13397 Marseille Cedex 20, France
- ID01/ESRF , 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France
| | - G A Chahine
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - O Kovalenko
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | - M De Boissieu
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - E Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | - M Verdier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , F-38000 Grenoble, France
| | - O Thomas
- Aix Marseille Université, Université de Toulon, CNRS , IM2NP UMR 7334, F-13397 Marseille Cedex 20, France
| |
Collapse
|
27
|
Kim JW, Ulvestad A, Manna S, Harder R, Fullerton EE, Shpyrko OG. 3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle. NANOSCALE 2017; 9:13153-13158. [PMID: 28850142 DOI: 10.1039/c7nr05028c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. We investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles is an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.
Collapse
Affiliation(s)
- Jong Woo Kim
- Department of Physics, University of California-San Diego, La Jolla, California 92093-0319, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Designing functionality in perovskite thin films using ion implantation techniques: Assessment and insights from first-principles calculations. Sci Rep 2017; 7:11166. [PMID: 28894129 PMCID: PMC5593984 DOI: 10.1038/s41598-017-11158-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Recent experimental findings have demonstrated that low doses of low energy helium ions can be used to tailor the structural and electronic properties of single crystal films. These initial studies have shown that changes to lattice expansion were proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. Here, we study SrRuO3 to provide a comprehensive examination of the impact of common defects on structural and electronic properties. We found that, while interstitial He can modify the properties, a dose significantly larger than those reported in experimental studies would be required. Our study suggests that true origin of the observed changes is from combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials.
Collapse
|
29
|
Hofmann F, Phillips NW, Harder RJ, Liu W, Clark JN, Robinson IK, Abbey B. Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1048-1055. [PMID: 28862628 PMCID: PMC5582624 DOI: 10.1107/s1600577517009183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/19/2017] [Indexed: 05/30/2023]
Abstract
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
Collapse
Affiliation(s)
- Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX2 7TL, United Kingdom
| | - Nicholas W. Phillips
- Department of Chemistry and Physics, La Trobe University, Victoria, 3086, Australia
- CSIRO Manufacturing Flagship, Parkville, Victoria, 3052, Australia
| | - Ross J. Harder
- Advanced Photon Source, Argonne National Lab, Argonne, IL, 60439, USA
| | | | - Jesse N. Clark
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ian K. Robinson
- Brookhaven National Laboratory, 734 Brookhaven Avenue, Upton, NY, 11973, USA
| | - Brian Abbey
- Department of Chemistry and Physics, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
30
|
Ulvestad A, Nashed Y, Beutier G, Verdier M, Hruszkewycz SO, Dupraz M. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging. Sci Rep 2017; 7:9920. [PMID: 28855571 PMCID: PMC5577107 DOI: 10.1038/s41598-017-09582-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022] Open
Abstract
Crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imaging defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a priori knowledge.
Collapse
Affiliation(s)
- A Ulvestad
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA.
| | - Y Nashed
- Mathematics and Computer Science, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - G Beutier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000, Grenoble, France
| | - M Verdier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000, Grenoble, France
| | - S O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - M Dupraz
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|