1
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Okabe M, Sato T, Takahashi M, Honjo A, Okawa M, Ishida M, Kukimoto-Niino M, Shirouzu M, Miyamoto Y, Yamauchi J. Autism Spectrum Disorder- and/or Intellectual Disability-Associated Semaphorin-5A Exploits the Mechanism by Which Dock5 Signalosome Molecules Control Cell Shape. Curr Issues Mol Biol 2024; 46:3092-3107. [PMID: 38666924 PMCID: PMC11049140 DOI: 10.3390/cimb46040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.
Collapse
Affiliation(s)
- Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Asahi Honjo
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
3
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
4
|
Akintunde ME, Lin YP, Krakowiak P, Pessah IN, Hertz-Picciotto I, Puschner B, Ashwood P, Van de Water J. Ex vivo exposure to polybrominated diphenyl ether (PBDE) selectively affects the immune response in autistic children. Brain Behav Immun Health 2023; 34:100697. [PMID: 38020477 PMCID: PMC10654005 DOI: 10.1016/j.bbih.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1β, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.
Collapse
Affiliation(s)
- Marjannie Eloi Akintunde
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Yan-ping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paula Krakowiak
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Irva Hertz-Picciotto
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paul Ashwood
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
- School of Medicine, Department of Microbiology and Immunology, University of California, Davis, United States
| | - Judy Van de Water
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| |
Collapse
|
5
|
Mehta R, Kuhad A, Bhandari R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin Ther Targets 2022; 26:659-679. [DOI: 10.1080/14728222.2022.2100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| |
Collapse
|
6
|
Tamouza R, Volt F, Richard JR, Wu CL, Bouassida J, Boukouaci W, Lansiaux P, Cappelli B, Scigliuolo GM, Rafii H, Kenzey C, Mezouad E, Naamoune S, Chami L, Lejuste F, Farge D, Gluckman E. Possible Effect of the use of Mesenchymal Stromal Cells in the Treatment of Autism Spectrum Disorders: A Review. Front Cell Dev Biol 2022; 10:809686. [PMID: 35865626 PMCID: PMC9294632 DOI: 10.3389/fcell.2022.809686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a set of heterogeneous neurodevelopmental conditions defined by impaired social interactions and repetitive behaviors. The number of reported cases has increased over the past decades, and ASD is now a major public health burden. So far, only treatments to alleviate symptoms are available, with still unmet need for an effective disease treatment to reduce ASD core symptoms. Genetic predisposition alone can only explain a small fraction of the ASD cases. It has been reported that environmental factors interacting with specific inter-individual genetic background may induce immune dysfunctions and contribute to the incidence of ASD. Such dysfunctions can be observed at the central level, with increased microglial cells and activation in ASD brains or in the peripheral blood, as reflected by high circulating levels of pro-inflammatory cytokines, abnormal activation of T-cell subsets, presence of auto-antibodies and of dysregulated microbiota profiles. Altogether, the dysfunction of immune processes may result from immunogenetically-determined inefficient immune responses against a given challenge followed by chronic inflammation and autoimmunity. In this context, immunomodulatory therapies might offer a valid therapeutic option. Mesenchymal stromal cells (MSC) immunoregulatory and immunosuppressive properties constitute a strong rationale for their use to improve ASD clinical symptoms. In vitro studies and pre-clinical models have shown that MSC can induce synapse formation and enhance synaptic function with consequent improvement of ASD-like symptoms in mice. In addition, two preliminary human trials based on the infusion of cord blood-derived MSC showed the safety and tolerability of the procedure in children with ASD and reported promising clinical improvement of core symptoms. We review herein the immune dysfunctions associated with ASD provided, the rationale for using MSC to treat patients with ASD and summarize the current available studies addressing this subject.
Collapse
Affiliation(s)
- Ryad Tamouza
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
- *Correspondence: Ryad Tamouza,
| | - Fernanda Volt
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Jean-Romain Richard
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Ching-Lien Wu
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Jihène Bouassida
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Wahid Boukouaci
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04), CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-immunes Systémiques Rares D’Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France
| | - Barbara Cappelli
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Hanadi Rafii
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Chantal Kenzey
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Esma Mezouad
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Soumia Naamoune
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Leila Chami
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Florian Lejuste
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Dominique Farge
- Unité de Médecine Interne (UF 04), CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-immunes Systémiques Rares D’Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France
| | - Eliane Gluckman
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
7
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
8
|
Gevezova M, Sarafian V, Anderson G, Maes M. Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:320-333. [PMID: 32600237 DOI: 10.2174/1871527319666200628015039] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Autism Spectrum Disorders (ASD) is a severe childhood psychiatric condition with an array of cognitive, language and social impairments that can significantly impact family life. ASD is classically characterized by reduced communication skills and social interactions, with limitations imposed by repetitive patterns of behavior, interests, and activities. The pathophysiology of ASD is thought to arise from complex interactions between environmental and genetic factors within the context of individual development. A growing body of research has raised the possibility of identifying the aetiological causes of the disorder. This review highlights the roles of immune-inflammatory pathways, nitro-oxidative stress and mitochondrial dysfunctions in ASD pathogenesis and symptom severity. The role of NK-cells, T helper, T regulatory and B-cells, coupled with increased inflammatory cytokines, lowered levels of immune-regulatory cytokines, and increased autoantibodies and microglial activation is elucidated. It is proposed that alterations in mitochondrial activity and nitrooxidative stress are intimately associated with activated immune-inflammatory pathways. Future research should determine as to whether the mitochondria, immune-inflammatory activity and nitrooxidative stress changes in ASD affect the development of amygdala-frontal cortex interactions. A number of treatment implications may arise, including prevention-orientated prenatal interventions, treatment of pregnant women with vitamin D, and sodium butyrate. Treatments of ASD children and adults with probiotics, sodium butyrate and butyrate-inducing diets, antipurinergic therapy with suramin, melatonin, oxytocin and taurine are also discussed.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | | | - Michael Maes
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
9
|
Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J Pers Med 2021; 11:jpm11010041. [PMID: 33450950 PMCID: PMC7828397 DOI: 10.3390/jpm11010041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by impairments in two main areas: social/communication skills and repetitive behavioral patterns. The prevalence of ASD has increased in the past two decades, however, it is not known whether the evident rise in ASD prevalence is due to changes in diagnostic criteria or an actual increase in ASD cases. Due to the complexity and heterogeneity of ASD, symptoms vary in severity and may be accompanied by comorbidities such as epilepsy, attention deficit hyperactivity disorder (ADHD), and gastrointestinal (GI) disorders. Identifying biomarkers of ASD is not only crucial to understanding the biological characteristics of the disorder, but also as a detection tool for its early screening. Hence, this review gives an insight into the main areas of ASD biomarker research that show promising findings. Finally, it covers success stories that highlight the importance of precision medicine and the current challenges in ASD biomarker discovery studies.
Collapse
Affiliation(s)
- Areej G. Mesleh
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Sara A. Abdulla
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| | - Omar El-Agnaf
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| |
Collapse
|
10
|
Jones KL, Pride MC, Edmiston E, Yang M, Silverman JL, Crawley JN, Van de Water J. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry 2020; 25:2994-3009. [PMID: 29955164 PMCID: PMC6310680 DOI: 10.1038/s41380-018-0126-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
Immune dysregulation has been noted consistently in individuals with autism spectrum disorder (ASD) and their families, including the presence of autoantibodies reactive to fetal brain proteins in nearly a quarter of mothers of children with ASD versus <1% in mothers of typically developing children. Our lab recently identified the peptide epitope sequences on seven antigenic proteins targeted by these maternal autoantibodies. Through immunization with these peptide epitopes, we have successfully created an endogenous, antigen-driven mouse model that ensures a constant exposure to the salient autoantibodies throughout gestation in C57BL/6J mice. This exposure more naturally mimics what is observed in mothers of children with ASD. Male and female offspring were tested using a comprehensive sequence of behavioral assays, as well as measures of health and development highly relevant to ASD. We found that MAR-ASD male and female offspring had significant alterations in development and social interactions during dyadic play. Although 3-chambered social approach was not significantly different, fewer social interactions with an estrous female were noted in the adult male MAR-ASD animals, as well as reduced vocalizations emitted in response to social cues with robust repetitive self-grooming behaviors relative to saline treated controls. The generation of MAR-ASD-specific epitope autoantibodies in female mice prior to breeding created a model that demonstrates for the first time that ASD-specific antigen-induced maternal autoantibodies produced alterations in a constellation of ASD-relevant behaviors.
Collapse
Affiliation(s)
- Karen L. Jones
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA,MIND Institute, University of California, Davis, CA, USA
| | - Michael C. Pride
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Elizabeth Edmiston
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Mu Yang
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA,Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Jill L. Silverman
- MIND Institute, University of California, Davis, CA, USA,Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, University of California, Davis, CA, USA,Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA. .,MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
11
|
Marks K, Coutinho E, Vincent A. Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. J Clin Med 2020; 9:jcm9082564. [PMID: 32784803 PMCID: PMC7465310 DOI: 10.3390/jcm9082564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies.
Collapse
Affiliation(s)
- Katya Marks
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK;
| | - Ester Coutinho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, SE5 9RT London, UK;
- Nuffield Department of Clinical Neurosciences and Weatherall Institute for Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Angela Vincent
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, SE1 1UL London, UK
- Correspondence: ; Tel.: +44-781-722-4849 or +44-186-555-9636
| |
Collapse
|
12
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
13
|
Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine 2019; 123:154740. [PMID: 31228728 DOI: 10.1016/j.cyto.2019.154740] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the search for the causes of autism spectrum disorders (ASD), inflammatory markers have emerged as potential candidates. The present meta-analysis was performed on studies examining circulating concentrations of anti-inflammatory cytokines in people with ASD compared with control subjects without ASD. METHODS We identified potentially eligible studies by systematically searching electronic databases from inception to February 2018. RESULTS Twenty-five studies with a total of 1754 participants (1022 patients with ASD and 732 control subjects) were included in the mate-analysis; 4 for interferon (IFN)-α, 9 for interleukin (IL)-1 receptor antagonist (Ra), 9 for IL-4, 6 for IL-5, 3 for IL-9, 14 for IL-10, 7 for IL-13, and 6 for transforming growth factor (TGF)-β. We found a moderate decrease in plasma levels of IL-10 (SMD = -0.59) and a small decrease in serum levels of IL-1Ra (SMD = -0.25) in patients with ASD. On the contrary, serum IL-5 levels were slightly increased (SMD = 0.26) in these patients. We conducted meta-regression analyses to investigate the possible effect of moderatos on the effect size (ES) of difference in mean levels of IL-10. Difference in the mean age between patients and controls showed a negative influence on the ES and was able to explain about 0.4 of total between-study variance. In contrast, latitude exerted a positive effect on the ES and explained a lower proportion (0.1) of total between-study variance. CONCLUSIONS This meta-analysis provides evidence for the lower concentration of anti-inflammatory cytokines IL-10 and IL-1Ra in autistic patients compared with control subjects. Also, meta-regression analyses point to the interaction of latitude, age, and gender with peripheral alterations of associated anti-inflammatory cytokines.
Collapse
|
14
|
Jones KL, Van de Water J. Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry 2019; 24:252-265. [PMID: 29934547 PMCID: PMC6784837 DOI: 10.1038/s41380-018-0099-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
It has been estimated that autism spectrum disorder (ASD) now affects 1 in 59 children in the United States. Although the cause(s) of ASD remain largely unknown, it is becoming increasingly apparent that ASD can no longer be defined simply as a behavioral disorder, but is in effect a rather complex and highly heterogeneous biological disorder. Up until recently the brain was thought to be "immune privileged." However, it is now known that the immune system plays critical roles in the development and functioning of the brain throughout life. Recent evidence from multiple investigators has illustrated the deleterious role that dysregulation of the maternal immune system during gestation can play in the manifestation of changes in neurodevelopment, resulting in the development of neurobehavioral disorders such as ASD. One potential etiologic pathway through which the maternal immune system can interfere with neurodevelopment is through maternal autoantibodies that recognize proteins in the developing fetal brain. This mechanism of pathogenesis is now thought to lead to a subphenotype of ASD that has been termed maternal autoantibody related (MAR) ASD. This review provides an overview of the current research implicating the presence of brain-reactive maternal autoantibodies as a risk factor for MAR ASD.
Collapse
Affiliation(s)
- Karen L. Jones
- Rheumatology/Allergy and Clinical Immunology, University of California, 451 E. Health Sciences Drive, Suite 6510 GBSF, Davis, CA 95616, USA,The M.I.N.D. Institute, University of California, Davis, CA 95616, USA
| | - Judy Van de Water
- Rheumatology/Allergy and Clinical Immunology, University of California, 451 E. Health Sciences Drive, Suite 6510 GBSF, Davis, CA, 95616, USA. .,The M.I.N.D. Institute, University of California, Davis, CA, 95616, USA. .,NIEHS Center for Children's Environmental Health, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|
16
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
17
|
Zhang J, Luo W, Huang P, Peng L, Huang Q. Maternal C-reactive protein and cytokine levels during pregnancy and the risk of selected neuropsychiatric disorders in offspring: A systematic review and meta-analysis. J Psychiatr Res 2018; 105:86-94. [PMID: 30212728 DOI: 10.1016/j.jpsychires.2018.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
The pathophysiology of neuropsychiatric disorders is unclear. Increasing evidence has suggested maternal immune system dysregulation may be implicated in offspring's early brain development and related to an increased risk of neuropsychiatric disorders in offspring. The primary objective of this meta-analysis was to investigate the association of maternal CRP and cytokine levels with offspring's neuropsychiatric disorders. We identified relevant studies following a search of PubMed, Web of Science, EMbase database between January 1971 and February 2018. A meta-analysis was performed on studies which reported the association of prenatal maternal peripheral blood concentrations of CRP and cytokines with offspring's neuropsychiatric disorders. Results were reported according to PRISMA statement. Fifteen studies (six for maternal CRP, nine for maternal cytokines) were included in the meta-analysis, of which 80% were of high methodological quality. Random-effect meta-analysis showed that increasing maternal CRP (OR = 1.31, 95% CI 1.11-1.55, SMD = 0.15, 95% CI 0.06-0.24, P < 0.01), pro-inflammatory cytokine interleukin (IL)-8 (OR = 1.64, 95% CI 1.06-2.55, SMD = 0.27, 95% CI 0.03-0.52, P = 0.03) and anti-inflammatory cytokine IL-10 (OR = 2.16, 95% CI 1.30-3.59, SMD = 0.43, 95% CI 0.14-0.71, P < 0.01) were significantly associated with schizophrenia in offspring. The finding of our meta-analysis has identified significantly altered maternal CRP and cytokine concentrations in schizophrenia, strengthening evidence of maternal immune system dysregulation in neuropsychiatric disorders where inflammatory signals dominate.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wanjun Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Pengcheng Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Linrui Peng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qitao Huang
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11:554-586. [PMID: 29573218 DOI: 10.1002/aur.1938] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This Keynote Lecture, delivered at the 2016 meeting of the International Society for Autism Research, discusses evidence from human epidemiologic studies of prenatal factors contributing to autism, such as pesticides, maternal nutrition and her health. There is no single cause for autism. Examples highlight the features of a high-quality epidemiology study, and what comprises a compelling case for causation. Emergent research directions hold promise for identifying potential interventions to reduce disabilities, enhance giftedness, and improve lives of those with ASD.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Paula Krakowiak
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| |
Collapse
|
19
|
Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front Psychiatry 2018; 9:751. [PMID: 30733689 PMCID: PMC6354568 DOI: 10.3389/fpsyt.2018.00751] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Co-occurring medical disorders and associated physiological abnormalities in individuals with autism spectrum disorder (ASD) may provide insight into causal pathways or underlying biological mechanisms. Here, we review medical conditions that have been repeatedly highlighted as sharing the strongest associations with ASD-epilepsy, sleep, as well as gastrointestinal and immune functioning. We describe within each condition their prevalence, associations with behavior, and evidence for successful treatment. We additionally discuss research aiming to uncover potential aetiological mechanisms. We then consider the potential interaction between each group of conditions and ASD and, based on the available evidence, propose a model that integrates these medical comorbidities in relation to potential shared aetiological mechanisms. Future research should aim to systematically examine the interactions between these physiological systems, rather than considering these in isolation, using robust and sensitive biomarkers across an individual's development. A consideration of the overlap between medical conditions and ASD may aid in defining biological subtypes within ASD and in the development of specific targeted interventions.
Collapse
Affiliation(s)
- Charlotte Tye
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Abigail K Runicles
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| |
Collapse
|
20
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Heun-Johnson H, Levitt P. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress 2017; 8:10-20. [PMID: 29255778 PMCID: PMC5723381 DOI: 10.1016/j.ynstr.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 01/01/2023] Open
Abstract
Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ‘C’ allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression (Met+/−) and early-life stress from postnatal day 2–9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met+/− mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met+/− mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.
Collapse
Affiliation(s)
- Hanke Heun-Johnson
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Shimogori T, Abe A, Go Y, Hashikawa T, Kishi N, Kikuchi SS, Kita Y, Niimi K, Nishibe H, Okuno M, Saga K, Sakurai M, Sato M, Serizawa T, Suzuki S, Takahashi E, Tanaka M, Tatsumoto S, Toki M, U M, Wang Y, Windak KJ, Yamagishi H, Yamashita K, Yoda T, Yoshida AC, Yoshida C, Yoshimoto T, Okano H. Digital gene atlas of neonate common marmoset brain. Neurosci Res 2017; 128:1-13. [PMID: 29111135 DOI: 10.1016/j.neures.2017.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023]
Abstract
Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research.
Collapse
Affiliation(s)
- Tomomi Shimogori
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Ayumi Abe
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Tsutomu Hashikawa
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Noriyuki Kishi
- RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-0016, Japan
| | - Satomi S Kikuchi
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshiaki Kita
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kimie Niimi
- RIKEN Brain Science Institute, Support Unit for Animal Resources Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hirozumi Nishibe
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Misako Okuno
- RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-0016, Japan
| | - Kanako Saga
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Miyano Sakurai
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masae Sato
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsuna Serizawa
- Progress wave, 3-14-11 Takamatsu-cho, Tachikawashi, Tokyo 190-0011, Japan
| | - Sachie Suzuki
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Eiki Takahashi
- RIKEN Brain Science Institute, Support Unit for Animal Resources Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mami Tanaka
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoji Tatsumoto
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Mitsuhiro Toki
- Progress wave, 3-14-11 Takamatsu-cho, Tachikawashi, Tokyo 190-0011, Japan
| | - Mami U
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yan Wang
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Karl J Windak
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Haruhiko Yamagishi
- Progress wave, 3-14-11 Takamatsu-cho, Tachikawashi, Tokyo 190-0011, Japan
| | - Keiko Yamashita
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomoko Yoda
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chihiro Yoshida
- RIKEN Brain Science Institute, Laboratory for Molecular Mechanisms of Thalamus Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takuro Yoshimoto
- RIKEN Brain Science Institute, Support Unit for Animal Resources Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideyuki Okano
- RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-0016, Japan.
| |
Collapse
|
23
|
Kamitakahara A, Wu HH, Levitt P. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase. J Comp Neurol 2017; 525:3787-3808. [PMID: 28758209 DOI: 10.1002/cne.24294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a METEGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD.
Collapse
Affiliation(s)
- Anna Kamitakahara
- Program in Developmental Neurogenetics, Institute for the Developing Mind, The Saban Resarch Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Hsiao-Huei Wu
- Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind, The Saban Resarch Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California.,University of Southern California Program in Neuroscience, Los Angeles, California
| |
Collapse
|
24
|
Edmiston E, Ashwood P, Van de Water J. Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biol Psychiatry 2017; 81:383-390. [PMID: 28340985 PMCID: PMC5373490 DOI: 10.1016/j.biopsych.2016.08.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Auism spectrum disorder (ASD) now affects one in 68 births in the United States and is the fastest growing neurodevelopmental disability worldwide. Alarmingly, for the majority of cases, the causes of ASD are largely unknown, but it is becoming increasingly accepted that ASD is no longer defined simply as a behavioral disorder, but rather as a highly complex and heterogeneous biological disorder. Although research has focused on the identification of genetic abnormalities, emerging studies increasingly suggest that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in ASD. This review summarizes the investigations implicating autoimmunity and autoantibodies in ASD.
Collapse
Affiliation(s)
- Elizabeth Edmiston
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California; The M.I.N.D. Institute, University of California, Davis, Davis, California
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California, Davis, Davis, California; NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, California; Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, California; The M.I.N.D. Institute, University of California, Davis, Davis, California; NIEHS Center for Children's Environmental Health, University of California, Davis, Davis, California.
| |
Collapse
|
25
|
Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism. Biol Psychiatry 2017; 81:424-433. [PMID: 27837921 PMCID: PMC5285483 DOI: 10.1016/j.biopsych.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
Abstract
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Zhihui Xie
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
26
|
Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry 2017; 22:273-279. [PMID: 27217154 PMCID: PMC5122473 DOI: 10.1038/mp.2016.77] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score<70) (ASD+ID, N=184) and those without (composite score⩾70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-γ, interleukin-1α (IL-1α) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD.
Collapse
|
27
|
Meltzer A, Van de Water J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017; 42:284-298. [PMID: 27534269 PMCID: PMC5143489 DOI: 10.1038/npp.2016.158] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.
Collapse
Affiliation(s)
- Amory Meltzer
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
- The M.I.N.D. Institute, University of California, Davis, CA, USA
- NIEHS Center for Children's Environmental Health, University of California, Davis, CA, USA
| |
Collapse
|
28
|
Dendrou CA, McVean G, Fugger L. Neuroinflammation - using big data to inform clinical practice. Nat Rev Neurol 2016; 12:685-698. [PMID: 27857124 DOI: 10.1038/nrneurol.2016.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is emerging as a central process in many neurological conditions, either as a causative factor or as a secondary response to nervous system insult. Understanding the causes and consequences of neuroinflammation could, therefore, provide insight that is needed to improve therapeutic interventions across many diseases. However, the complexity of the pathways involved necessitates the use of high-throughput approaches to extensively interrogate the process, and appropriate strategies to translate the data generated into clinical benefit. Use of 'big data' aims to generate, integrate and analyse large, heterogeneous datasets to provide in-depth insights into complex processes, and has the potential to unravel the complexities of neuroinflammation. Limitations in data analysis approaches currently prevent the full potential of big data being reached, but some aspects of big data are already yielding results. The implementation of 'omics' analyses in particular is becoming routine practice in biomedical research, and neuroimaging is producing large sets of complex data. In this Review, we evaluate the impact of the drive to collect and analyse big data on our understanding of neuroinflammation in disease. We describe the breadth of big data that are leading to an evolution in our understanding of this field, exemplify how these data are beginning to be of use in a clinical setting, and consider possible future directions.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
29
|
Krakowiak P, Walker CK, Tancredi D, Hertz-Picciotto I, Van de Water J. Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions. Autism Res 2016; 10:89-98. [PMID: 27312731 DOI: 10.1002/aur.1657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Approximately 23% of mothers of children with autism spectrum disorder (ASD) produce specific patterns of autoantibodies to fetal brain proteins that have been detected in only 1% of mothers of typically developing children. The biological mechanisms underlying the development of ASD-specific maternal autoantibodies are poorly understood. We sought to determine whether ASD-specific maternal autoantibodies identified postnatally were associated with metabolic conditions (MCs) during gestation. Participants were 227 mothers of 2-5 year old children with confirmed ASD, enrolled in CHARGE (Childhood Autism Risk from Genetics and the Environment) between January 2003 and April 2008, and from whom blood samples were collected and analyzed for anti-fetal brain autoantibodies (Ab+). MCs included diabetes, hypertensive disorders, and prepregnancy obesity or overweight, ascertained from medical records or structured telephone interviews. Log-linear regression models were performed to estimate prevalence ratios and 95% confidence intervals (CI) based on robust standard errors. Fifty-six (25%) mothers were Ab+. Ab+ prevalence was higher among mothers with diabetes, hypertensive disorders, or overweight compared to healthy mothers, but differences were not statistically significant. In a subset of 145 mothers whose children exhibited severe ASD (31 Ab+), those diagnosed with type 2 or gestational diabetes were 2.7-fold more likely to be Ab+ (95% CI 1.1, 6.6), controlling for delivery payer and smoking. Gestational diabetes specifically was associated with a 3.2-fold increased Ab+ prevalence (95% CI 1.2, 8.6). In this exploratory study, mothers whose children had severe ASD and who experienced diabetes were more likely to have anti-fetal brain autoantibodies 2-5 years later. Autism Res 2017, 10: 89-98. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Krakowiak
- Divisions of Epidemiology and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, California.,Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California
| | - Cheryl K Walker
- Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of California, Davis, California
| | - Daniel Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, California
| | - Irva Hertz-Picciotto
- Divisions of Epidemiology and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, California.,Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California
| | - Judy Van de Water
- Medical Investigations of Neurodevelopmental Disorders Institute (MIND), University of California, Davis, California.,Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, University of California, Davis, California
| |
Collapse
|
30
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
31
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
32
|
Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W. The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Front Psychiatry 2015; 6:121. [PMID: 26441683 PMCID: PMC4563148 DOI: 10.3389/fpsyt.2015.00121] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patients, as well as autoantibody production. Also, epidemiological studies have established a correlation of ASD with family history of autoimmune diseases; associations with major histocompatibility complex haplotypes and abnormal levels of immunological markers in the blood. Moreover, the use of animal models to study ASD is providing increasing information on the relationship between the immune system and the pathophysiology of ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention to the relevant aspects of factors that may be related to the neuroimmune interface in the development of ASD, including changes in neuroplasticity.
Collapse
Affiliation(s)
- Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fiona Francis
- Sorbonne Université, Université Pierre et Marie Curie, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Zanella R, Gava D, Peixoto JDO, Schaefer R, Ciacci-Zanella JR, Biondo N, da Silva MVGB, Cantão ME, Ledur MC. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus. Virus Res 2015; 210:327-36. [PMID: 26362524 DOI: 10.1016/j.virusres.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
A genome-wide association study for immune response to influenza vaccination in a crossbred swine population was conducted. Swine influenza is caused by influenza A virus (FLUAV) which is considered one of the most prevalent respiratory pathogens in swine worldwide. The main strategy used to control influenza in swine herds is through vaccination. However, the currently circulating FLUAV subtypes in swine are genetically and antigenically diverse and their interaction with the host genetics poses a challenge for the production of efficacious and cross-protective vaccines. In this study, 103 pigs vaccinated with an inactivated H1N1 pandemic virus were genotyped with the Illumina PorcineSNP60V2 BeadChip for the identification of genetic markers associated with immune response efficacy to influenza A virus vaccination. Immune response was measured based on the presence or absence of HA (hemagglutinin) and NP (nucleoprotein) antibodies induced by vaccination and detected in swine sera by the hemagglutination inhibition (HI) and ELISA assays, respectively. The ELISA test was also used as a measurement of antibody levels produced following the FLUAV vaccination. Associations were tested with x(2) test for a case and control data and using maximum likelihood method for the quantitative data, where a moderate association was considered if p<5×10(-5). When testing the association using the HI results, three markers with unknown location and three located on chromosomes SSCX, SSC14 and SSC18 were identified as associated with the immune response. Using the response to vaccination measured by ELISA as a qualitative and quantitative phenotype, four genomic regions were associated with immune response: one on SSC12 and three on chromosomes SSC1, SSC7, and SSC15, respectively. Those regions harbor important functional candidate genes possibly involved with the degree of immune response to vaccination. These results show an important role of host genetics in the immune response to influenza vaccination. Genetic selection for pigs with better response to FLUAV vaccination might be an alternative to reduce the impact of influenza virus infection in the swine industry. However, these results should to be validated in additional populations before its use.
Collapse
Affiliation(s)
- Ricardo Zanella
- Embrapa Swine and Poultry, Concórdia, SC, Brazil; Present Address: University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martínez-Cerdeño V, Camacho J, Fox E, Miller E, Ariza J, Kienzle D, Plank K, Noctor SC, Van de Water J. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals. Cereb Cortex 2014; 26:374-383. [PMID: 25535268 DOI: 10.1093/cercor/bhu291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine
- MIND Institute
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Jasmin Camacho
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Elizabeth Fox
- MIND Institute
- Department of Rheumatology/Allergy and Clinical Immunology, UC Davis, Davis, CA 95616, USA
| | - Elaine Miller
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Devon Kienzle
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Kaela Plank
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Stephen C Noctor
- MIND Institute
- Department of Psychiatry and Behavioral Sciences, UC Davis, Sacramento, CA 95817, USA
| | - Judy Van de Water
- MIND Institute
- Department of Rheumatology/Allergy and Clinical Immunology, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2014; 163:49-55. [PMID: 25448709 DOI: 10.1016/j.imlet.2014.11.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review.
Collapse
Affiliation(s)
- Jennifer Mead
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
36
|
Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology 2014; 25:44-7. [PMID: 24240654 DOI: 10.1097/ede.0000000000000030] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Independent studies report association of autism spectrum disorder with air pollution exposure and a functional promoter variant (rs1858830) in the MET receptor tyrosine kinase (MET) gene. Toxicological data find altered brain Met expression in mice after prenatal exposure to a model air pollutant. Our objective was to investigate whether air pollution exposure and MET rs1858830 genotype interact to alter the risk of autism spectrum disorder. METHODS We studied 252 cases of autism spectrum disorder and 156 typically developing controls from the Childhood Autism Risk from Genetics and the Environment Study. Air pollution exposure was assigned for local traffic-related sources and regional sources (particulate matter, nitrogen dioxide, and ozone). MET genotype was determined by direct resequencing. RESULTS Subjects with both MET rs1858830 CC genotype and high air pollutant exposures were at increased risk of autism spectrum disorder compared with subjects who had both the CG/GG genotypes and lower air pollutant exposures. There was evidence of multiplicative interaction between NO2 and MET CC genotype (P= 0.03). CONCLUSIONS MET rs1858830 CC genotype and air pollutant exposure may interact to increase the risk of autism spectrum disorder.
Collapse
|
37
|
Lambert N, Wermenbol V, Pichon B, Acosta S, van den Ameele J, Perazzolo C, Messina D, Musumeci MF, Dessars B, De Leener A, Abramowicz M, Vilain C. A familial heterozygous null mutation of MET in autism spectrum disorder. Autism Res 2014; 7:617-22. [PMID: 24909855 DOI: 10.1002/aur.1396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/01/2014] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) results from interactions of genetic and environmental factors. The MET proto-oncogene has been identified as a candidate gene for autism susceptibility, and is implicated in neurodevelopment and social brain circuitry. Here, we describe the first case of a familial mutation of MET, consisting of an interstitial genomic deletion removing exons 12 through 15, causing a frameshift and premature stop codon, with evidence of nonsense-mediated mRNA decay. On the other allele, patients carried the C allele of the MET promoter rs1858830 polymorphism, known to decrease MET expression and previously associated with autism susceptibility. The heterozygous mutation was associated with autism in one patient, and language and social impairment in a sibling. Our observations delineate the phenotypic spectrum associated with a clearly defined, very likely complete loss of function mutation of MET. Incomplete penetrance in this family was consistent with MET as a partial susceptibility gene for ASD. Implication of MET in normal and pathological brain development opens new perspectives for understanding the pathophysiology of autism and for eventual therapeutical clues.
Collapse
Affiliation(s)
- Nelle Lambert
- ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium; Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
While autism spectrum disorder (ASD) is characterized by communication impairments, social abnormalities, and stereotypic behaviors, several medical comorbidities are observed in autistic individuals. Of these, gastrointestinal (GI) abnormalities are of particular interest given their reported prevalence and correlation with the severity of core autism-related behavioral abnormalities. This review discusses the GI pathologies seen in ASD individuals and the association of particular GI conditions with known genetic and environmental risk factors for autism. It further addresses how GI abnormalities can affect the neuropathological and behavioral features of ASD, as well as the development of autism-related endophenotypes such as immune dysregulation, hyperserotonemia, and metabolic dysfunction. Finally, it presents emerging evidence for a gut-brain connection in autism, wherein GI dysfunction may contribute to the pathogenesis or severity of ASD symptoms.
Collapse
|
39
|
Parellada M, Penzol MJ, Pina L, Moreno C, González-Vioque E, Zalsman G, Arango C. The neurobiology of autism spectrum disorders. Eur Psychiatry 2013; 29:11-9. [PMID: 24275633 DOI: 10.1016/j.eurpsy.2013.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
Data is progressively and robustly accumulating regarding the biological basis of autism. Autism spectrum disorders (ASD) are currently considered a group of neurodevelopmental disorders with onset very early in life and a complex, heterogeneous, multifactorial aetiology. A comprehensive search of the last five years of the Medline database was conducted in order to summarize recent evidence on the neurobiological bases of autism. The main findings on genetic influence, neuropathology, neurostructure and brain networks are summarized. In addition, findings from peripheral samples of subjects with autism and animal models, which show immune, oxidative, mitochondrial dysregulations, are reported. Then, other biomarkers from very different systems associated with autism are reported. Finally, an attempt is made to try and integrate the available evidence, which points to a oligogenetic, multifactorial aetiology that converges in an aberrant micro-organization of the cortex, with abnormal functioning of the synapses and abnormalities in very general physiological pathways (such as inflammatory, immune and redox systems).
Collapse
Affiliation(s)
- M Parellada
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain.
| | - M J Penzol
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - L Pina
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - C Moreno
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - E González-Vioque
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - G Zalsman
- Child and Adolescent Psychiatry, Geha Hospital, Petach Tiqva, 49100 Tel Aviv, Israel
| | - C Arango
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| |
Collapse
|
40
|
Plummer JT, Evgrafov OV, Bergman MY, Friez M, Haiman CA, Levitt P, Aldinger KA. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Transl Psychiatry 2013; 3:e316. [PMID: 24150225 PMCID: PMC3818007 DOI: 10.1038/tp.2013.91] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.
Collapse
Affiliation(s)
- J T Plummer
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - O V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - M Y Bergman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Friez
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Levitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K A Aldinger
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, 98101 WA, USA. E-mail:
| |
Collapse
|
41
|
Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 2013; 3:e277. [PMID: 23838888 PMCID: PMC3731784 DOI: 10.1038/tp.2013.50] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental in origin, affecting an estimated 1 in 88 children in the United States. We previously described ASD-specific maternal autoantibodies that recognize fetal brain antigens. Herein, we demonstrate that lactate dehydrogenase A and B (LDH), cypin, stress-induced phosphoprotein 1 (STIP1), collapsin response mediator proteins 1 and 2 (CRMP1, CRMP2) and Y-box-binding protein to comprise the seven primary antigens of maternal autoantibody-related (MAR) autism. Exclusive reactivity to specific antigen combinations was noted in 23% of mothers of ASD children and only 1% of controls. ASD children from mothers with specific reactivity to LDH, STIP1 and CRMP1 and/or cypin (7% vs 0% in controls; P<0.0002; odds ratios of 24.2 (95% confidence interval: 1.45-405)) had elevated stereotypical behaviors compared with ASD children from mothers lacking these antibodies. We describe the first panel of clinically significant biomarkers with over 99% specificity for autism risk thereby advancing our understanding of the etiologic mechanisms and therapeutic possibilities for MAR autism.
Collapse
|
42
|
Breece E, Paciotti B, Nordahl CW, Ozonoff S, Van de Water JA, Rogers SJ, Amaral D, Ashwood P. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors. Brain Behav Immun 2013; 31:69-75. [PMID: 23063420 PMCID: PMC4229011 DOI: 10.1016/j.bbi.2012.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
The pathophysiology of autism spectrum disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1(-)BDCA1(+)CD11c(+) and Lin-1(-)BDCA3(+)CD123(-)) and plasmacytoid dendritic cells (Lin-1(-)BDCA2(+)CD123(+) or Lin-1(-)BDCA4(+) CD11c(-)) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p<0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD.
Collapse
Affiliation(s)
- Elizabeth Breece
- Department of Medical Microbiology and Immunology, University of California, Davis, USA
- M.I.N.D Institute, University of California, Davis, USA
| | | | - Christine Wu Nordahl
- M.I.N.D Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Sally Ozonoff
- M.I.N.D Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Judy A. Van de Water
- M.I.N.D Institute, University of California, Davis, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, USA
| | - Sally J. Rogers
- M.I.N.D Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - David Amaral
- M.I.N.D Institute, University of California, Davis, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, USA
- M.I.N.D Institute, University of California, Davis, USA
| |
Collapse
|
43
|
Bauman MD, Schumann CM. Is 'bench-to-bedside' realistic for autism? An integrative neuroscience approach. ACTA ACUST UNITED AC 2013; 3:159-168. [PMID: 24000295 DOI: 10.2217/npy.13.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the prevalence and societal impact of autism spectrum disorder (ASD), there is an urgent need to develop innovative treatments that will improve core social deficits, for which there is currently no reliable pharmacological treatment, prevention or cure. Development of novel biological interventions will depend upon the successful translation of basic neuroscience research into safe and effective medicines. This article outlines steps to bring neuroscience research from 'the bench' to treatment at 'bedside', from phenotyping the disorder to animal models to patient treatment. Although these steps appear simplistic, this is a daunting challenge because of the inherent complexity of the human brain, our lack of understanding of disease neurobiology underlying ASD, and the incredible heterogeneity of the disorder. For ASD, perhaps more than any other neurological or psychiatric disorder, progress will depend on integrative multidisciplinary approaches between basic scientists from varying neuroscience disciplines and clinicians to make 'bench to bedside' treatment a reality.
Collapse
Affiliation(s)
- Melissa D Bauman
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA, USA ; The M.I.N.D. Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | | |
Collapse
|
44
|
Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 2013; 36:67-81. [PMID: 22918031 PMCID: PMC3554862 DOI: 10.1016/j.ntt.2012.07.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Imbalances in cytokines may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Paula E. Goines
- University of California, Davis, School of Veterinary Medicine, Department of Molecular Biosciences
| | - Paul Ashwood
- University of California, Davis, School of Medicine, Department of Medical Microbiology and Immunology
| |
Collapse
|
45
|
Becker EBE, Stoodley CJ. Autism spectrum disorder and the cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:1-34. [PMID: 24290381 DOI: 10.1016/b978-0-12-418700-9.00001-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cerebellum has been long known for its importance in motor learning and coordination. Recently, anatomical, clinical, and neuroimaging studies strongly suggest that the cerebellum supports cognitive functions, including language and executive functions, as well as affective regulation. Furthermore, the cerebellum has emerged as one of the key brain regions affected in autism. Here, we discuss our current understanding of the role of the cerebellum in autism, including evidence from genetic, molecular, clinical, behavioral, and neuroimaging studies. Cerebellar findings in autism suggest developmental differences at multiple levels of neural structure and function, indicating that the cerebellum is an important player in the complex neural underpinnings of autism spectrum disorder, with behavioral implications beyond the motor domain.
Collapse
Affiliation(s)
- Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
46
|
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder diagnosed based on the presence and severity of core abnormalities in social communication and repetitive behavior, yet several studies converge on immune dysregulation as a feature of ASD. Widespread alterations in immune molecules and responses are seen in the brains and periphery of ASD individuals, and early life immune disruptions are associated with ASD. This chapter discusses immune-related environmental and genetic risk factors for ASD, emphasizing population-wide studies and animal research that reveal potential mechanistic pathways involved in the development of ASD-related symptoms. It further reviews immunologic pathologies seen in ASD individuals and how such abnormalities can impact neurodevelopment and behavior. Finally, it evaluates emerging evidence for an immune contribution to the pathogenesis of ASD and a potential role for immunomodulatory effects in current treatments for ASD.
Collapse
Affiliation(s)
- Elaine Y Hsiao
- Division of Biology and Biological Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
47
|
Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY, Levitt P, Dapretto M. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75:904-15. [PMID: 22958829 DOI: 10.1016/j.neuron.2012.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/18/2022]
Abstract
As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a crucial next step is to determine how these risk factors impact brain structure and function and contribute to disorder heterogeneity. With three converging lines of evidence, we show that a common, functional ASD risk variant in the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in temporo-parietal regions known to have high MET expression, particularly within the default mode network. Notably, these effects were more pronounced in individuals with ASD. These findings highlight how genetic stratification may reduce heterogeneity and help elucidate the biological basis of complex neuropsychiatric disorders such as ASD.
Collapse
Affiliation(s)
- Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA 90095-7085, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fox E, Amaral D, Van de Water J. Maternal and fetal antibrain antibodies in development and disease. Dev Neurobiol 2012; 72:1327-34. [PMID: 22911883 PMCID: PMC3478666 DOI: 10.1002/dneu.22052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 01/08/2023]
Abstract
Recent evidence has emerged indicating that the maternal immune response can have a substantial deleterious impact on prenatal development (Croen et al., [2008]: Biol Psychiatry 64:583-588). The maternal immune response is largely sequestered from the fetus. Maternal antibodies, specifically immunoglobulin G (IgG), are passed to the fetus to provide passive immunity throughout much of pregnancy. However, both protective and pathogenic autoantibodies have equal access to the fetus (Goines and Van de Water [2010]: Curr Opin Neurol 23:111-117). If the mother has an underlying autoimmune disease or has reactivity to fetal antigens, autoantibodies produced before or during pregnancy can target tissues in the developing fetus. One such tissue is the fetal brain. The blood brainbarrier (BBB) is developing during the fetal period allowing maternal antibodies to have direct access to the brain during gestation (Diamond et al. [2009]: Nat Rev Immunol; Braunschweig et al. [2011]; Neurotoxicology 29:226-231). It has been proposed that brain injury by circulating brain-specific maternal autoantibodies might underlie multiple congenital, developmental disorders (Lee et al. [2009]: Nat Med 15:91-96). In this review, we will discuss the current state of research in the area of maternal autoantibodies and the development of autism.
Collapse
Affiliation(s)
- Elizabeth Fox
- Department of Internal Medicine, University of California, Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
49
|
Abstract
As epidemiologic studies continue to note a striking increase in rates of autism spectrum disorder (ASD) diagnosis around the world, the lack of identified causative agents in most cases remains a major hindrance to the development of treatment and prevention strategies. Published observations of immune system abnormalities in ASD have increased recently, with several groups identifying fetal protein reactive IgG antibodies in plasma from mothers of children with autism. Furthermore, other gestational immune parameters, including maternal infection and dysregulated cytokine signaling, have been found to be associated with ASD in some cases. While detailed pathogenic mechanisms remain to be determined, the hypothesis that some cases of ASD may be influenced, or even caused, by maternal fetal brain-reactive antibodies or other in utero immune-related exposures is an active area of investigation. This article reviews the current literature in this area and proposes several directions for future research.
Collapse
|
50
|
Lin MT, Huang KH, Huang CL, Huang YJ, Tsai GE, Lane HY. MET and AKT genetic influence on facial emotion perception. PLoS One 2012; 7:e36143. [PMID: 22558359 PMCID: PMC3338598 DOI: 10.1371/journal.pone.0036143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/26/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Facial emotion perception is a major social skill, but its molecular signal pathway remains unclear. The MET/AKT cascade affects neurodevelopment in general populations and face recognition in patients with autism. This study explores the possible role of MET/AKT cascade in facial emotion perception. METHODS One hundred and eighty two unrelated healthy volunteers (82 men and 100 women) were recruited. Four single nucleotide polymorphisms (SNP) of MET (rs2237717, rs41735, rs42336, and rs1858830) and AKT rs1130233 were genotyped and tested for their effects on facial emotion perception. Facial emotion perception was assessed by the face task of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Thorough neurocognitive functions were also assessed. RESULTS Regarding MET rs2237717, individuals with the CT genotype performed better in facial emotion perception than those with TT (p = 0.016 by ANOVA, 0.018 by general linear regression model [GLM] to control for age, gender, and education duration), and showed no difference with those with CC. Carriers with the most common MET CGA haplotype (frequency = 50.5%) performed better than non-carriers of CGA in facial emotion perception (p = 0.018, df = 1, F = 5.69, p = 0.009 by GLM). In MET rs2237717/AKT rs1130233 interaction, the C carrier/G carrier group showed better facial emotion perception than those with the TT/AA genotype (p = 0.035 by ANOVA, 0.015 by GLM), even when neurocognitive functions were controlled (p = 0.046 by GLM). CONCLUSIONS To our knowledge, this is the first study to suggest that genetic factors can affect performance of facial emotion perception. The findings indicate that MET variances and MET/AKT interaction may affect facial emotion perception, implicating that the MET/AKT cascade plays a significant role in facial emotion perception. Further replication studies are needed.
Collapse
Affiliation(s)
- Ming-Teng Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Zhudong Veterans Hospital, Hsinchu, Taiwan
| | - Kuo-Hao Huang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Liang Huang
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jhen Huang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Guochuan E. Tsai
- Department of Psychiatry, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, California, United States of America
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|