1
|
Mahmutefendić Lučin H, Štimac I, Marcelić M, Skočaj M, Lisnić B, Omerović A, Viduka I, Radić B, Karleuša L, Blagojević Zagorac G, Deželjin M, Jurak Begonja A, Lučin P. Rab10-associated tubulation as an early marker for biogenesis of the assembly compartment in cytomegalovirus-infected cells. Front Cell Dev Biol 2025; 12:1517236. [PMID: 39866842 PMCID: PMC11760598 DOI: 10.3389/fcell.2024.1517236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10. This study aims to investigate whether Rab10-positive domain (Rab10-PD) is expanded during the E phase of infection. Methods We performed long-term live imaging of EGFP-Rab10 with epifluorescence imaging-enhanced digital holotomographic microscopy (DHTM), confocal imaging of known Rab10 interactors and identification of important Rab10 interactors with the proximity-dependent biotin identification assay (BioID). The accumulation of Rab10-PD was analyzed after knock-down of EHBP1 and Rabin8, two proteins that facilitate Rab10 recruitment to membranes, and after blocking of PI(4,5)P2 by PI(4,5)P2-binding protein domains. Results Our study shows the gradual expansion of Rab10-PD in the inner pre-AC, the association of Rab10 with EHBP1 and MICAL-L1, and the dependence of Rab10-PD expansion on EHBP1 and PI(4,5)P2 but not Rabin8, indicating the expansion of EE-derived tubular recycling endosome-like membranes in the pre-AC. Silencing of Rab10 and EHBP1 suggests that Rab10-PD expansion is not required for the establishment of the inner pre-AC nor for the expansion of downstream tubular domains. Conclusion The present work characterizes one of the earliest sequences in the establishment of pre-AC and suggests that subsets of EE-derived tubular membranes may serve as the earliest biomarkers in pre-AC biogenesis. Our study also indicates that the pre-AC biogenesis is complex and likely involves multiple parallel processes, of which Rab10-PD expansion is one. Our experiments, particularly our silencing experiments, show that Rab10 and EHBP-1 do not play a significant role in the later stages of inner pre-AC biogenesis or in the expansion of downstream tubular domains. A more comprehensive understanding of the tubular domain expansion remains to be established.
Collapse
Affiliation(s)
- Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Matej Skočaj
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alen Omerović
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Martina Deželjin
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
2
|
Bergner T, Cortez Rayas L, Freimann G, Read C, von Einem J. Secondary Envelopment of Human Cytomegalovirus Is a Fast Process Utilizing the Endocytic Compartment as a Major Membrane Source. Biomolecules 2024; 14:1149. [PMID: 39334915 PMCID: PMC11430300 DOI: 10.3390/biom14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Gesa Freimann
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
3
|
Jimah JR, Kundu N, Stanton AE, Sochacki KA, Canagarajah B, Chan L, Strub MP, Wang H, Taraska JW, Hinshaw JE. Cryo-EM structures of membrane-bound dynamin in a post-hydrolysis state primed for membrane fission. Dev Cell 2024; 59:1783-1793.e5. [PMID: 38663399 PMCID: PMC11265984 DOI: 10.1016/j.devcel.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 07/25/2024]
Abstract
Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.
Collapse
Affiliation(s)
- John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nidhi Kundu
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abigail E Stanton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lieza Chan
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Lučin P, Mahmutefendić Lučin H, Blagojević Zagorac G. Cytomegaloviruses reorganize endomembrane system to intersect endosomal and amphisome-like egress pathway. Front Cell Dev Biol 2023; 11:1328751. [PMID: 38178873 PMCID: PMC10766366 DOI: 10.3389/fcell.2023.1328751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
5
|
Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev Med Virol 2023; 33:e2403. [PMID: 36345157 PMCID: PMC9877911 DOI: 10.1002/rmv.2403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-β-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research DepartmentNational Center for Social and Criminological Research (NCSCR)GizaEgypt
| | - Soumya Ghosh
- Department of GeneticsFaculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
| | - Samah A. Loutfy
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
- Nanotechnology Research CenterBritish UniversityCairoEgypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design DepartmentFaculty of EngineeringMenofia UniversityMenofiaEgypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
| | - Mohamed Hessien
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| |
Collapse
|
6
|
Mosher BS, Kowalik TF, Yurochko AD. Overview of how HCMV manipulation of host cell intracellular trafficking networks can promote productive infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1026452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in the immunocompromised and developing fetuses. Infection has also been linked to chronic inflammatory diseases, cardiovascular disease, and the development of certain cancers. The wide range of pathologies associated with HCMV infection is attributable to the broad cellular tropism of the virus where infection affects every organ system. Like other viruses, HCMV must tailor host cells to support productive infection. In particular, HCMV dedicates many resources and various strategies to manipulate host intracellular trafficking networks to facilitate various aspects of infection across all infected cell types. The dysregulation of host intracellular trafficking networks allows the virus to translocate to the host cell nucleus for genome replication, facilitate nuclear import/export of viral proteins and immature virions, subvert the host immune response, form new organelles for progeny virion assembly, maturation and egress, and promote cellular migration and viral spread. However, due to their complex nature, many aspects of these processes are not well-studied. New research and omics-based technologies have recently begun to elucidate the extent to which HCMV dysregulates host cell trafficking machinery. Here we review the variety of strategies HCMV utilizes to dysregulate intracellular trafficking networks to promote productive infection.
Collapse
|
7
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Štimac I, Jug Vučko N, Blagojević Zagorac G, Marcelić M, Mahmutefendić Lučin H, Lučin P. Dynamin Inhibitors Prevent the Establishment of the Cytomegalovirus Assembly Compartment in the Early Phase of Infection. Life (Basel) 2021; 11:876. [PMID: 34575026 PMCID: PMC8469281 DOI: 10.3390/life11090876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4-14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
10
|
Mitra D, Hasan MH, Bates JT, Bierdeman MA, Ederer DR, Parmar RC, Fassero LA, Liang Q, Qiu H, Tiwari V, Zhang F, Linhardt RJ, Sharp JS, Wang L, Tandon R. The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathog 2021; 17:e1009803. [PMID: 34352038 PMCID: PMC8384199 DOI: 10.1371/journal.ppat.1009803] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.
Collapse
Affiliation(s)
- Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Mohammad H. Hasan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - John T. Bates
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Michael A. Bierdeman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Dallas R. Ederer
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Rinkuben C. Parmar
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lauren A. Fassero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Quntao Liang
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
- College of Biological Science and Engineering, University of Fuzhou, Fujian, China
| | - Hong Qiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Joshua S. Sharp
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
| |
Collapse
|
11
|
Cell type-specific biogenesis of novel vesicles containing viral products in human cytomegalovirus infection. J Virol 2021; 95:JVI.02358-20. [PMID: 33762413 PMCID: PMC8139684 DOI: 10.1128/jvi.02358-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV), while highly restricted for the human species, infects an diverse array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies (MVBs) that incorporate viral products, including dense bodies (DBs) and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in primary human microvascular endothelial cells (HMVECs) were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that UL32-GFP containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. However, UL32-GFP containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non- canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV, which may reflect distinct pathways for virus egress.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life-long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with age-related pathology. HCMV infects many cells in the human host and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact how progeny virus is trafficked out of infected cells.
Collapse
|
12
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
13
|
Lučin P, Jug Vučko N, Karleuša L, Mahmutefendić Lučin H, Blagojević Zagorac G, Lisnić B, Pavišić V, Marcelić M, Grabušić K, Brizić I, Lukanović Jurić S. Cytomegalovirus Generates Assembly Compartment in the Early Phase of Infection by Perturbation of Host-Cell Factors Recruitment at the Early Endosome/Endosomal Recycling Compartment/Trans-Golgi Interface. Front Cell Dev Biol 2020; 8:563607. [PMID: 33042998 PMCID: PMC7516400 DOI: 10.3389/fcell.2020.563607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
14
|
Das P, Boone S, Mitra D, Turner L, Tandon R, Raucher D, Hamme AT. Synthesis and biological evaluation of fluoro-substituted spiro-isoxazolines as potential anti-viral and anti-cancer agents. RSC Adv 2020; 10:30223-30237. [PMID: 35518245 PMCID: PMC9056317 DOI: 10.1039/d0ra06148d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022] Open
Abstract
Electrophilic fluorine-mediated dearomative spirocyclization has been developed to synthesize a range of fluoro-substituted spiro-isoxazoline ethers and lactones. The in vitro biological assays of synthesized compounds were probed for anti-viral activity against human cytomegalovirus (HCMV) and cytotoxicity against glioblastomas (GBM6) and triple negative breast cancer (MDA MB 231). Interestingly, compounds 4d and 4n showed significant activity against HCMV (IC50 ∼ 10 μM), while 4l and 5f revealed the highest cytotoxicity with IC50 = 36 to 80 μM. The synthetic efficacy and biological relevance offer an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.
Collapse
Affiliation(s)
- Prasanta Das
- Department of Chemistry and Biochemistry, Jackson State University Jackson Mississippi 39217 USA +1-601-203-5149
| | - Sarah Boone
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson Mississippi 39216 USA
| | - Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson Mississippi 39216 USA
| | - Lindsay Turner
- Department of Cellular and Molecular Biology, University of Mississippi Medical Center Jackson Mississippi 39216 USA
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson Mississippi 39216 USA
| | - Drazen Raucher
- Department of Cellular and Molecular Biology, University of Mississippi Medical Center Jackson Mississippi 39216 USA
| | - Ashton T Hamme
- Department of Chemistry and Biochemistry, Jackson State University Jackson Mississippi 39217 USA +1-601-203-5149
| |
Collapse
|
15
|
Kennedy MA, Hofstadter WA, Cristea IM. TRANSPIRE: A Computational Pipeline to Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1422-1439. [PMID: 32401031 PMCID: PMC7737664 DOI: 10.1021/jasms.0c00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein localization is paramount to protein function, and the intracellular movement of proteins underlies the regulation of numerous cellular processes. Given advances in spatial proteomics, the investigation of protein localization at a global scale has become attainable. Also becoming apparent is the need for dedicated analytical frameworks that allow the discovery of global intracellular protein movement events. Here, we describe TRANSPIRE, a computational pipeline that facilitates TRanslocation ANalysis of SPatIal pRotEomics data sets. TRANSPIRE leverages synthetic translocation profiles generated from organelle marker proteins to train a probabilistic Gaussian process classifier that predicts changes in protein distribution. This output is then integrated with information regarding co-translocating proteins and complexes and enriched gene ontology associations to discern the putative regulation and function of movement. We validate TRANSPIRE performance for predicting nuclear-cytoplasmic shuttling events. Analyzing an existing data set of nuclear and cytoplasmic proteomes during Kaposi Sarcoma-associated herpesvirus (KSHV)-induced cellular mRNA decay, we confirm that TRANSPIRE readily discerns expected translocations of RNA binding proteins. We next investigate protein translocations during infection with human cytomegalovirus (HCMV), a β-herpesvirus known to induce global organelle remodeling. We find that HCMV infection induces broad changes in protein localization, with over 800 proteins predicted to translocate during virus replication. Evident are protein movements related to HCMV modulation of host defense, metabolism, cellular trafficking, and Wnt signaling. For example, the low-density lipoprotein receptor (LDLR) translocates to the lysosome early in infection in conjunction with its degradation, which we validate by targeted mass spectrometry. Using microscopy, we also validate the translocation of the multifunctional kinase DAPK3, a movement that may contribute to HCMV activation of Wnt signaling.
Collapse
Affiliation(s)
- Michelle A Kennedy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - William A Hofstadter
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Seng C, Sharthiya H, Tiwari V, Fornaro M. Involvement of heparan sulfate during mouse cytomegalovirus infection in murine-derived immortalized neuronal cell line. Future Virol 2020. [DOI: 10.2217/fvl-2019-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytomegalovirus infection cause of severe developmental disorders of the CNS. Aim: In this study, we utilized a differentiated mouse-derived hippocampal cell line (dHT22) to understand mouse CMV (MCMV) infection. Results: The expression of immediate early genes ( IE) 1 and 3 confirmed the time-dependent susceptibility of dHT22 cells to MCMV infection. MCMV infection alters the cellular distribution of heparan sulfate (HS). In addition, pretreatment with heparinase significantly reduces virus infectivity. Conclusion: The compartmentalization of HS in MCMV infected cells suggests multiple roles of HS in virus life cycle ranging from viral entry to viral transport and cellular remodeling. An enzymatic heparinase assay confirmed that HS is critical for viral entry and trafficking.
Collapse
Affiliation(s)
- Chanmoly Seng
- Department of Biomedical Sciences, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Michele Fornaro
- Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
17
|
Abstract
Immunoelectron microscopy is a powerful technique for identifying viral antigens and determining their structural localization and organization within vaccines and viruses. While traditional negative staining transmission electron microscopy provides structural information, identity of components within a sample may be confounding. Immunoelectron microscopy allows for identification and visualization of antigens and their relative positions within a particulate sample. This allows for simple qualitative analysis of samples including whole virus, viral components, and viral‐like particles. This article describes methods for immunogold labeling of viral antigens in a liquid suspension, with examples of immunogold‐labeled influenza virus glycoproteins, and also discusses the important considerations for sample preparation and determination of morphologies. Together, these methods allow for understanding the antigenic makeup of viral particulate samples, which have important implications for molecular virology and vaccine development. © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Neetu M Gulati
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Udana Torian
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John R Gallagher
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Audray K Harris
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Elste J, Kaltenbach D, Patel VR, Nguyen MT, Sharthiya H, Tandon R, Mehta SK, Volin MV, Fornaro M, Tiwari V, Desai UR. Inhibition of Human Cytomegalovirus Entry into Host Cells Through a Pleiotropic Small Molecule. Int J Mol Sci 2020; 21:ijms21051676. [PMID: 32121406 PMCID: PMC7084493 DOI: 10.3390/ijms21051676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infections are wide-spread among the general population with manifestations ranging from asymptomatic to severe developmental disabilities in newborns and life-threatening illnesses in individuals with a compromised immune system. Nearly all current drugs suffer from one or more limitations, which emphasizes the critical need to develop new approaches and new molecules. We reasoned that a ‘poly-pharmacy’ approach relying on simultaneous binding to multiple receptors involved in HCMV entry into host cells could pave the way to a more effective therapeutic outcome. This work presents the study of a synthetic, small molecule displaying pleiotropicity of interactions as a competitive antagonist of viral or cell surface receptors including heparan sulfate proteoglycans and heparan sulfate-binding proteins, which play important roles in HCMV entry and spread. Sulfated pentagalloylglucoside (SPGG), a functional mimetic of heparan sulfate, inhibits HCMV entry into human foreskin fibroblasts and neuroepithelioma cells with high potency. At the same time, SPGG exhibits no toxicity at levels as high as 50-fold more than its inhibition potency. Interestingly, cell-ELISA assays showed downregulation in HCMV immediate-early gene 1 and 2 (IE 1&2) expression in presence of SPGG further supporting inhibition of viral entry. Finally, HCMV foci were observed to decrease significantly in the presence of SPGG suggesting impact on viral spread too. Overall, this work offers the first evidence that pleiotropicity, such as demonstrated by SPGG, may offer a new poly-therapeutic approach toward effective inhibition of HCMV.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Dominik Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Vraj R. Patel
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Max T. Nguyen
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (H.S.); (M.F.)
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | | | - Michael V. Volin
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
| | - Michele Fornaro
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (H.S.); (M.F.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (V.R.P.); (M.T.N.); (M.V.V.)
- Correspondence: (V.T.); (U.R.D.)
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Correspondence: (V.T.); (U.R.D.)
| |
Collapse
|
19
|
Portis B, Mirchi A, Hasan MH, Khansari ME, Johnson CR, Leszczynski J, Tandon R, Alamgir Hossain M. Cleft‐Induced Ditopic Binding of Spherical Halides with a Hexaurea Receptor. ChemistrySelect 2020. [DOI: 10.1002/slct.201903950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bobby Portis
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Ali Mirchi
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Mohammad H. Hasan
- Department: Microbiology and Immunology, Institution University of Mississippi Medical Center Jackson MS 39216 USA
| | - Maryam Emami Khansari
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Corey R. Johnson
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Jerzy Leszczynski
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Ritesh Tandon
- Department: Microbiology and Immunology, Institution University of Mississippi Medical Center Jackson MS 39216 USA
| | - Md. Alamgir Hossain
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| |
Collapse
|
20
|
Das P, Hasan MH, Mitra D, Bollavarapu R, Valente EJ, Tandon R, Raucher D, Hamme AT. Design, Synthesis, and Preliminary Studies of Spiro-isoxazoline-peroxides against Human Cytomegalovirus and Glioblastoma ∥. J Org Chem 2019; 84:6992-7006. [PMID: 31066280 DOI: 10.1021/acs.joc.9b00746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The association between glioblastoma (GBM) and human cytomegalovirus (HCMV) infection has been the intensely debated topic over the decades for developing new therapeutic options. In this regard, the peroxides from natural and synthetic sources served as potential antiviral and anticancer agents in the past. Herein, a concise and efficient strategy has been demonstrated to access a novel class of peroxides containing a spiro-isoxazoline to primarily investigate the biological activities. The synthetic compounds were evaluated for in vitro antiviral and antiproliferative activity against HCMV and glioblastoma cell line (GBM6), respectively. While compound 13m showed moderate anti-CMV activity (IC50 = 19 μM), surprisingly, an independent biological assay for compound 13m revealed its antiproliferative activity against the human glioblastoma cell line (GBM6) with an IC50 of 10 μM. Hence, the unification of an isoxazoline and peroxide heterocycles could be a potential direction to initiate the HCMV-GBM drug discovery program.
Collapse
Affiliation(s)
- Prasanta Das
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , Mississippi 39217 , United States
| | | | | | | | - Edward J Valente
- Department of Chemistry , University of Portland , Portland , Oregon 97203 , United States
| | | | | | - Ashton T Hamme
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , Mississippi 39217 , United States
| |
Collapse
|
21
|
Dynamin Is Required for Efficient Cytomegalovirus Maturation and Envelopment. J Virol 2018; 92:JVI.01418-18. [PMID: 30282704 DOI: 10.1128/jvi.01418-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus secondary envelopment occurs in a virus-induced cytoplasmic assembly compartment (vAC) generated via a drastic reorganization of the membranes of the secretory and endocytic systems. Dynamin is a eukaryotic GTPase that is implicated in membrane remodeling and endocytic membrane fission events; however, the role of dynamin in cellular trafficking of viruses beyond virus entry is only partially understood. Mouse embryonic fibroblasts (MEF) engineered to excise all three isoforms of dynamin were infected with mouse cytomegalovirus (MCMV-K181). Immediate-early (IE1; m123) viral protein was detected in these triple dynamin knockout (TKO) cells, as well as in mock-induced parental MEF, at early times postinfection, although levels were reduced in TKO cells, indicating that virus entry was affected but not eliminated. Levels of IE1 protein and another viral early protein (m04) were normalized by 48 h postinfection; however, late protein (m55; gB) expression was reduced in infected TKO cells compared to parental MEF. Ultrastructural analysis revealed intact stages of nuclear virus maturation in both cases with equivalent numbers of nucleocapsids containing packaged viral DNA (C-capsids), indicating successful viral DNA replication, capsid assembly, and genome packaging. Most importantly, severe defects in virus envelopment were visualized in TKO cells but not in parental cells. Dynamin inhibitor (dynasore)-treated MEF showed a phenotype similar to TKO cells upon mouse cytomegalovirus infection, confirming the role of dynamin in late maturation processes. In summary, dynamin-mediated endocytic pathways are critical for the completion of cytoplasmic stages of cytomegalovirus maturation.IMPORTANCE Viruses are known to exploit specific cellular functions at different stages of their life cycle in order to replicate, avoid immune recognition by the host and to establish a successful infection. Cytomegalovirus (CMV)-infected cells are characterized by a prominent cytoplasmic inclusion (virus assembly compartment [vAC]) that is the site of virus maturation and envelopment. While endocytic membranes are known to be the functional components of vAC, knowledge of specific endocytic pathways implicated in CMV maturation and envelopment is lacking. We show here that dynamin, which is an integral part of host endocytic machinery, is largely dispensable for early stages of CMV infection but is required at a late stage of CMV maturation. Studies on dynamin function in CMV infection will help us understand the host-virus interaction pathways amenable to targeting by conventional small molecules, as well as by newer generation nucleotide-based therapeutics (e.g., small interfering RNA, CRISPR/CAS gRNA, etc.).
Collapse
|
22
|
Close WL, Glassbrook JE, Gurczynski SJ, Pellett PE. Infection-Induced Changes Within the Endocytic Recycling Compartment Suggest a Roadmap of Human Cytomegalovirus Egress. Front Microbiol 2018; 9:1888. [PMID: 30186245 PMCID: PMC6113367 DOI: 10.3389/fmicb.2018.01888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in developing fetuses, neonates, and individuals with compromised immune systems. Gaps in our understanding of the mechanisms required for virion assembly stand in the way of development of antivirals targeting late stages of viral replication. During infection, HCMV causes a dramatic reorganization of the host endosecretory system, leading to the formation of the cytoplasmic virion assembly complex (cVAC), the site of virion assembly. As part of cVAC biogenesis, the composition and behavior of endosecretory organelles change. To gain more comprehensive understanding of the impact HCMV infection has on components of the cellular endocytic recycling compartment (ERC), we used previously published transcriptional and proteomic datasets to predict changes in the directionality of ERC trafficking. We identified infection-associated changes in gene expression that suggest shifts in the balance between endocytic and exocytic recycling pathways, leading to formation of a secretory trap within the cVAC. Conversely, there was a corresponding shift favoring outbound secretory vesicle trafficking, indicating a potential role in virion egress. These observations are consistent with previous studies describing sequestration of signaling molecules, such as IL-6, and the synaptic vesicle-like properties of mature HCMV virions. Our analysis enabled development of a refined model incorporating old and new information related to the behavior of the ERC during HCMV replication. While limited by the paucity of integrated systems-level data, the model provides an informed basis for development of experimentally testable hypotheses related to mechanisms involved in HCMV virion maturation and egress. Information from such experiments will provide a robust roadmap for rational development of novel antivirals for HCMV and related viruses.
Collapse
Affiliation(s)
- William L. Close
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| | - James E. Glassbrook
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| | - Stephen J. Gurczynski
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Philip E. Pellett
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
23
|
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses. Front Immunol 2018; 9:433. [PMID: 29559974 PMCID: PMC5845630 DOI: 10.3389/fimmu.2018.00433] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs) were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV)], miR-H1 [herpes simplex virus 1 (HSV1)], and miR-UL-70-3p [human cytomegalovirus (HCMV)] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK). Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ) and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre)-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in immune subversion. Our findings reveal that oral disease associated v-miRs can dysregulate functions of key host cells that shape oral mucosal immunity thus exacerbating disease severity and progression.
Collapse
Affiliation(s)
- Afsar R. Naqvi
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jennifer Shango
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexandra Seal
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Salvador Nares
- Department of Periodontics-Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
25
|
Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water. Sci Rep 2018; 8:286. [PMID: 29321505 PMCID: PMC5762659 DOI: 10.1038/s41598-017-18322-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022] Open
Abstract
The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.
Collapse
|
26
|
Dietz AN, Villinger C, Becker S, Frick M, von Einem J. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment. J Virol 2018; 92:e00907-17. [PMID: 29046458 PMCID: PMC5730796 DOI: 10.1128/jvi.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC.IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Clarissa Villinger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Stefan Becker
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
27
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
28
|
Emami Khansari M, Hasan MH, Johnson CR, Williams NA, Wong BM, Powell DR, Tandon R, Hossain MA. Anion Complexation Studies of 3-Nitrophenyl-Substituted Tripodal Thiourea Receptor: A Naked-Eye Detection of Sulfate via Fluoride Displacement Assay. ACS OMEGA 2017; 2:9057-9066. [PMID: 30023599 PMCID: PMC6044562 DOI: 10.1021/acsomega.7b01485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
A thiourea-based tripodal receptor L substituted with 3-nitrophenyl groups has been synthesized, and the binding affinity for a variety of anions has been studied by 1H NMR titrations and nuclear Overhauser enhancement spectroscopy experiments in dimethyl sulfoxide-d6. As investigated by 1H NMR titrations, the receptor binds an anion in a 1:1 binding mode, showing the highest binding and strong selectivity for sulfate anion. A competitive colorimetric assay in the presence of fluoride suggests that the sulfate is capable of displacing the bound fluoride, showing a sharp visible color change. The strong affinity of L for sulfate was further supported by UV-vis titrations and density functional theory (DFT) calculations. Time-dependent DFT calculations indicate that the fluoride complex possesses a different optical absorption spectrum (due to charge transfer between the fluoride and the surrounding ligand) than the sulfate complex, reflecting the observed colorimetric change in these two complexes. The receptor was further tested for its biocompatibility on primary human foreskin fibroblasts and HeLa cells, exhibiting an excellent cell viability up to 100 μM concentration.
Collapse
Affiliation(s)
- Maryam Emami Khansari
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Mohammad H. Hasan
- Department
of Microbiology and Immunology, University
of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Corey R. Johnson
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Nya A. Williams
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Bryan M. Wong
- Department
of Chemical & Environmental Engineering and Materials Science
& Engineering Program, University of
California—Riverside, Riverside, California 92521, United States
| | - Douglas R. Powell
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United
States
| | - Ritesh Tandon
- Department
of Microbiology and Immunology, University
of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Md. Alamgir Hossain
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| |
Collapse
|