1
|
Poirier A, Fertahi S, Hamiach H, Tayibi S, Elhaissoufi W, Arji M, Zeroual Y, Raihane M, Bargaz A, Barakat A. Bio-based polymers and biochar materials formulation derived from lignocellulosic biomass for controlled release phosphorus fertilizers. Int J Biol Macromol 2025; 304:140255. [PMID: 39892553 DOI: 10.1016/j.ijbiomac.2025.140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
The use of biochar is an interesting alternative to control release of P in soil and efficient use by plants. In this study, a new-coated slow-release P was developed by coating triple superphosphate (TSP) using different biochars (BC) and carboxymethyl cellulose (CMC). This study employs an integrated lignocellulosic biorefinery methodology and circular bioeconomy concept, utilizing a cellulose derivative and biochar produced from macroalgal residues (BCA) and olive pomace (BCO). The study explores the impact of integrating these biochars into CMC matrix as coating materials. The findings demonstrated that the origin of biochar had an effect on the surface and mechanical attributes of the composites. Introducing biochar modified the mechanical proprieties, alongside an increase in the contact angle. However, the attrition of coated TSP seems to be high with high biochar content. An increase in water absorption was also observed with formulations containing more biochar. The release tests showed that the P release decreased up to 67 %, 78 % and 82 % within 30 days with CMC coatings in presence of BCO, BCV and BCA, respectively compared to 100 % with uncoated TSP fertilizer. However, no significant difference on P release was observed when varying the biochar content from 10 to 30 %.
Collapse
Affiliation(s)
- Adèle Poirier
- IATE, University of Montpellier, INRAE, Montpellier Agro Institute, 2, Place Pierre Viala, 34060 Montpellier, France
| | - Saloua Fertahi
- Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Houda Hamiach
- IATE, University of Montpellier, INRAE, Montpellier Agro Institute, 2, Place Pierre Viala, 34060 Montpellier, France; IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University, BP 549. 40000 Marrakech, Morocco
| | - Saida Tayibi
- Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Wissal Elhaissoufi
- Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Arji
- OCP Group, Jorf Lasfar Industrial Complex, El Jadida, Morocco
| | - Youssef Zeroual
- OCP Group, Jorf Lasfar Industrial Complex, El Jadida, Morocco
| | - Mustapha Raihane
- Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150 Ben Guerir, Morocco; IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University, BP 549. 40000 Marrakech, Morocco
| | - Adnane Bargaz
- Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Abdellatif Barakat
- IATE, University of Montpellier, INRAE, Montpellier Agro Institute, 2, Place Pierre Viala, 34060 Montpellier, France.
| |
Collapse
|
2
|
Ahmed N, Tu P, Deng L, Chachar S, Chachar Z, Deng L. Optimizing the dual role of biochar for phosphorus availability and arsenic immobilization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177810. [PMID: 39616926 DOI: 10.1016/j.scitotenv.2024.177810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration. Biochar enhances P availability by reducing fixation, stimulating P-solubilizing microorganisms, and gradually releasing the adsorbed P. Specific biochars, such as Mg-modified and La-modified types, demonstrate high P adsorption capacities, reaching up to 263 mg/g, while cerium and iron-modified biochars show As adsorption efficiencies up to 99 % under certain conditions. Biochar's surface functional groups are essential for P and As adsorption through mechanisms such as surface adsorption, ligand exchange, and inner-sphere complexation. The competitive adsorption between P and As is influenced by pH, biochar modification, and co-existing anions. Under acidic conditions, As shows a higher affinity for biochar, forming stable complexes with metal oxides like iron and aluminum. Biochars modified with calcium, magnesium, lanthanum, zinc, cerium, and iron demonstrate enhanced adsorption capacities. In neutral to alkaline conditions, calcium- and magnesium-modified biochars benefit P retention, while iron-modified biochar is preferable for As adsorption. Additionally, biochar promotes microbial activity and enzymatic processes that facilitate As transformation and P mineralization, enhancing overall soil health. These findings underscore biochar's dual role in increasing nutrient availability and reducing contaminant risks, making it a valuable tool for sustainable agriculture. Field-scale applications should be prioritized in future research to optimize biochar's impact on soil fertility and environmental remediation.
Collapse
Affiliation(s)
- Nazir Ahmed
- South China Agricultural University, Guangzhou 510642, China; College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lansheng Deng
- South China Agricultural University, Guangzhou 510642, China
| | - Sadaruddin Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lifang Deng
- South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Thirumurugan NK, Velu G, Murugaiyan S, Maduraimuthu D, Ponnuraj S, D J S, Subramanian KS. Nano-biofertilizers: utilizing nanopolymers as coating matrix-a comprehensive review. Biofabrication 2024; 17:012007. [PMID: 39569883 DOI: 10.1088/1758-5090/ad94a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
In modern agriculture, nanotechnology was recognized as a potentially transformative innovation. Nanopolymers as coating matrix in nano-biofertilizer has a massive impact on agricultural productivity. The integration of nanotechnology with biofertilizers has led to the creation of nano-biofertilizer formulations that enhance nutrient delivery, improve plant growth, and increase resistance to environmental stress. Nanopolymers, both synthetic and biogenic, including chitosan, cellulose, gelatin, sodium alginate, starch, and polyvinyl alcohol, are utilized as encapsulating materials. They are effective in ensuring controlled nutrient release and shielding beneficial microorganisms from external environmental conditions. Studies indicate that nano-biofertilizers improve soil quality, raise crop yields, and reduce the usage of chemical fertilizers to enhance sustainable agricultural practices. The review also addresses the microbial encapsulation methodology, release kinetics, phytotoxicity, challenges and future prospects of nano-biofertilizer technology, including nanoparticle-bacteria interaction, scalability, and regulatory considerations. This paper elaborates the potential and limitations of nano-biofertilizers, providing insights for future advancements in the agriculture field.
Collapse
Affiliation(s)
- Navin Kumar Thirumurugan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Gomathi Velu
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthilkumar Murugaiyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | | | - Sathyamoorthy Ponnuraj
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sharmila D J
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - K S Subramanian
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
4
|
Xiang A, Li Y, Hu T, Liu K. Synthesis and mechanism of Mg/Al layered double oxides-silica nanocomposites for sustainable multi-nutrient delivery in agricultural applications. J Control Release 2024; 376:816-828. [PMID: 39490536 DOI: 10.1016/j.jconrel.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Potassium (K), urea (N), phosphate (P), and selenite (Se) are widely used in modern agriculture for improvement of crop yield and quality. However, traditional fertilizer suffers from poor fertilizer utilization efficiency and noncontrollable slow-release behavior. To improve nutrient utilization, we developed a layered double oxides-silica (LDO@Si) based on calcined Mg/Al layered double hydroxide-silica nanocomposites (LDH@Si), for slow release of K, N, P, and Se to crops. In this study, SEM, XRD, FT-IR, XPS, BET, and TGA were employed to analyze the structure, morphology, and microstructures of the samples. Results show that LDH@Si successfully transforms into LDO@Si after calcination, where LDO is mainly connected to silica via M-O-Si bonds. Furthermore, after K, P, and Se loading, the LDH@Si structure was successfully restored, indicating that phosphate and selenite ions have been effectively embedded in the inner layer of LDH. K ions are firmly fixed to the material surface via M-O-K bonds. After urea introducing, the pore structure of the material was completely filled, and excess urea formed a urea layer on the surface of the material. LDO@Si can continuously release nutrients into water through diffusion and LDO@Si dissolution for up to 240 h. Compared with chemical fertilizers, LDO@Si based slow-release fertilizer (CRSF2) significantly improves plant fresh weight, dry weight and chlorophyll content, increasing them by 13.91 %-23.13 %, 18.20 %-34.40 % and 2.24 %-14.81 %, respectively. Furthermore, a modest increase in the levels of nutrients N, P, and K is observed, while the Se concentration in plants treated with CRSF2 demonstrates significant enhancements of 9.57 %, 72.49 %, and 50.97 % compared to control treatments. These results illustrate the potential agricultural application of LDO@Si as a slow-release fertilizer for improving crop yields while minimizing the required amount of fertilizer.
Collapse
Affiliation(s)
- Aihua Xiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Yifan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Tuanliu Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China.
| |
Collapse
|
5
|
Aikpokpodion PE, Hsiao BS, Dimkpa CO. Mitigation of Nitrogen Losses in a Plant-Soil System through Incorporation of Nanocellulose and Zinc-Modified Nanocellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17295-17305. [PMID: 39073884 DOI: 10.1021/acs.jafc.4c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Most nitrogen (N) applied to plants as fertilizer is lost through leaching. Here, nanocellulose was used in mitigating N leaching loss. Lettuce-cropped soil was treated with unmodified or Zn-modified nanocellulose (1-2% by wt) in combination with NPK, compared with urea and NPK-only treatments. Consecutive leaching, plant growth, plant N uptake, and soil nitrogen retention were assessed. Nanocellulose + NPK significantly (p ≤ 0.05) reduced N leaching, compared with urea and NPK-only. 1-and-2 wt % nanocellulose, as well as Zn-modified 1-and-2 wt % nanocellulose, reduced N leaching by 45, 38, 39, and 49% compared with urea and by 43, 36, 37, and 47% compared with NPK-only, respectively. Nitrogen leached mainly as NO3- (98.4%). Compared with urea and NPK, lettuce shoot mass was significantly (p ≤ 0.05) increased by 30-42% and by 44-57%, respectively, by all nanocellulose treatments, except for the Zn-modified 1 wt % nanocellulose. Leached N negatively correlated to biomass yield. Soil N retention was enhanced by the pristine and Zn-modified nanocelluloses between 27 and 94%. Demonstrably, nanocellulose can be utilized for mitigating N loss in soil and supporting crop production, resource management, and environmental sustainability.
Collapse
Affiliation(s)
- Paul E Aikpokpodion
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, Nallusamy S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172533. [PMID: 38649050 DOI: 10.1016/j.scitotenv.2024.172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.
Collapse
Affiliation(s)
- Cheran Easwaran
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Sharmila Rahale Christopher
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Gokulakrishnan Moorthy
- Indian Council of Agricultural Research - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Raju Marimuthu
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, 641003, India
| | - Vanitha Koothan
- Department of Fruit Science, HC& RI, Tamil Nadu Agricultural University, 641003, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, 641003, India
| |
Collapse
|
7
|
Murad S, Ahmad M, Hussain A, Ali S, Al-Ansari N, Mattar MA. Efficacy of DAP coated with bacterial strains and their metabolites for soil phosphorus availability and maize growth. Sci Rep 2024; 14:11389. [PMID: 38762518 PMCID: PMC11102545 DOI: 10.1038/s41598-024-61817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.
Collapse
Affiliation(s)
- Sadia Murad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
8
|
Kumari P, Kumari N, Mohan C, Chinglenthoiba C, Amesho KTT. Environmentally benign approach to formulate nanoclay/starch hydrogel for controlled release of zinc and its application in seed coating of Oryza Sativa plant. Int J Biol Macromol 2024; 257:128278. [PMID: 38029920 DOI: 10.1016/j.ijbiomac.2023.128278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Improper use of conventional fertilizers has been linked to adverse effects on soil nutrient levels. To mitigate the negative impact of surface feeding fertilizers and reduce environmental pollution, a new type of seed coating material has been developed to provide nutrients in close proximity to the growing seed. In this study, a biodegradable seed coating film encapsulating micronutrients was fabricated by incorporating montmorillonite into a starch matrix using the melt processing technique. The dispersion of montmorillonite within the starch matrix was examined using X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal gravimetric analysis (TGA). The results revealed polar interactions among starch, silicate layers, and the hydrogel. The XRD analysis demonstrated a shift in the diffraction peak (001) of the Zinc/montmorillonite/starch/glycerol nanocomposite film from 6.2° to 4.9°, indicating the successful intercalation of Zinc, starch, and glycerol. Furthermore, the inclusion of nanoclay improved the thermal stability of the resulting polymer composite and enhanced its ion exchange capacity, water retention, and micronutrient retention. The time-dependent release of zinc micronutrient from the montmorillonite/starch/glycerol composite film was investigated in Zn-deficient soil extract over a 20-day period. The composite film demonstrated extended release behavior of Zn2+. Subsequently, rice seeds were coated with the zinc-containing composite film using a dip-coating method, and their performance in Zn-deficient soil was evaluated. The results indicated that zinc-coated seeds exhibited improved germination percentage, vegetative growth, and yield compared to uncoated seeds.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Chemistry, Shivaji College, University of Delhi, India
| | - Neeraj Kumari
- Department of Chemistry, SBAS, K.R. Mangalam University, Gurugram 122103, India
| | - Chandra Mohan
- Department of Chemistry, SBAS, K.R. Mangalam University, Gurugram 122103, India.
| | - Chingakham Chinglenthoiba
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| |
Collapse
|
9
|
Miguel-Rojas C, Pérez-de-Luque A. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerg Top Life Sci 2023; 7:229-238. [PMID: 37921102 PMCID: PMC10754331 DOI: 10.1042/etls20230070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
10
|
Jenkins SN, Middleton JA, Huang Z, Mickan BS, Andersen MO, Wheat L, Waite IS, Abbott LK. Combining frass and fatty acid co-products derived from Black soldier fly larvae farming shows potential as a slow release fertiliser. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165371. [PMID: 37422234 DOI: 10.1016/j.scitotenv.2023.165371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Use of black soldier fly larvae (BSFL) to process large volumes of organic waste is an emerging industry to produce protein. A co-product of this industry, the larval faeces (frass), has potential to be used as an organic fertiliser in a circular economy. However, BSFL frass has a high ammonium (N-NH4+) content which could result in nitrogen (N) loss following its application to land. One solution is to process the frass by combining it with solid fatty acids (FA) that have previously been used to manufacture slow-release inorganic fertilisers. We investigated the slow-releasing effect of N after combining BSFL frass with three FAs - lauric, myristic and stearic acid. Soil was amended with the three forms of FA processed (FA-P) frass, unprocessed frass or a control and incubated for 28 days. The impact of treatments on soil properties and soil bacterial communities were characterised during the incubation. Lower N-NH4+ concentrations occurred in soil treated with FA-P frass compared to unprocessed frass, and N-NH4+ release was slowest for lauric acid processed frass. Initially, all frass treatments caused a large shift in the soil bacterial community towards a dominance of fast-growing r-strategists that were correlated with increased organic carbon levels. FA-P frass appeared to enhance the immobilisation of N-NH4+ (from frass) by diverting it into microbial biomass. Unprocessed and stearic acid processed frass became enriched by slow-growing K-strategist bacteria at the latter stages of the incubation. Consequently, when frass was combined with FAs, FA chain length played an important role in regulating the composition of r-/K- strategists in soil and N and carbon cycling. Modifying frass with FAs could be developed into a slow release fertiliser leading to reduced soil N loss, improved fertiliser use efficiency, increased profitability and lower production costs.
Collapse
Affiliation(s)
- Sasha N Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia.
| | - Jen A Middleton
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - ZhouDa Huang
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Morten O Andersen
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia; The Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luke Wheat
- Future Green Solutions, Moresby, WA 6530, Australia
| | - Ian S Waite
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Lynette K Abbott
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
11
|
Srivastava K, Mickan BS, O'Connor J, Gurung SK, Moheimani NR, Jenkins SN. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118392. [PMID: 37384987 DOI: 10.1016/j.jenvman.2023.118392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
Utilisation of microalgae to extract nutrients from the effluent of anaerobic digestion of food waste is an emerging technology. A by-product of this process is the microalgal biomass which has potential to be used as an organic bio-fertilizer. However, microalgal biomass are rapidly mineralized when applied to soil which may result in N loss. One solution is to emulsify microalgal biomass with lauric acid (LA) to delay the release of mineral N. This study aimed to investigate whether combining LA with microalgae to develop a new fertilizer product with a controlled release function of mineral N when applied to soil, and any potential impacts the bacterial community structure and activity. The treatments were applied to soil emulsified with LA and were combined with either microalgae or urea at rates of 0%, 12.5%, 25% and 50% LA, untreated microalgae or urea and unamended control were incubated at 25 °C and 40% water holding capacity for 28 days. Quantification of soil chemistry (NH4+-N, NO3--N, pH and EC), microbial biomass carbon, CO2 production and bacterial diversity were characterised at 0, 1, 3, 7, 14 and 28 days. The NH4+-N and NO3--N concentration decreased with increasing rate of LA combined microalgae indicating that both N mineralization and nitrification were impacted. As a function of time, NH4+-N concentration increased up to 7 days for the microalgae at lower rates of LA, and then slowly decreased for 14 and 28 days, with an inverse relationship with soil NO3-N. Aligning with soil chemistry, an observed decrease in the predicted nitrification genes amoA·amoB and relative abundance of ammonia oxidizing bacteria (Nitrosomonadaceae) and nitrifying bacteria (Nitrospiraceae) with an increasing rate of LA with microalgae provides further support for possible inhibition of nitrification. The MBC and CO2 production was higher in the soil amended with increasing rates of LA combined microalgae and there was an increase in the relative abundance of fast-growing heterotrophs. Treating microalgae by emulsification with LA has the potential to control the release of N by increasing immobilization over nitrification and therefore it might be possible to engineer microalgae to match plant nutrient growth requirements whilst recovering waste from waste resources.
Collapse
Affiliation(s)
- Kautilya Srivastava
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA, 6164, Australia.
| | - James O'Connor
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Sun Kumar Gurung
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Navid R Moheimani
- Algae R&D Centre, Discipline of Environmental and Conservation Sciences, Murdoch University, WA, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| |
Collapse
|
12
|
Ramirez-Gil JG, Lopera AA, Garcia C. Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon 2023; 9:e18658. [PMID: 37576330 PMCID: PMC10412774 DOI: 10.1016/j.heliyon.2023.e18658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
The avocado cv. Hass is one of the most dynamic fruits in the world and is of particular significance in tropical areas, where climate variability phenomena have a high impact on productivity and sustainability. Nanotechnology-based tools could be an alternative to mitigate and/or adapt plants to these phenomena. Our approach was based on identifying changes in temperature and precipitation associated with climate variability in avocado areas in Colombia and proposing mitigation strategies based on the use of nanotechnology. This study had two objectives: (i) to identify variations in temperature and precipitation in avocado-producing areas in Colombia and (ii) to evaluate the effect of calcium phosphate nanoparticles (nano CP) as an alternative to reduce stress in avocados under simulate climatic variability condition. Climatic clusters were determined based on the spatial K-means method and with the climatic temporal series data (1981-2020), a time series analysis we carried out. Later changes in each cluster were simulated in growth chambers, evaluating physiological and developmental responses in avocado seedlings subjected to nanoCaP after adjusting the application form and dose. XRD diffraction shows that the calcium phosphate phases obtained by solution combustion correspond to a mixture of hydroxyapatite and witocklite nanoparticles with irregular morphologies and particle sizes of 100 nm. Three clusters explained ∼90% of the climate variation, with increases and decreases in temperature and precipitation in the range of 1-1.4 °C and 4.1-7.3% respectively. The best-fitted time series models were of stationary autoregressive integrated moving averages (SARIMA). The avocado seedlings had differential responses (P<0.05) depending on the clusters, with a decrease in physiological behavior and development between 10 and 35%. Additionally, the nanoCaP reduced the climatic stress (P< 0.05) in a range between 10 and 22.5%. This study identified the negative effect of climate variability on avocado seedlings and how nanoCaP can mitigate these phenomena.
Collapse
Affiliation(s)
- Joaquin Guillermo Ramirez-Gil
- Universidad Nacional de Colombia Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Colombia
- Laboratorio de Agrocomputación y Análisis epidemiológico, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alex A. Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Km 9 vía Valledupar La Paz, La Paz 202010, Colombia
| | - C. Garcia
- Universidad Nacional de Colombia, Sede Medellin, Carrera 65 # 59A-100, Medellín 050034, Colombia
| |
Collapse
|
13
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
14
|
Medha I, Chandra S, Bhattacharya J, Samal B, Vanapalli KR. Development of Rice Straw-derived Biochar-Bentonite Composite and its Application for in situ Sequestration of Ammonium and Phosphate Ions in the Degraded Mine Soil. ENVIRONMENTAL MANAGEMENT 2023; 71:1065-1086. [PMID: 36599975 DOI: 10.1007/s00267-022-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nutrient pollution has a diverse impact on the environment and human health. The presence of nutrients, such as ammonium and phosphate, is ubiquitous in the environment due to their extensive use in agricultural land and leaching through non-point sources. In this context, biochar-based composites could play an essential role in improving the soil's nutrient retention capacity. The present study aims to develop bentonite-biochar composites (BNT@BC 400 and 600) and utilize them as an ameliorating material in the coal mine degraded soil to reduce the leaching of ammonium and phosphate ions. The bentonite-biochar composite (BNT@BC 400 and 600) was synthesized using the pristine rice straw-derived biochar using the solvothermal method. The biochar was produced at two different pyrolytic temperatures, 400 °C and 600 °C, and denoted as BC 400 and 600, respectively. Hence, the bentonite-biochar composite was denoted as BNT@BC 400 and 600. The BNT@BC 400 and 600 were characterized using the elemental, proximate, SEM, XRD, and FTIR analysis. Subsequently, the BNT@BC composites were evaluated for the adsorptive removal of NH4+ and PO43- ions using batch adsorption and column leaching studies. In the soil columns, the BNT@BC 400 and 600 were mixed with the soil at two different application rates, viz. 1 and 2.5% (w/w). The leaching characteristics data were fitted using three different fixed-bed models to predict the maximum adsorption capacity of the amended soil columns and the dominant mechanism of adsorption. Results indicated that the BNT@BC 600 showed the maximum adsorption capacity of 33.77 and 64.23 mg g-1 for the adsorption of NH4+ and PO43- ions, respectively. The dominant adsorption mechanisms in the aqueous solution were the electrostatic attraction, complexation, ion exchange, and precipitation processes. In the soil columns, the sorption of NH4+ and PO43- ions was governed by diffusive mass transfer and electrostatic interaction. Findings of the study indicated that incorporating the BNT@BC composite in the soil can significantly reduce the leaching of the NH4+ and PO43- ions and increase the overall soil fertility.
Collapse
Affiliation(s)
- Isha Medha
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Vignan's Institute of Information Technology (A), Duvvada, Visakhapatnam, Andhra Pradesh, 530049, India
| | - Subhash Chandra
- Department of Civil Engineering, GITAM School of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Jayanta Bhattacharya
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Zelence Industries Private Limited, Kharagpur, West Bengal, 721302, India.
| | - Biswajit Samal
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aziwal, Mizoram, 796012, India
| |
Collapse
|
15
|
Nandini B, Mawale KS, Giridhar P. Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech 2023; 13:73. [PMID: 36748014 PMCID: PMC9898490 DOI: 10.1007/s13205-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern epoch, nanotechnology took forward the agriculture and food industry with new tools that promise to increase food production sustainably. It also anticipated that it would become a driving economic force shortly. Nanotechnology has the potential to reduce agricultural inputs, enrich the soil by absorbing nutrients, manage plant diseases, and detect diseases. The aim of the present review is to cover the potential aspects of nanoscience and its trend-setting appliances in modern agriculture and food production. This review focuses on the impact of various nanomaterials on plant health to improve agricultural production and its cooperative approach to food production. Nanotechnology has great potential compared to conventional approaches. The appealing path of nanotrends in the farming sector raises hopes and illuminates the route of innovative technologies to overcome various diseases in plants with an enhanced yield to meet the growing global population's need for food security.
Collapse
Affiliation(s)
- Boregowda Nandini
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| | - Kiran S. Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| |
Collapse
|
16
|
Motloung MP, Mofokeng TG, Ray SS. Effects of urea loading on soil biodegradation properties of melt‐processed polycaprolactone‐based composites for potential application in agriculture. J Appl Polym Sci 2022. [DOI: 10.1002/app.53505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
17
|
Giroto AS, do Valle SF, Guimarães GGF, Wuyts N, Ohrem B, Jablonowski ND, Ribeiro C, Mattoso LHC. Zinc loading in urea-formaldehyde nanocomposites increases nitrogen and zinc micronutrient fertilization efficiencies in poor sand substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156688. [PMID: 35716738 DOI: 10.1016/j.scitotenv.2022.156688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Agricultural output needs significant increases to feed the growing population. Fertilizers are essential for plant production systems, with nitrogen (N) being the most limiting nutrient for plant growth. It is commonly supplied to crops as urea. Still, due to volatilization, up to 50 % of the total N application is lost. Slow or controlled release fertilizers are being developed to reduce these losses. The co-application of zinc (Zn) as a micronutrient can increase N absorption. Thus, we hypothesize that the controlled delivery of both nutrients (N and Zn) in an integrated system can improve uptake efficiency. Here we demonstrate an optimized fertilizer nanocomposite based on urea:urea-formaldehyde matrix loaded with ZnSO4 or ZnO. This nanocomposite effectively stimulates maize development, with consequent adequate N uptake, in an extreme condition - a very nutrient-poor sand substrate. Our results indicate that the Zn co-application is beneficial for plant development. However, there were advantages for ZnO due to its high Zn content. We discuss that the dispersion favors the Zn delivery as the nanoparticulated oxide in the matrix. Concerning maize development, we found that root morphology is altered in the presence of the fertilizer nanocomposite. Increased root length and surface area may improve soil nutrient uptake, potentially accompanied by increased root exudation of essential compounds for N release from the composite structure.
Collapse
Affiliation(s)
- Amanda S Giroto
- Embrapa Instrumentação, National Nanotechnology Laboratory for Agribusiness (LNNA), XV Novembro Street, CP: 741, 13560-206 São Carlos, SP, Brazil
| | - Stella F do Valle
- Embrapa Instrumentação, National Nanotechnology Laboratory for Agribusiness (LNNA), XV Novembro Street, CP: 741, 13560-206 São Carlos, SP, Brazil; Federal University of São Carlos, Department of Chemistry, Washington Luiz Highway, km 235, 13565-905 São Carlos, SP, Brazil
| | - Gelton G F Guimarães
- Agricultural Research and Rural Extension Company of Santa Catarina, 6800 Highway, Antônio Heil, Itajaí, Santa Catarina 88318112, Brazil
| | - Nathalie Wuyts
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Science, 52425 Jülich, Germany
| | - Benedict Ohrem
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Science, 52425 Jülich, Germany
| | - Nicolai D Jablonowski
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Science, 52425 Jülich, Germany.
| | - Caue Ribeiro
- Embrapa Instrumentação, National Nanotechnology Laboratory for Agribusiness (LNNA), XV Novembro Street, CP: 741, 13560-206 São Carlos, SP, Brazil.
| | - Luiz Henrique C Mattoso
- Embrapa Instrumentação, National Nanotechnology Laboratory for Agribusiness (LNNA), XV Novembro Street, CP: 741, 13560-206 São Carlos, SP, Brazil
| |
Collapse
|
18
|
Dhakate P, Kandhol N, Raturi G, Ray P, Bhardwaj A, Srivastava A, Kaushal L, Singh A, Pandey S, Chauhan DK, Dubey NK, Sharma S, Singh VP, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Silicon nanoforms in crop improvement and stress management. CHEMOSPHERE 2022; 305:135165. [PMID: 35667508 DOI: 10.1016/j.chemosphere.2022.135165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.
Collapse
Affiliation(s)
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Priyanka Ray
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Laveena Kaushal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akanksha Singh
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Sangeeta Pandey
- Plant-Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, UP India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology,Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, University of Allahabad, Allahabad-211002, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St. Philadelphia, PA 19104, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Rupesh Deshmukh
- National Institute of Plant Genome Research, New Delhi, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
19
|
Valle SF, Giroto AS, Dombinov V, Robles-Aguilar AA, Jablonowski ND, Ribeiro C. Struvite-based composites for slow-release fertilization: a case study in sand. Sci Rep 2022; 12:14176. [PMID: 35986201 PMCID: PMC9391495 DOI: 10.1038/s41598-022-18214-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Struvite (St) recovered from wastewaters is a sustainable option for phosphorus (P) recovery and fertilization, whose solubility is low in water and high in environments characterized by a low pH, such as acidic soils. To broaden the use of struvite in the field, its application as granules is recommended, and thus the way of application should be optimized to control the solubility. In this study struvite slow-release fertilizers were designed by dispersing St particles (25, 50, and 75 wt%) in a biodegradable and hydrophilic matrix of thermoplastic starch (TPS). It was shown that, in citric acid solution (pH = 2), TPS promoted a steadier P-release from St compared to the pure St pattern. In a pH neutral sand, P-diffusion from St-TPS fertilizers was slower than from the positive control of triple superphosphate (TSP). Nevertheless, St-TPS featured comparable maize growth (i.e. plant height, leaf area, and biomass) and similar available P as TSP in sand after 42 days of cultivation. These results indicated that St-TPS slow P release could provide enough P for maize in sand, achieving a desirable agronomic efficiency while also reducing P runoff losses in highly permeable soils.
Collapse
|
20
|
Liu K, Wang X, Liu H, Wu J, Liang F, Li S, Zhang J, Peng X. OsAT1, an anion transporter, negatively regulates grain size and yield in rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13692. [PMID: 35482934 DOI: 10.1111/ppl.13692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Hengchen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Corrêa AC, de Campos A, Claro PIC, Guimarães GGF, Mattoso LHC, Marconcini JM. Biodegradability and nutrients release of thermoplastic starch and poly (ε-caprolactone) blends for agricultural uses. Carbohydr Polym 2022; 282:119058. [DOI: 10.1016/j.carbpol.2021.119058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 11/15/2022]
|
22
|
Ngo HTT, Watts-Williams SJ, Panagaris A, Baird R, McLaughlin MJ, Cavagnaro TR. Development of an organomineral fertiliser formulation that improves tomato growth and sustains arbuscular mycorrhizal colonisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151977. [PMID: 34838906 DOI: 10.1016/j.scitotenv.2021.151977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Achieving sustainable agricultural development requires the efficient use of nutrient resources for crop production. Recovering nutrients from animal manures may play a key role in achieving this. Animal manures typically have low nutrient concentrations, and in ratios that are often not ideal for balanced crop nutrition. Here, combinations of organic and inorganic phosphorus (P) were formulated as granular products (organomineral fertilisers) with granule size suitable for transport and spreading. The fertilisers were produced by granulating powdered chicken litter with MAP and urea powders making the following formulations: 0:4, 1:3, 2:2, 3:1, 4:0. The kinetics of NH4+-N and P release from the fertilisers, and the effects on tomato growth and nutrition, as well as arbuscular mycorrhizal formation in roots following fertiliser application, were determined. Cumulative NH4+-N release ceased within 12 h, and was lower in the formulations with higher proportions of chicken litter. The cumulative P released reached approximately 80% of total P in all formulations, and the time to obtain maximum P dissolution was 19 days in the formulation that contained only chicken litter. The organomineral fertilisers increased tomato shoot growth by 15-28% compared to the chicken litter only, MAP only and MAP/urea formulations. Reasonable levels of mycorrhizal colonisation of tomato roots was achieved with the organomineral fertilisers. The results demonstrated that optimum plant growth does not depend solely on immediately available P, and that timing of nutrient supply to match plant demand is important. The combination of chicken litter with MAP sustained nutrient supply and improved plant growth. Taken together, organomineral fertiliser formulations are potential alternatives to inorganic P fertilisers that can improve crop growth and nutrition, while provide a sustainable use for animal production wastes.
Collapse
Affiliation(s)
- Hue T T Ngo
- The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, Australia; Research Institute for Forest Ecology and Environment, Vietnamese Academy of Forest Sciences, Duc Thang, Tu Liem, Hanoi, Viet Nam
| | - Stephanie J Watts-Williams
- The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, Australia.
| | - Ashleigh Panagaris
- Fertiliser Technology Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Roslyn Baird
- Fertiliser Technology Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Michael J McLaughlin
- The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, Australia; Fertiliser Technology Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, Australia
| |
Collapse
|
23
|
D'Amato R, De Feudis M, Troni E, Gualtieri S, Soldati R, Famiani F, Businelli D. Agronomic potential of two different glass-based materials as novel inorganic slow-release iron fertilizers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1660-1664. [PMID: 34455586 DOI: 10.1002/jsfa.11504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large amounts of chemical fertilizers are still currently used to compensate the soil nutrients scarcity in order to increase and sustain crop yield with consequent rising of environmental pollution and health problems. To mitigate these environmental risks, fertilizers with slow-release behaviours have been developed. The aim of this study was to assess the agronomic potential of two different glass-based materials (by-products from the ceramic sector) as inorganic slow-release iron (Fe) fertilizers. RESULTS The X-ray powder diffraction confirmed the presence of amorphous structure and the richness in Fe of the investigated materials. The solubility analysis highlighted the slow Fe release from the glassy network and that the maximum of the Fe release was at alkaline pH suggesting their potential use as slow-release Fe fertilizers, especially in calcareous soils. The pot and leaching experiments demonstrated that although the glass-based materials increased the amount of soil available Fe, we did not observe Fe leaching and plant toxicity. This fact would suggest their reliability to increase soil fertility without negative effects on the environment. CONCLUSION The use of glass-based materials, specifically by-products from the ceramic sectors, as inorganic slow-release Fe fertilizers can be sustained. The tests performed at three different pH conditions testified the slow-release behaviour of the tested materials and underlined that the Fe release increases at alkaline environment. Therefore, the present study pointed out the glass-based materials by products from the ceramic sector as novel slow-release and environmental-friendly fertilizers in agriculture. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto D'Amato
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Mauro De Feudis
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Troni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Sabrina Gualtieri
- CNR - ISTEC, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Roberto Soldati
- CNR - ISTEC, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Franco Famiani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Daniela Businelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Badawy MT, Mostafa M, Khalil MS, Abd-Elsalam KA. Agri-food and environmental applications of bionanomaterials produced from agri-waste and microbes. AGRI-WASTE AND MICROBES FOR PRODUCTION OF SUSTAINABLE NANOMATERIALS 2022:441-463. [DOI: 10.1016/b978-0-12-823575-1.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Zarinkoob A, Esmaeilzadeh Bahabadi S, Rahdar A, Hasanein P, Sharifan H. Ce-Mn ferrite nanocomposite promoted the photosynthesis, fortification of total yield, and elongation of wheat (Triticum aestivum L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:800. [PMID: 34773492 DOI: 10.1007/s10661-021-09506-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in nano-enabled agriculture raised hope in the efficient delivery of bioactive minerals to crops. Nanocomposites (NCPs) are promising technologies in soil fertilizing without compromising environmental contamination. NCPs have shown positive impacts on plant growth and nanofortification of crop yield. Here, we have synthesized a nanocomposite that could induce the positive impacts of the Mn, Fe, and Ce nanoparticles for the crops. The NCPs were extensively characterized and applied at three levels 100, 250, and 500 ppm on T. aestivum L. seeds for 10 days. The germination, biomass, and elongation have been measured as the main physiological parameters of the plant. The total content of chlorophyll, carotenoids, and enzymatic and non-enzymatic antioxidant in response to NCPs was quantified. The concentration of essential minerals (iron and manganese) and the non-essential element of cerium in roots and shoots were quantified using inductively coupled plasma mass spectrometry (ICP-MS). Briefly, the germination rate increased by 15%; total chlorophyll and carotenoid were augmented by 61% and 38%, respectively, in exposure to 100 ppm. Higher uptake of micronutrient Fe and Mn in shoots and led to higher yield production by 14% and 18%, respectively. A positive correlation between the increasing dose of NCPs and the total content of the superoxide dismutase (SOD), and peroxidase (POD) were quantified. Overall, the results indicate the high potential of NCPs applications in agricultural practice.
Collapse
Affiliation(s)
- Atefeh Zarinkoob
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | | | - Abbas Rahdar
- Department of Physics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Parisa Hasanein
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA, 31705, USA.
| |
Collapse
|
26
|
Khutsishvili SS, Perfileva AI, Nozhkina OA, Ganenko TV, Krutovsky KV. Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients. Int J Mol Sci 2021; 22:ijms222112006. [PMID: 34769436 PMCID: PMC8584298 DOI: 10.3390/ijms222112006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.
Collapse
Affiliation(s)
- Spartak S. Khutsishvili
- Department of Physical Organic Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia;
| | - Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Olga A. Nozhkina
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (O.A.N.)
| | - Tatjana V. Ganenko
- Laboratory of Functional Nanomaterials, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia;
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Forestry Faculty, G.F. Morozov Voronezh State University of Forestry and Technologies, 8 Timiryazeva Str., 394036 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-393-3537
| |
Collapse
|
27
|
Mechanochemical synthesis of eco-friendly fertilizer from eggshell (calcite) and KH2PO4. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Khutsishvili SS, Ganenko TV, Sukhov BG. Formation and paramagnetic properties of manganese-containing bionanocomposites based on natural polysaccharide matrices. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1990314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Spartak S. Khutsishvili
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tat’yana V. Ganenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Boris G. Sukhov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
29
|
Okey‐Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, Kyzas GZ. Nanomaterials as Nanofertilizers and Nanopesticides: An Overview. ChemistrySelect 2021. [DOI: 10.1002/slct.202102379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection Faculty of Agriculture Shahid Bahonar University of Kerman
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol, P. O. Box. 35856-98613 Islamic Republic of Iran
| | - Javed Iqbal
- Department of Botany Bacha Khan University Charsadda, khyber Pakhtunkhwa Pakistan
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
30
|
Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 2021; 38:13-28. [PMID: 35572398 PMCID: PMC9091742 DOI: 10.1016/j.jare.2021.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphate bacteria bio-solubilization significantly increase crop P acquisition and productivity. Phosphate solubilizing bacteria increase RP agronomic efficiency as well as P fertilizers efficiency. This process can be optimized through a rational bacterial screening to assure efficient PSB are selected. Appropriate formulation of PSB is a sustainable approach to enhance P-fertilizers efficiency. Development of innovative PSB-Phosphate formulations is likely to sustain crop production.
Background Increasing crop production to feed a growing population has driven the use of mineral fertilizers to ensure nutrients availability and fertility of agricultural soils. After nitrogen, phosphorus (P) is the second most important nutrient for plant growth and productivity. However, P availability in most agricultural soils is often limited because P strongly binds to soil particles and divalent cations forming insoluble P-complexes. Therefore, there is a constant need to sustainably improve soil P availability. This may include, among other strategies, the application of microbial resources specialized in P cycling, such as phosphate solubilizing bacteria (PSB). This P-mediating bacterial component can improve soil biological fertility and crop production, and should be integrated in well-established formulations to enhance availability and efficiency in use of P. This is of importance to P fertilization, including both organic and mineral P such as rock phosphate (RP) aiming to improve its agronomic efficiency within an integrated crop nutrition system where agronomic profitability of P and PSB can synergistically occur. Aim of Review The purpose of this review is to discuss critically the important contribution of PSB to crop P nutrition in concert with P fertilizers, with a specific focus on RP. We also highlight the need for PSB bioformulations being a sustainable approach to enhance P fertilizer use efficiency and crop production. Key Scientific Concepts of Review We first recognize the important contribution of PSB to sustain crop production, which requires a rational approach for both screening and evaluation of PSB enabling an accurate assessment of the bacterial effects both alone and in intertwined interaction with plant roots. Furthermore, we propose new research ideas about the development of microbial bioformulations based on PSB with a particular focus on strains exhibiting synergetic effects with RP.
Collapse
|
31
|
Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 2021; 11:357. [PMID: 34268065 DOI: 10.1007/s13205-021-02907-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Over the last century, the demand for food resources has been continuously increasing with the rapid population growth. Therefore, it is critically important to adopt sustainable farming practices that can enhance crop production without the excessive use of fertilizers. In this regard, there is a growing interest in the use of nanomaterials for improving plant nutrition as an alternative to traditional chemical or mineral fertilizers. Using this technology, the efficiency of micro- and macro-nutrients in plants can increase. Various nanomaterials have been successfully applied in agricultural production, compared to conventional fertilizers. Among the major plant nutrients, phosphorus (P) is the least accessible since most farmlands are frequently P deficient. Hence, P use efficiency should be maximized to conserve the resource base and maintain agricultural productivity. This review summarizes the current research and the future possibilities of nanotechnology in the biofortification of plant nutrition, with a focus on P fertilizers. In addition, it covers the challenges, environmental impacts, and toxic effects that have been explored in the area of nanotechnology to improve crop production. The potential uses and benefits of nanoparticle-based fertilizers in precision and sustainable agriculture are also discussed.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| |
Collapse
|
32
|
Saleem I, Maqsood MA, Rehman MZU, Aziz T, Bhatti IA, Ali S. Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112148. [PMID: 33756292 DOI: 10.1016/j.ecoenv.2021.112148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Low use efficiency of nitrogen (N) and phosphorus (P) is major challenge of modern agriculture. Coating of conventional fertilizers with nanomaterials is a promising technique for improved nutrient use efficiency. In current study, nanoparticles (NPs) of potassium ferrite (KFeO2 NPs) were coated on di-ammonium phosphate (DAP) fertilizer with three rates (2, 5, 10%) of KFeO2 NPs and were evaluated for release of N, P, K and Fe supplementation in clay loam and loam soil up to 60 days. The NPs were characterized for crystal assemblage, bond formation, morphology and configuration using the x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform-infra red spectroscopy (FT-IR). The results showed that size of NPs ranged between 7 and 18 nm. The controlled release of P in 10% KFeO2 nano-coated DAP was observed throughout the incubation period. The P release kept on increasing from day-1 (14.5 µg g-1) to day-60 (178.6 µg g-1) in coated DAP (10%) in loam soil. The maximum release of 50.4 µg g-1 NH4+1-N in coated DAP (10%) was observed after 30 days of incubation. The release of NO3-1-N was consistent up to 45 and 60 days in clay loam and loam soil, respectively. The average release of potassium and iron in 60 days was 19.7 µg g-1 and 7.3 µg g-1 higher in 10% coated DAP than traditional DAP in clay loam soil. It was concluded that KFeO2 nano-coated DAP supplied P and mineral N for longer period of time in both soils, and some higher coating levels should be tested in future.
Collapse
Affiliation(s)
- Ifra Saleem
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Aamer Maqsood
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Tariq Aziz
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, Faculty of Sciences, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
33
|
Eghbali Babadi F, Yunus R, Masoudi Soltani S, Shotipruk A. Release Mechanisms and Kinetic Models of Gypsum-Sulfur-Zeolite-Coated Urea Sealed with Microcrystalline Wax for Regulated Dissolution. ACS OMEGA 2021; 6:11144-11154. [PMID: 34056270 PMCID: PMC8153936 DOI: 10.1021/acsomega.0c04353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/06/2021] [Indexed: 05/30/2023]
Abstract
In this study, a mineral-based coated urea was fabricated in a rotary pan coater using a mixture of gypsum/sulfur/zeolite (G25S25Z50) as an effective and low-cost coating material. The effects of different coating compositions on the dissolution rate of urea and the crushing strength and morphology of the coated urea were investigated. A 25:25:50 (wt %) mixture of gypsum/sulfur/zeolite (G25S25Z50) increased the coating effectiveness to 34.1% with the highest crushing strength (31.06 N). The effectiveness of coated urea was further improved to 46.6% with the addition of a microcrystalline wax (3%) as a sealant. Furthermore, the release mechanisms of various urea fertilizers were determined by fitting the release profiles with six mathematical models, namely, the zeroth-order, first-order, second-order, Higuchi, Ritger & Peppas, and Kopcha models. The results showed that the release mechanism of the uncoated urea and all other coated urea followed the Ritger & Peppas model, suggesting the diffusional release from nonswellable delivery systems. In addition, due to the increased mass-transfer resistance, the kinetic constant was decreased from 0.2233 for uncoated urea to 0.1338 for G25S25Z50-coated urea and was further decreased to 0.0985 when 3% Witcovar 146 sealant was applied.
Collapse
Affiliation(s)
- Farahnaz Eghbali Babadi
- Bio-Circular-Green-Economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Phayathai Road, Bangkok 10330, Thailand
| | - Robiah Yunus
- Department
of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Salman Masoudi Soltani
- Department
of Chemical Engineering, Brunel University
London, UB8 3PH Uxbridge, United Kingdom
| | - Artiwan Shotipruk
- Bio-Circular-Green-Economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Wang C, Lv J, Xie J, Yu J, Li J, Zhang J, Tang C, Niu T, Patience BE. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses. Sci Rep 2021; 11:8070. [PMID: 33850224 PMCID: PMC8044230 DOI: 10.1038/s41598-021-87593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
To avoid the negative impact of excessive fertilization on vegetable production, a decreased fertilization experiment was conducted in a multi-layer covered plastic greenhouse in 2017 to 2018. Treatments included no fertilizer (CK), traditional fertilization (TF), slow-release fertilizers (SRF), and decreased fertilization with slow-release fertilizers (DSRF). Results showed that the SRF and DSRF increased leaf length (13% and 8.3%) and chlorophyll content (7.1% and 8.2%) of Chinese chives compared to TF. Similarly, DSRF was found to increase the accumulation of dry matter accumulation of roots (22%) and the dry matter accumulation of shoots (36%) of Chinese chives. Flavonoid, soluble sugar, and soluble protein content were enhanced by 18%, 8.5%, and 4.6%, respectively, in DSRF compared to TF. Nitrate content of the SRF and SRFR decreased significantly by 26% and 35%, respectively. In addition, there was a significant increase in soil nutrient and enzyme activity in the middle and late harvest of Chinese chives under DSRF compared to TF, and there was a high correlation between soil nutrients and the quality of Chinese chives. The available P and total P content significantly differed among the different greenhouse soil samples, and this significantly affected the quality of Chinese chives. The content of available P and total P in greenhouse soil was 125.07 g kg−1 and 1.26 mg kg−1, respectively. Optimal quality was obtained. Hence, the application of DSRF promoted the growth of Chinese chives and improved soil fertility, thereby enhancing the productivity and quality of Chinese chives.
Collapse
Affiliation(s)
- Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Bakpa Emily Patience
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| |
Collapse
|
35
|
Giroto AS, do Valle SF, Guimarães GGF, Jablonowski ND, Ribeiro C, Mattoso LHC. Different Zn loading in Urea-Formaldehyde influences the N controlled release by structure modification. Sci Rep 2021; 11:7621. [PMID: 33828167 PMCID: PMC8027403 DOI: 10.1038/s41598-021-87112-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/01/2022] Open
Abstract
Nitrogen fertilization has been a critical factor for high crop productivity, where urea is currently the most used N source due to its high concentration and affordability. Nevertheless, urea fast solubilization leads to frequent losses and lower agronomic efficiency. The modification of urea structure by condensation with formaldehyde has been proposed to improve nutrient uptake by plants and to reduce environmental losses. Herein we show that the co-formulation with Zn strongly modifies the N release (in lab conditions) and, more important, the Zn source—ZnSO4 or ZnO—has a critical role. Urea–formaldehyde (UF) served as a matrix for the zinc sources, and chemical characterizations revealed that Zn particles influenced the length of the polymeric chain formation. Release tests in an aqueous medium showed that the UF matrix favors ZnO release and, on the other hand, delays ZnSO4 delivery. Soil incubation with the fertilizer composites proved the slow-release of N from UF, is ideal for optimizing nutritional efficiency. Our results indicated that the ZnO-UF system has beneficial effects for both nutrients, i.e., reduces N volatilization and increases Zn release.
Collapse
Affiliation(s)
- Amanda S Giroto
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, XV Novembro Street, CP: 741, São Carlos, SP, 13560-206, Brazil
| | - Stella F do Valle
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, XV Novembro Street, CP: 741, São Carlos, SP, 13560-206, Brazil.,Department of Chemistry, Federal University of São Carlos, Washington Luiz Highway, km 235, São Carlos, SP, 13565-905, Brazil
| | - Gelton G F Guimarães
- Agricultural Research and Rural Extension Company of Santa Catarina, 6800 Highway, Antônio Heil, Itajaí, Santa Catarina, 88318112, Brazil
| | - Nicolai D Jablonowski
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Science, 52425, Jülich, Germany.
| | - Caue Ribeiro
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, XV Novembro Street, CP: 741, São Carlos, SP, 13560-206, Brazil.
| | - Luiz Henrique C Mattoso
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, XV Novembro Street, CP: 741, São Carlos, SP, 13560-206, Brazil
| |
Collapse
|
36
|
Pérez-Álvarez EP, Ramírez-Rodríguez GB, Carmona FJ, Martínez-Vidaurre JM, Masciocchi N, Guagliardi A, Garde-Cerdán T, Delgado-López JM. Towards a more sustainable viticulture: foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1307-1313. [PMID: 32789867 DOI: 10.1002/jsfa.10738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND The use of nanomaterials for the efficient delivery of active species in viticulture is still an unexplored opportunity. Nitrogen, an essential nutrient for grapevine development and wine quality, is commonly provided in the form of urea. However, the application of conventional fertilisers contributes to nitrate leaching and denitrification, thus polluting groundwater and causing a serious environmental impact. Nanotechnology is offering smart solutions towards more sustainable and efficient agriculture. In the present work, we assessed the efficiency of nontoxic amorphous calcium phosphate (ACP) nanoparticles as nanocarriers of urea (U-ACP) through field experiments on Tempranillo grapevines. Four treatments were foliarly applied: U-ACP nanofertiliser (0.4 kg N ha-1 ), commercial urea solutions at 3 and 6 kg N ha-1 (U3 and U6) and a control treatment (water). RESULTS The grapes harvested from plants treated with U-ACP and U6 provided similar levels of yeast assimilable nitrogen, despite the very large reduction of nitrogen dosage. The concentration of amino acids was greater in U-ACP-treated plants than those of the control and U3 treatments and, barring a few exceptions, the values were comparable with those observed in grapes obtained following U6 treatment. Nanofertilisers provided a high arginine concentration in the musts but low proline concentrations in comparison to the U6 treatment. CONCLUSIONS The results of this work show the potential benefits of nanotechnology over conventional practices for nitrogen fertilisation. Significantly, the application of U-ACP allowed a considerable reduction of nitrogen dosage to maintain the quality of the harvest, thereby mitigating the environmental impact. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | | | - Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - José M Martínez-Vidaurre
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - Antonella Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Como, Italy
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
37
|
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:213-239. [PMID: 33447834 DOI: 10.1039/d0em00404a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern agricultural practices have triggered the process of agricultural pollution. This process can cause the degradation of eco-systems, land, and environment owing to the modern-day by-products of agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation cause further damage to agriculture. The current scenario of the agriculture and food sector has therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to the agriculture sector by contributing practical applications in conventional agricultural ways and practices. There is a large possibility that agri-nanotechnology can have a significant impact on the sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing solutions to agricultural problems for improving food productivity and security. The prospective use of nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable and efficient. However, the application of these nano-products in real field situations raises concern about nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human health. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy regulations to assess possible nano-agricultural risks are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Archita Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sanjeev K Bhardwaj
- Amesys India, Cross Road No. 4, Near Geeta Gopal Bhawan, Ambala Cantt-133001, Haryana, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
38
|
do Valle SF, Giroto AS, Reis HPG, Guimarães GGF, Ribeiro C. Synergy of Phosphate-Controlled Release and Sulfur Oxidation in Novel Polysulfide Composites for Sustainable Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2392-2402. [PMID: 33600152 DOI: 10.1021/acs.jafc.0c07333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of smart and eco-friendly fertilizers is pivotal to guarantee food security sustainably. Phosphate rock and struvite are promising alternatives for P fertilization; nevertheless, the solubility of these sources is a challenge for consistent use efficiency. Here, we propose using a polysulfide obtained via inverse vulcanization as a novel controlled-release fertilizer matrix in a system containing either Bayóvar rock (Bay) or struvite (Str). The polysulfide provides S for plants after being biologically oxidized to sulfate in soil, generating local acidity for P solubilization. After 15 days of soil incubation, the composites with 75 wt % Str and 75 wt % Bay achieved, respectively, 3 and 2 times the S oxidation from the elemental sulfur reference. Results indicated that P content stimulates the soil microorganisms' activity for S oxidation. The matrix had a physical role in improving Bay dissolution and regulating the rapid release from Str. Moreover, the available P in soil was 25-30 mg/dm3 for Bay composites, while for pure Bay, it was 9 mg/dm3.
Collapse
Affiliation(s)
- Stella Fortuna do Valle
- Department of Chemistry, Federal University of São Carlos, Washington Luiz Highway, km 235, 13565-905 São Carlos, SP, Brazil
- Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970 São Carlos, SP, Brazil
| | - Amanda Soares Giroto
- Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970 São Carlos, SP, Brazil
| | | | - Gelton G F Guimarães
- Agricultural Research and Rural Extension Company of Santa Catarina, 6800 Highway, Antônio Heil, 88318-112 Itajaí, SC, Brazil
| | - Caue Ribeiro
- Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
39
|
Carmona FJ, Dal Sasso G, Ramírez-Rodríguez GB, Pii Y, Delgado-López JM, Guagliardi A, Masciocchi N. Urea-functionalized amorphous calcium phosphate nanofertilizers: optimizing the synthetic strategy towards environmental sustainability and manufacturing costs. Sci Rep 2021; 11:3419. [PMID: 33564033 PMCID: PMC7873063 DOI: 10.1038/s41598-021-83048-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
Nanosized fertilizers are the new frontier of nanotechnology towards a sustainable agriculture. Here, an efficient N-nanofertilizer is obtained by post-synthetic modification (PSM) of nitrate-doped amorphous calcium phosphate (ACP) nanoparticles (NPs) with urea. The unwasteful PSM protocol leads to N-payloads as large as 8.1 w/w%, is well replicated by using inexpensive technical-grade reagents for cost-effective up-scaling and moderately favours urea release slowdown. Using the PSM approach, the N amount is ca. 3 times larger than that obtained in an equivalent one-pot synthesis where urea and nitrate are jointly added during the NPs preparation. In vivo tests on cucumber plants in hydroponic conditions show that N-doped ACP NPs, with half absolute N-content than in conventional urea treatment, promote the formation of an equivalent amount of root and shoot biomass, without nitrogen depletion. The high nitrogen use efficiency (up to 69%) and a cost-effective preparation method support the sustainable real usage of N-doped ACP as a nanofertilizer.
Collapse
Affiliation(s)
- Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy
| | | | - Youry Pii
- Faculty of Science and Technologies, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy.
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| |
Collapse
|
40
|
Khan MZH, Islam MR, Nahar N, Al-Mamun MR, Khan MAS, Matin MA. Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients. Heliyon 2021; 7:e06091. [PMID: 33553756 PMCID: PMC7855699 DOI: 10.1016/j.heliyon.2021.e06091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 11/26/2022] Open
Abstract
In this research work, we propose macronutrients incorporated slow-release based nano-fertilizer using nanozeolite as a carrier. A simple chemical approach was used to synthesis the proposed nanozeolite composite fertilizer (NZCF). To gain an insight into the properties, morphology and structure of the synthesized NZCF, it was further characterized by different techniques such as powder XRD, FT-IR, SEM, and TG/DTA. A considerable enhancement of the quality and the water retention capacity of the soil was observed as a result of applying the proposed NZCF when compared with a commercial fertilizer. Furthermore, the swelling ratio and the equilibrium water content of NZCF were compared to the commercial fertilizer and their effect on plant growth was observed. Slow-release studies were carried out for both NZCF and the commercial fertilizer. The results of these studies reveled that NZCF possessed a long-term release pattern of the macronutrients and that showed a great potential for promoting plant growth. Hence, the prepared nanocomposite fertilizer can be safely used as an environment-friendly source of nutrients to enhance plant growth.
Collapse
Affiliation(s)
- M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - M R Islam
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - N Nahar
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - M R Al-Mamun
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - M A S Khan
- Environmental Laboratory, Arsenic Center, Asia Arsenic Network, Jashore 7400, Bangladesh
| | - M A Matin
- Dept. of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
41
|
Giroto AS, do Valle SF, Guimarães GGF, Molina A, Reis HPG, Fernandes DM, Bernardi ACC, Mattoso LHC, Ribeiro C. Tailoring Efficient Materials for NPK All-in-One Granular Fertilization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amanda S. Giroto
- Embrapa Instrumentation, 1452, XV de Novembro Street, CP: 741, São Carlos, SP 13560-206, Brazil
| | - Stella F. do Valle
- Embrapa Instrumentation, 1452, XV de Novembro Street, CP: 741, São Carlos, SP 13560-206, Brazil
- Federal University of São Carlos, Department of Chemistry, Washington Luiz Highway, km 235, São Carlos, SP 13565-905, Brazil
| | - Gelton G. F. Guimarães
- Agricultural Research and Rural Extension Company of Santa Catarina, 6800 Highway, Antônio Heil, Itajaí, Santa Catarina 88318112, Brazil
| | - Arthur Molina
- Federal University of São Carlos, Department of Chemistry, Washington Luiz Highway, km 235, São Carlos, SP 13565-905, Brazil
| | - Heitor P. G. Reis
- UNESP Botucatu Av. Universitária, 3780 - Altos do Paraíso, Botucatu, SP 18610-034, Brazil
| | - Dirceu M. Fernandes
- UNESP Botucatu Av. Universitária, 3780 - Altos do Paraíso, Botucatu, SP 18610-034, Brazil
| | - Alberto C. C. Bernardi
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, km 234, São Carlos, SP 13560-970, Brazil
| | - Luiz H. C. Mattoso
- Embrapa Instrumentation, 1452, XV de Novembro Street, CP: 741, São Carlos, SP 13560-206, Brazil
| | - Caue Ribeiro
- Embrapa Instrumentation, 1452, XV de Novembro Street, CP: 741, São Carlos, SP 13560-206, Brazil
| |
Collapse
|
42
|
Dimkpa CO, Fugice J, Singh U, Lewis TD. Development of fertilizers for enhanced nitrogen use efficiency - Trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139113. [PMID: 32438083 DOI: 10.1016/j.scitotenv.2020.139113] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 05/09/2023]
Abstract
Despite nitrogen (N) being the most important crop nutrient, its use as fertilizer is associated with high losses. Such losses pollute the environment and increase greenhouse gas production and other environmental events associated with high ammonia volatilization and nitrous oxide emission. They also cause soil nitrate leaching and run-off that pollute surface and underground waters, with human health implications. The net outcomes for the plant are reduced N uptake and crop productivity that, together, increase the costs associated with fertilization of agricultural lands and dampen farmers' confidence in the efficacy and profitability of fertilizers. To address these problems, enhanced efficiency fertilizers (EEFs) are continuously being developed to regulate the release of N from fertilizers, allowing for improved uptake and utilization by plants, thereby lowering losses and increasing crop productivity per unit of fertilizer. The EEFs are classified based on whether they are inorganic- bio- or organic-coated; their mode of action on different N forms, including urease activity and nitrification inhibition; and the technologies involved in their development, such as targeted compositing of multiple nutrients and nanotechnology. This review is a critical revisit of the materials and processes utilized to coat or formulate enhanced efficiency N-fertilizers for reducing N losses, including their shortcomings, advances made to address such shortcomings, and effects on mitigating N losses and/or enhancing plant uptake. We provide perspectives that could assist in further improving promising and potentially effective and affordable coating or formulation systems for scalable improvements that allow for reducing the rate of N-fertilizer input in crop production. It is especially critical to develop multi-nutrient fertilizers that provide balanced nutrition to plants and humans, while improving N use efficiency and mitigating N-fertilizer effects on human and environmental health.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.
| | - Job Fugice
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Upendra Singh
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Timothy D Lewis
- AngloAmerican, Resolution House, Lake View, Scarborough YO11 3ZB United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
43
|
Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS NANO 2020; 14:7970-7986. [PMID: 32628442 DOI: 10.1021/acsnano.9b09178] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Collapse
Affiliation(s)
- Peiguang Hu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jing An
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Maquela M Faulkner
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
44
|
Carmona FJ, Dal Sasso G, Bertolotti F, Ramírez-Rodríguez GB, Delgado-López JM, Pedersen JS, Masciocchi N, Guagliardi A. The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate-doped calcium phosphate nanofertilizers. Sci Rep 2020; 10:12396. [PMID: 32709936 PMCID: PMC7382453 DOI: 10.1038/s41598-020-69279-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Bio-inspired synthetic calcium phosphate (CaP) nanoparticles (NPs), mimicking the mineral component of bone and teeth, are emergent materials for sustainable applications in agriculture. These sparingly soluble salts show self-inhibiting dissolution processes in undersaturated aqueous media, the control at the molecular and nanoscale levels of which is not fully elucidated. Understanding the mechanisms of particle dissolution is highly relevant to the efficient delivery of macronutrients to the plants and crucial for developing a valuable synthesis-by-design approach. It has also implications in bone (de)mineralization processes. Herein, we shed light on the role of size, morphology and crystallinity in the dissolution behaviour of CaP NPs and on their nitrate doping for potential use as (P,N)-nanofertilizers. Spherical fully amorphous NPs and apatite-amorphous nanoplatelets (NPLs) in a core-crown arrangement are studied by combining forefront Small-Angle and Wide-Angle X-ray Total Scattering (SAXS and WAXTS) analyses. Ca2+ ion release rates differ for spherical NPs and NPLs demonstrating that morphology plays an active role in directing the dissolution kinetics. Amorphous NPs manifest a rapid loss of nitrates governed by surface-chemistry. NPLs show much slower release, paralleling that of Ca2+ ions, that supports both detectable nitrate incorporation in the apatite structure and dissolution from the core basal faces.
Collapse
Affiliation(s)
- Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Gloria B Ramírez-Rodríguez
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy.
| |
Collapse
|
45
|
Naseem F, Zhi Y, Farrukh MA, Hussain F, Yin Z. Mesoporous ZnAl 2Si 10O 24 nanofertilizers enable high yield of Oryza sativa L. Sci Rep 2020; 10:10841. [PMID: 32616915 PMCID: PMC7331578 DOI: 10.1038/s41598-020-67611-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/01/2020] [Indexed: 12/03/2022] Open
Abstract
Controllable release of nutrients in soil can overcome the environmental problems associated with conventional fertilizer. Here we synthesized mesoporous nanocomposite of Zinc aluminosilicate (ZnAl2Si10O24) via co-precipitation method. Oryza sativa L. husk was used as source of silica for making the synthesis process green and economical. The nanocomposite was subsequently loaded with urea to achieve the demand of simultaneous and slow delivery of both zinc and urea. The structural characterization of nanocomposite was done by FTIR, XRD, TGA, BET, SEM/EDX and TEM. The release of urea and zinc was investigated with UV–Vis spectrophotometry and atomic absorption spectroscopy, respectively, up to 14 days. It was noted that urea holding capacity of mesoporous ZnAl2Si10O24 nanocomposite over long period of time was increased as compared to bulk aluminosilicates, due to its high surface area (193.07 m2 g−1) and small particle size of (64 nm). Urea release was found highest in first 24 h because of excess of adsorption on nanocomposite and least at 14th day. Fertilizer efficiency was checked on Oryza sativa L. in comparison with commercial urea and results showed significantly higher yield in case of urea loaded ZnAl2Si10O24 nanocomposite.
Collapse
Affiliation(s)
- Fizza Naseem
- Nano-Chemistry Lab, Department of Chemistry, Government College University, Lahore, 54000, Pakistan.,Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Yang Zhi
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Muhammad Akhyar Farrukh
- Nano-Chemistry Lab, Department of Chemistry, Government College University, Lahore, 54000, Pakistan. .,Department of Chemistry, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan.
| | - Fayyaz Hussain
- Land Resource Research Institute, National Agricultural Research Centre, Park road, Islamabad, 44000, Pakistan
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
46
|
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. Nanotechnology in agriculture: Current status, challenges and future opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137778. [PMID: 32179352 DOI: 10.1016/j.scitotenv.2020.137778] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.
Collapse
Affiliation(s)
- Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Imran Ashraf
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
47
|
Li H, Li Y, Xu Y, Lu X. Biochar phosphorus fertilizer effects on soil phosphorus availability. CHEMOSPHERE 2020; 244:125471. [PMID: 31809932 DOI: 10.1016/j.chemosphere.2019.125471] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Biochar is a potential material for making slow-releasing phosphorus (P) fertilizers for the sake of increasing soil P use efficiency and mitigating P losses. However, the long-term effects of P-laden biochars on soil P availability remains unconcerned. In this study, a laboratory-scale 70-days soil incubation experiment was conducted to study the effects of original and P-laden biochars on soil P availability and fractions. Two original biochars were derived from maize stalks by pyrolyzing at 350 °C and 600 °C. P was laden on those biochars by immersing biochars in saturated KH2PO4 solution for 24 h. Eight treatments were set for the incubation experiment, which were soil, soil + triple-superphosphate (TSP), soil + 350 °C biochar, soil + 600 °C biochar, soil + TSP + 350 °C biochar, soil + TSP + 600 °C biochar, soil + 350 °C P-laden biochar, and soil + 600 °C P-laden biochar. Results showed that original biochars could decrease soil available P through P adsorption. And there were no significant differences of soil P fractions under the treatments of mineral P fertilizer and P-laden biochars. Whereas, compared to mineral P fertilizer, P-laden biochars, especially 600 °C P-laden biochar, could maintain soil available P in a significantly higher level across the incubation. It was mainly because of the slow-releasing pattern of P laden on biochar and a more homogeneous soil P source distribution under P-laden biochar treatments. These results indicated that P-laden biochar could work as P fertilizer to improve soil P use efficiency.
Collapse
Affiliation(s)
- Haixiao Li
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China.
| | - Yuxin Li
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec City, QC, G1V 2J3, Canada; Department of Soils and Agri-Food Engineering, Paul Comtois Bldg., Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Xueqiang Lu
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
48
|
Clement PL, Kuether JE, Borgatta JR, Buchman JT, Cahill MS, Qiu TA, Hamers RJ, Feng ZV, Haynes CL. Cobalt Release from a Nanoscale Multiphase Lithiated Cobalt Phosphate Dominates Interaction with Shewanella oneidensis MR-1 and Bacillus subtilis SB491. Chem Res Toxicol 2020; 33:806-816. [DOI: 10.1021/acs.chemrestox.9b00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peter L. Clement
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joshua E. Kuether
- Chemistry Department, Augsburg University, 2211 Riverside Avenue, Minneapolis, Minnesota 55454, United States
| | - Jaya R. Borgatta
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Meghan S. Cahill
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tian A. Qiu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Z. Vivian Feng
- Chemistry Department, Augsburg University, 2211 Riverside Avenue, Minneapolis, Minnesota 55454, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
49
|
Giroto AS, Garcia RH, Colnago LA, Klamczynski A, Glenn GM, Ribeiro C. Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. Int J Biol Macromol 2020; 144:143-150. [DOI: 10.1016/j.ijbiomac.2019.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
|
50
|
Ramírez-Rodríguez GB, Dal Sasso G, Carmona FJ, Miguel-Rojas C, Pérez-de-Luque A, Masciocchi N, Guagliardi A, Delgado-López JM. Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers. ACS APPLIED BIO MATERIALS 2020; 3:1344-1353. [DOI: 10.1021/acsabm.9b00937] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gloria B. Ramírez-Rodríguez
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab. Consiglio Nazionale delle Ricerche (IC−CNR), Via Valleggio 11, I-22100 Como, Italy
| | - Francisco J. Carmona
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
- IFAPA Alameda del Obispo, Area of Genomic and Biotechnology, Avenida Menéndez Pidal, S/N, 14004 Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- IFAPA Alameda del Obispo, Area of Genomic and Biotechnology, Avenida Menéndez Pidal, S/N, 14004 Córdoba, Spain
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab. Consiglio Nazionale delle Ricerche (IC−CNR), Via Valleggio 11, I-22100 Como, Italy
| | - José M. Delgado-López
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain
| |
Collapse
|