1
|
Roeckner AR, Lin ERH, Hinrichs R, Harnett NG, Lebois LAM, van Rooij SJH, Ely TD, Jovanovic T, Murty VP, Bruce SE, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Joormann J, Sheridan JF, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS. Sequential decreases in basolateral amygdala response to threat predict failure to recover from PTSD. Neuropsychopharmacology 2025:10.1038/s41386-025-02115-1. [PMID: 40319171 DOI: 10.1038/s41386-025-02115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Amygdala hyperreactivity early-post trauma has been a demonstrable neurobiological correlate of future posttraumautic stress disorder (PTSD). The basolateral amygdala (BLA) particularly is vital for fear memory and threat processing, but BLA functional dynamics following a traumatic event are unexplored. BLA reactivity to threat may be a trait that can predict PTSD and persist over time. Alternatively, BLA responsivity to threat cues may change over time and be related to PTSD severity. As part of a larger, multisite study, AURORA, participants 18-75 years old were enrolled in an emergency department (ED) within 72 h of a traumatic event (N = 304, 199 female). At 2-weeks and 6-months post-trauma, PTSD symptoms, BLA responses to threat (fearful>neutral faces), and functional connectivity (FC) during fMRI were assessed. Generalizability of findings was assessed in an external replication sample of ED patients (n = 33). Two weeks post-trauma right BLA reactivity positively predicted later PTSD severity. However, left BLA reactivity to threat at 6 months post-trauma was negatively associated with PTSD severity at that timepoint (ΔPseudo-R2 = 0.04, IRR = 0.38, p < 0.001). In addition, a decrease in BLA reactivity from 2-weeks to 6-months predicted greater PTSD severity at 6 months (ΔPseudo-R2 = 0.03, IRR = 0.58, p < 0.001). This replicated in the external sample. A reduction in left BLA FC with the dorsal attention network predicted increased PTSD severity over time. These findings support a shift in BLA function within the first 6 months post-trauma that predicts PTSD pathology and stand in contrast to prior conceptualizations of amygdala hyperreactivity as a trait-like PTSD risk factor.
Collapse
Affiliation(s)
- Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Esther R-H Lin
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Datner
- Department of Emergency Medicine, Jefferson Einstein hospital, Jefferson Health, Philadelphia, PA, USA
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kalenscher T, Lüpken LM, Stoop R, Terburg D, van Honk J. Steeper social discounting after human basolateral amygdala damage. Proc Natl Acad Sci U S A 2025; 122:e2500692122. [PMID: 40232795 PMCID: PMC12037017 DOI: 10.1073/pnas.2500692122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Translational research suggests that the basolateral part of the amygdala (BLA) computes some of the core processes underlying social preferences, but its precise role in prosocial choice remains unclear. We hypothesize that the human BLA is not necessary for prosocial behavior per se, but fine-tunes the degree of prosociality as a function of the social distance between actor and recipient of a prosocial act. We tested five participants with Urbach-Wiethe disease (UWD) who had isolated, bilateral damage to BLA and compared their behavior in a modified dictator game to that of 16 healthy control participants matched for (neuro-) psychological traits and cultural and socioeconomic background. In this game, participants selected eight people from their social environment and assigned them to variable social distance levels ranging from 1 (emotionally closest person) to 100 (random stranger on the street). They decided how much of a monetary endowment they would share with each person at each social distance. Compared to controls, UWD participants were less generous overall and showed steeper social discounting, that is, their willingness to share declined more sharply with increasing social distance. This difference in social discounting could not be explained by empathy, personality, or social network size. Our data suggest that BLA is critical for resolving the conflict between selfish and altruistic motives during social discounting. This finding underlines the BLA's role in model-based social cognition, calibrating prosocial behavior based on the social-emotional distance between individuals.
Collapse
Affiliation(s)
- Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Luca M. Lüpken
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Ron Stoop
- Department of Psychiatry, University Hospital of Lausanne, Prilly1008, Switzerland
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, Utrecht3584 CS, The Netherlands
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town7925, South Africa
| | - Jack van Honk
- Department of Experimental Psychology, Utrecht University, Utrecht3584 CS, The Netherlands
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town7925, South Africa
| |
Collapse
|
3
|
Dong H, Lin Z. Physiology mechanisms of exercise for PTSD: a narrative review. Front Psychol 2025; 16:1483523. [PMID: 39931288 PMCID: PMC11808001 DOI: 10.3389/fpsyg.2025.1483523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
In at-risk societies, the population of post-traumatic stress disorder (PTSD) incidence is gradually expanding from veterans to the general public. In the face of the high incidence of PTSD, exercise therapy, as an economical and maneuverable treatment, has not received the attention it deserves. In this paper, the literature on PTSD symptom improvement through comb-climbing exercise interventions found that performing long-term exercise can achieve significant improvement in PTSD symptoms by modulating the central nervous system, autonomic nervous system, and immune system at the physiological level. Aerobic exercise (running, walking) is beneficial to the central nervous system and immune system; anaerobic exercise positively affects the autonomic nervous system, including resistance or strength endurance training; yoga, which focuses on flexibility and balance training, has a positive effect on the immune system. Future research should explore the neutral and negative effects and mechanisms of exercise on PTSD interventions. Expand more empirical studies in special occupational populations. And implement longitudinal intervention studies with PTSD patients to gain an in-depth understanding of PTSD intervention effects.
Collapse
Affiliation(s)
- Hongding Dong
- Physical Education Institute of Jimei University, Xiamen, China
| | - Zhiyi Lin
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Stuit SM, Pardo Sanchez MA, Terburg D. Perceptual, Not Attentional, Guidance Drives Happy Superiority in Complex Visual Search. Behav Sci (Basel) 2025; 15:124. [PMID: 40001755 PMCID: PMC11851973 DOI: 10.3390/bs15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Emotional facial expressions are thought to attract attention differentially based on their emotional content. While anger is thought to attract the most attention during visual search, happy superiority effects are reported as well. As multiple studies point out confounds associated with such emotional superiority, further investigation into the underlying mechanisms is required. Here, we tested visual search behaviors when searching for angry faces, happy faces, or either happy or angry faces simultaneously using diverse distractors displaying many other expressions. We teased apart visual search behaviors into attentional and perceptual components using eye-tracking data and subsequently predicted these behaviors using low-level visual features of the distractors. The results show an overall happy superiority effect that can be traced back to the time required to identify distractors and targets. Search behavior is guided by task-based, emotion-specific search templates that are reliably predictable based on the spatial frequency content. Thus, when searching, we employ specific templates that drive attentional as well as perceptual elements of visual search. Only the perceptual elements contribute to happy superiority. In conclusion, we show that template-guided search underlies perceptual, but not attentional, happy superiority in visual search.
Collapse
Affiliation(s)
- Sjoerd M. Stuit
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands; (M.A.P.S.); (D.T.)
| | - M. Alejandra Pardo Sanchez
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands; (M.A.P.S.); (D.T.)
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands; (M.A.P.S.); (D.T.)
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
5
|
Rijnders RJP, van Boxtel A, de Wied M, van Honk J, Kempes MM, Bos PA. Revealed masks: Facial mimicry after oxytocin administration in forensic psychopathic patients. J Psychiatr Res 2024; 176:422-429. [PMID: 38959825 DOI: 10.1016/j.jpsychires.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Facial mimicry serves as an evolutionarily rooted important interpersonal communication process that touches on the concepts of socialization and empathy. Facial electromyography (EMG) of the corrugator muscle and the zygomaticus muscle was recorded while male forensic psychopathic patients and controls watched morphed angry or happy facial expressions. We tested the hypothesis that psychopathic patients would show weaker short latency facial mimicry (that is, within 600 ms after stimulus onset) than controls. Exclusively in the group of 20 psychopathic patients, we tested in a placebo-controlled crossover within-subject design the hypothesis that oxytocin would enhance short-latency facial mimicry. Compared with placebo, we found no oxytocin-related significant short-latency responses of the corrugator and the zygomaticus. However, compared with 19 normal controls, psychopathic patients in the placebo condition showed significantly weaker short-latency zygomaticus responses to happy faces, while there was a trend toward significantly weaker short-latency corrugator responses to angry faces. These results are consistent with a recent study of facial EMG responses in adolescents with psychopathic traits. We therefore posit a lifetime developmental deficit in psychopathy pertaining short-latency mimicry of emotional facial expressions. Ultimately, this deficit in mimicking angry and happy expressions may hinder the elicitation of empathy, which is known to be impaired in psychopathy.
Collapse
Affiliation(s)
- Ronald J P Rijnders
- Netherlands Institute for Forensic Psychiatry and Psychology, Forensic Observation Clinic "Pieter Baan Centrum", Carl Barksweg 3, 1336 ZL, Almere, the Netherlands; Utrecht University, Faculty of Social Sciences, Department of Psychology Heidelberglaan 8, 3584 CS, Utrecht, the Netherlands.
| | - Anton van Boxtel
- Tilburg University, Department of Cognitive Neuropsychology, Warandelaan 2, 5000 LE, Tilburg, the Netherlands.
| | - Minet de Wied
- Utrecht University, Faculty of Social and Behavioural Sciences, Department of Youth and Family, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jack van Honk
- Utrecht University, Faculty of Social and Behavioural Sciences, Department of Psychology, Heidelberglaan 8, 3584 CS, Utrecht, the Netherlands; University of Cape Town, Department of Psychiatry and Mental Health, J-Block, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa; University of Cape Town, Institute of Infectious Diseases and Molecular Medicine, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Maaike M Kempes
- Netherlands Institute for Forensic Psychiatry and Psychology, Department of Science and Education, Herman Gorterstraat 5, 3511 EW, Utrecht, the Netherlands; Leiden University, Faculty of Social and Behavioural Sciences, Institute of Education and Child Studies, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands.
| | - Peter A Bos
- Leiden University, Faculty of Social and Behavioural Sciences, Institute of Education and Child Studies, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands.
| |
Collapse
|
6
|
Terburg D, van Honk J, Schutter DJLG. Doubling down on dual systems: A cerebellum-amygdala route towards action- and outcome-based social and affective behavior. Cortex 2024; 173:175-186. [PMID: 38417390 DOI: 10.1016/j.cortex.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
The amygdala and cerebellum are both evolutionary preserved brain structures containing cortical as well as subcortical properties. For decades, the amygdala has been considered the fear-center of the brain, but recent advances have shown that the amygdala acts as a critical hub between cortical and subcortical systems and shapes social and affective behaviors beyond fear. Likewise, the cerebellum is a dedicated control unit that fine-tunes motor behavior to fit contextual requirements. There is however increasing evidence that the cerebellum strongly influences subcortical as well as cortical processes beyond the motor domain. These insights broadened the view on the cerebellum's functions to also include social and affective behavior. Here we explore how the amygdala and cerebellum might interact in shaping social and affective behaviors based on their roles in threat reactivity and reinforcement learning. A novel mechanistic neural framework of cerebellum-amygdala interactions will be presented which provides testable hypotheses for future social and affective neuroscientific research in humans.
Collapse
Affiliation(s)
- David Terburg
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, South Africa.
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands; Department of Psychiatry and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, South Africa
| | | |
Collapse
|
7
|
Noel ES, Chen A, Peña YA, Honeycutt JA. Early life adversity drives sex-dependent changes in 5-mC DNA methylation of parvalbumin cells in the prefrontal cortex in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578313. [PMID: 38352518 PMCID: PMC10862911 DOI: 10.1101/2024.01.31.578313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Early life adversity (ELA) can result in increased risk for developing affective disorders, such as anxiety or depression, later in life, with women showing increased risk. Interactions between an individual's genes and their environment play key roles in producing, as well as mitigating, later life neuropathology. Our current understanding of the underlying epigenomic drivers of ELA associated anxiety and depression are limited, and this stems in part from the complexity of underlying biochemical processes associated with how early experiences shapes later life behavior. Epigenetic alterations, or experience-driven modifications to DNA, can be leveraged to understand the interplay between genes and the environment. The present study characterized DNA methylation patterning, assessed via evaluation of 5-methylcytosine (5-mC), following ELA in a Sprague Dawley rat model of ELA induced by early caregiver deprivation. This study utilized maternal separation to investigate sex- and age-specific outcomes of ELA on epigenetic patterning in parvalbumin (PV)-containing interneurons in the prefrontal cortex (PFC), a subpopulation of inhibitory neurons which are associated with ELA and affective dysfunction. While global analysis of 5-mC methylation and CpG site specific pyrosequencing of the PV promoter, Pvalb, showed no obvious effects of ELA, when analyses were restricted to assessing 5-mC intensity in colocalized PV cells, there were significant sex and age dependent effects. We found that ELA leads sex-specific changes in PV cell counts, and that cell counts can be predicted by 5-mC intensity, with males and females showing distinct patterns of methylation and PV outcomes. ELA also produced sex-specific effects in corticosterone reactivity, with juvenile females showing a blunted stress hormone response compared to controls. Overall, ELA led to a sex-specific developmental shift in PV profile, which is comparable to profiles that are seen at a later developmental timepoint, and this shift may be mediated in part by epigenomic alterations driven by altered DNA methylation.
Collapse
Affiliation(s)
- Emma S Noel
- Program in Biochemistry, Brunswick, ME 04011 USA
| | - Alissa Chen
- Program in Neuroscience, Brunswick, ME 04011 USA
| | | | - Jennifer A Honeycutt
- Program in Neuroscience, Brunswick, ME 04011 USA
- Department of Psychology Bowdoin College, Brunswick, ME 04011 USA
| |
Collapse
|
8
|
Foster SL, Breukelaar IA, Ekanayake K, Lewis S, Korgaonkar MS. Functional Magnetic Resonance Imaging of the Amygdala and Subregions at 3 Tesla: A Scoping Review. J Magn Reson Imaging 2024; 59:361-375. [PMID: 37352130 DOI: 10.1002/jmri.28836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023] Open
Abstract
The amygdalae are a pair of small brain structures, each of which is composed of three main subregions and whose function is implicated in neuropsychiatric conditions. Functional Magnetic Resonance Imaging (fMRI) has been utilized extensively in investigation of amygdala activation and functional connectivity (FC) with most clinical research sites now utilizing 3 Tesla (3T) MR systems. However, accurate imaging and analysis remains challenging not just due to the small size of the amygdala, but also its location deep in the temporal lobe. Selection of imaging parameters can significantly impact data quality with implications for the accuracy of study results and validity of conclusions. Wide variation exists in acquisition protocols with spatial resolution of some protocols suboptimal for accurate assessment of the amygdala as a whole, and for measuring activation and FC of the three main subregions, each of which contains multiple nuclei with specialized roles. The primary objective of this scoping review is to provide a broad overview of 3T fMRI protocols in use to image the activation and FC of the amygdala with particular reference to spatial resolution. The secondary objective is to provide context for a discussion culminating in recommendations for a standardized protocol for imaging activation of the amygdala and its subregions. As the advantages of big data and protocol harmonization in imaging become more apparent so, too, do the disadvantages of data heterogeneity. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sheryl L Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Isabella A Breukelaar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kanchana Ekanayake
- University Library, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Lewis
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Sun S, Cao R, Rutishauser U, Yu R, Wang S. A uniform human multimodal dataset for emotion perception and judgment. Sci Data 2023; 10:773. [PMID: 37935738 PMCID: PMC10630434 DOI: 10.1038/s41597-023-02693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan.
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, Los Angeles, 90048, California, USA
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Abivardi A, Korn CW, Rojkov I, Gerster S, Hurlemann R, Bach DR. Acceleration of inferred neural responses to oddball targets in an individual with bilateral amygdala lesion compared to healthy controls. Sci Rep 2023; 13:14550. [PMID: 37667022 PMCID: PMC10477323 DOI: 10.1038/s41598-023-41357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Detecting unusual auditory stimuli is crucial for discovering potential threat. Locus coeruleus (LC), which coordinates attention, and amygdala, which is implicated in resource prioritization, both respond to deviant sounds. Evidence concerning their interaction, however, is sparse. Seeking to elucidate if human amygdala affects estimated LC activity during this process, we recorded pupillary responses during an auditory oddball and an illuminance change task, in a female with bilateral amygdala lesions (BG) and in n = 23 matched controls. Neural input in response to oddballs was estimated via pupil dilation, a reported proxy of LC activity, harnessing a linear-time invariant system and individual pupillary dilation response function (IRF) inferred from illuminance responses. While oddball recognition remained intact, estimated LC input for BG was compacted to an impulse rather than the prolonged waveform seen in healthy controls. This impulse had the earliest response mean and highest kurtosis in the sample. As a secondary finding, BG showed enhanced early pupillary constriction to darkness. These findings suggest that LC-amygdala communication is required to sustain LC activity in response to anomalous sounds. Our results provide further evidence for amygdala involvement in processing deviant sound targets, although it is not required for their behavioral recognition.
Collapse
Affiliation(s)
- Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Adult Psychiatry, Heidelberg University, 69115, Heidelberg, Germany
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ivan Rojkov
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Institute for Quantum Electronics, ETH Zurich, 8093, Zurich, Switzerland
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, Carl von Ossietzky University of Oldenburg, 26160, Bad Zwischenahn, Germany
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, 53012, Bonn, Germany.
| |
Collapse
|
11
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
12
|
Bae J, Ahn S, Cho DW, Kim HS, Han SC, Im HI. Claustral MeCP2 Regulates Methamphetamine-induced Conditioned Place Preference in Cynomolgus Monkey. Exp Neurobiol 2022; 31:390-400. [PMID: 36631847 PMCID: PMC9841746 DOI: 10.5607/en22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
The claustrum, a brain nucleus located between the cortex and the striatum, has recently been highlighted in drug-related reward processing. Methyl CpG-binding protein-2 (MeCP2) is a transcriptional regulator that represses or activates the expression of the target gene and has been known to have an important role in the regulation of drug addiction in the dopaminergic reward system. The claustrum is an important region for regulating reward processing where most neurons receive dopamine input; additionally, in this region, MeCP2 is also abundantly expressed. Therefore, here, we hypothesized that MeCP2 would be involved in drug addiction control in the Claustrum as well and investigated how claustral MeCP2 regulates drug addiction. To better understand the function of human claustral MeCP2, we established a non-human primate model of methamphetamine (METH) - induced conditioned place preference (CPP). After a habituation of two days and conditioning of ten days, the CPP test was conducted for three days. Interestingly, we confirmed that virus-mediated overexpression of MECP2 in the claustrum showed a significant reduction of METH-induced CPP in the three consecutive days during the testing period. Moreover, they showed a decrease in visit scores (frequency for visit) for the METH-paired room compared to the control group although the scores were statistically marginal. Taken together, we suggest that the claustrum is an important brain region associated with drug addiction, in which MeCP2 may function as a mediator in regulating the response to addictive drugs.
Collapse
Affiliation(s)
- Jinhee Bae
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sujin Ahn
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Hyung-Sun Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Heh-In Im
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea,To whom correspondence should be addressed. TEL: 82-2-958-6961, FAX: 82-2-958-6937, e-mail:
| |
Collapse
|
13
|
Breakdown of utilitarian moral judgement after basolateral amygdala damage. Proc Natl Acad Sci U S A 2022; 119:e2119072119. [PMID: 35878039 PMCID: PMC9351380 DOI: 10.1073/pnas.2119072119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Most of us would regard killing another person as morally wrong, but when the death of one saves multiple others, it can be morally permitted. According to a prominent computational dual-systems framework, in these life-and-death dilemmas, deontological (nonsacrificial) moral judgments stem from a model-free algorithm that emphasizes the intrinsic value of the sacrificial action, while utilitarian (sacrificial) moral judgments are derived from a model-based algorithm that emphasizes the outcome of the sacrificial action. Rodent decision-making research suggests that the model-based algorithm depends on the basolateral amygdala (BLA), but these findings have not yet been translated to human moral decision-making. Here, in five humans with selective, bilateral BLA damage, we show a breakdown of utilitarian sacrificial moral judgments, pointing at deficient model-based moral decision-making. Across an established set of moral dilemmas, healthy controls frequently sacrifice one person to save numerous others, but BLA-damaged humans withhold such sacrificial judgments even at the cost of thousands of lives. Our translational research confirms a neurocomputational hypothesis drawn from rodent decision-making research by indicating that the model-based algorithm which underlies outcome-based, utilitarian moral judgements in humans critically depends on the BLA.
Collapse
|
14
|
Procyshyn TL, Lombardo MV, Lai MC, Jassim N, Auyeung B, Crockford SK, Deakin JB, Soubramanian S, Sule A, Terburg D, Baron-Cohen S, Bethlehem RAI. Oxytocin Enhances Basolateral Amygdala Activation and Functional Connectivity While Processing Emotional Faces: Preliminary Findings in Autistic Versus Non-Autistic Women. Soc Cogn Affect Neurosci 2022; 17:929-938. [PMID: 35254443 PMCID: PMC9527468 DOI: 10.1093/scan/nsac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/13/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxytocin is hypothesized to promote social interactions by enhancing the salience of social stimuli. While previous neuroimaging studies have reported that oxytocin enhances amygdala activation to face stimuli in autistic men, effects in autistic women remain unclear. In this study, the influence of intranasal oxytocin on activation and functional connectivity of the basolateral amygdala—the brain’s ‘salience detector’—while processing emotional faces vs shapes was tested in 16 autistic and 21 non-autistic women by functional magnetic resonance imaging in a placebo-controlled, within-subject, cross-over design. In the placebo condition, minimal activation differences were observed between autistic and non-autistic women. However, significant drug × group interactions were observed for both basolateral amygdala activation and functional connectivity. Oxytocin increased left basolateral amygdala activation among autistic women (35-voxel cluster, Montreal Neurological Institute (MNI) coordinates of peak voxel = −22 −10 −28; mean change = +0.079%, t = 3.159, PTukey = 0.0166) but not among non-autistic women (mean change = +0.003%, t = 0.153, PTukey = 0.999). Furthermore, oxytocin increased functional connectivity of the right basolateral amygdala with brain regions associated with socio-emotional information processing in autistic women, but not in non-autistic women, attenuating group differences in the placebo condition. Taken together, these findings extend evidence of oxytocin’s effects on the amygdala to specifically include autistic women and specify the subregion of the effect.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah K Crockford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Julia B Deakin
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Sentil Soubramanian
- South West London and St. George’s Mental Health NHS Trust, London, UK
- Liaison Psychiatry Service, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - Akeem Sule
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Jha A, Diehl B, Strange B, Miserocchi A, Chowdhury F, McEvoy AW, Nachev P. Orienting to fear under transient focal disruption of the human amygdala. Brain 2022; 146:135-148. [PMID: 35104842 PMCID: PMC9825557 DOI: 10.1093/brain/awac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/28/2021] [Accepted: 01/08/2022] [Indexed: 01/13/2023] Open
Abstract
Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimized for the task. Though the amygdala is implicated in 'detecting' threat, its role in the action that immediately follows-'orienting'-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organization. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, we investigated gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We showed that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralization. Behaviourally dissociating the location of presented fear from the direction of the response, we implicated the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role was demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology revealed scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here reconceptualized as a functionally lateralized instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ashwani Jha
- Correspondence to: Ashwani Jha UCL Queen Square Institute of Neurology, London, UK E-mail:
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | - Bryan Strange
- CTB-UPM and Department of Neuroimaging, Reina Sofia Centre for Alzheimer's Research, Madrid, Spain
| | | | | | | | - Parashkev Nachev
- Correspondence may also be addressed to: Parashkev Nachev E-mail:
| |
Collapse
|
16
|
Domínguez-Borràs J, Vuilleumier P. Amygdala function in emotion, cognition, and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:359-380. [PMID: 35964983 DOI: 10.1016/b978-0-12-823493-8.00015-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a core structure in the anterior medial temporal lobe, with an important role in several brain functions involving memory, emotion, perception, social cognition, and even awareness. As a key brain structure for saliency detection, it triggers and controls widespread modulatory signals onto multiple areas of the brain, with a great impact on numerous aspects of adaptive behavior. Here we discuss the neural mechanisms underlying these functions, as established by animal and human research, including insights provided in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Department of Clinical Psychology and Psychobiology & Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Patrik Vuilleumier
- Department of Neuroscience and Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Rijnders RJP, Dykstra AH, Terburg D, Kempes MM, van Honk J. Sniffing submissiveness? Oxytocin administration in severe psychopathy. Psychoneuroendocrinology 2021; 131:105330. [PMID: 34182248 DOI: 10.1016/j.psyneuen.2021.105330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023]
Abstract
Psychopathy is a personality disorder associated with criminal behavior and violent recidivism, and therefore a burden to society. Social dominance is one of the characteristics of psychopathy that might contribute to these problems. Nevertheless, only few studies have objectively measured the relationship between socially dominant behavior and psychopathy. Therefore, the current study assessed performance of 21 forensic PCL-R confirmed psychopathic patients and 24 normal controls on a gaze aversion task, in which slower gaze aversion from masked angry faces compared to masked happy faces is a measure of reactive dominance. Moreover, the current study assessed the potential beneficial effects of the neuropeptide oxytocin. The results showed that psychopaths were not more dominant on the gaze aversion task compared to normal controls. However, the severity of psychopathy was positively correlated with reactive dominance. Crucially, a single nasal spray administration of oxytocin abolished the connection between psychopathy and reactive dominance. This implies that socially dominant psychopaths might benefit from oxytocin administration.
Collapse
Affiliation(s)
- Ronald J P Rijnders
- Netherlands Institute of Forensic Psychiatry and Psychology, Forensic Observation Clinic "Pieter Baan Centrum", Carl Barksweg 3, 1336 ZL Almere, the Netherlands; Utrecht University, Faculty of Social Sciences, Department of Psychology, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.
| | - Anouk H Dykstra
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Cognitive Neuroscience, Postbox: 9101, 6500 HB Nijmegen, the Netherlands.
| | - David Terburg
- Utrecht University, Faculty of Social Sciences, Department of Psychology, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands; University of Cape Town, Department of Psychiatry and Mental Health, J-Block, Groote Schuur Hospital, Observatory, 7925 Cape Town, South Africa.
| | - Maaike M Kempes
- Leiden University, Faculty of Social Sciences, Institute of Child and Education Studies, Wassenaarseweg 52, 2333 AK Leiden, the Netherlands; Netherlands Institute of Forensic Psychiatry and Psychology, Department of Science and Education, Herman Gorterstraat 5, 3511 EW Utrecht, the Netherlands.
| | - Jack van Honk
- Utrecht University, Faculty of Social Sciences, Department of Psychology, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands; University of Cape Town, Department of Psychiatry and Mental Health, J-Block, Groote Schuur Hospital, Observatory, 7925 Cape Town, South Africa; University of Cape Town, Institute of Infectious Diseases and Molecular Medicine, Anzio Rd, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
18
|
Kenwood MM, Kalin NH. Nonhuman Primate Models to Explore Mechanisms Underlying Early-Life Temperamental Anxiety. Biol Psychiatry 2021; 89:659-671. [PMID: 33229035 PMCID: PMC7952470 DOI: 10.1016/j.biopsych.2020.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Behavioral inhibition is a temperament that is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology, and understanding the neural systems underlying this dispositional risk could provide insight into novel treatment targets for anxiety disorders. Nonhuman primates (NHPs) have anxiety-related temperaments that are similar to those of humans with behavioral inhibition, facilitating the design of translational models related to human psychopathology. Characterization of our NHP model of behavioral inhibition, which we term anxious temperament (AT), reveals that it is trait-like. Exploration of the neural substrates of AT in NHPs has revealed a distributed neural circuit that is linked to individual differences in AT, which includes the dorsal amygdala. AT-related metabolism in the dorsal amygdala, including the central nucleus, is stable across time and can be detected even in safe contexts, suggesting that AT has trait-like neural signatures within the brain. The use of lesioning and novel chemogenetic methods allows for mechanistic perturbation of the amygdala to determine its causal contribution to AT. Studies characterizing the molecular bases for individual differences in AT in the dorsal amygdala, which take advantage of novel methods for probing cellular and molecular systems, suggest involvement of neurotrophic systems, which point to the importance of neuroplasticity in AT. These novel methods, when used in combination with translational NHP models such as AT, promise to provide insights into the brain systems underlying the early risk for anxiety disorder development.
Collapse
|
19
|
Barbier E, Barchiesi R, Domi A, Chanthongdee K, Domi E, Augier G, Augier E, Xu L, Adermark L, Heilig M. Downregulation of Synaptotagmin 1 in the Prelimbic Cortex Drives Alcohol-Associated Behaviors in Rats. Biol Psychiatry 2021; 89:398-406. [PMID: 33160605 DOI: 10.1016/j.biopsych.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.
Collapse
Affiliation(s)
- Estelle Barbier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kanat Chanthongdee
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Physiology, Faculty of Medicine Siraj Hospital, Mahidol University, Bangkok, Thailand
| | - Esi Domi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gaelle Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
21
|
Hulsman AM, Terburg D, Roelofs K, Klumpers F. Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:419-432. [PMID: 34225979 DOI: 10.1016/b978-0-12-819975-6.00027-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays a critical modulatory role in driving fear responses. Part of the so-called extended amygdala, this region shares many functions and connections with the substantially more investigated amygdala proper. In this chapter, we review contributions of the BNST and amygdala to subjective, behavioral, and physiological aspects of fear. Despite the fact that both regions are together involved in each of these aspects of fear, they appear complimentary in their contributions. Specifically, the basolateral amygdala (BLA), through its connections to sensory and orbitofrontal regions, is ideally poised for fast learning and controlling fear reactions in a variety of situations. The central amygdala (CeA) relies on BLA input and is particularly important for adjusting physiological and behavioral responses under acute threat. In contrast, the BNST may profit from more extensive striatal and dorsomedial prefrontal connections to drive anticipatory responses under more ambiguous conditions that allow more time for planning. Thus current evidence suggests that the BNST is ideally suited to play a critical role responding to distant or ambiguous threats and could thereby facilitate goal-directed defensive action.
Collapse
Affiliation(s)
- Anneloes M Hulsman
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Karin Roelofs
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Floris Klumpers
- Experimental Psychopathology & Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Affective Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Murphy LE, Bachevalier J. Damage to Orbitofrontal Areas 12 and 13, but Not Area 14, Results in Blunted Attention and Arousal to Socioemotional Stimuli in Rhesus Macaques. Front Behav Neurosci 2020; 14:150. [PMID: 33093825 PMCID: PMC7506161 DOI: 10.3389/fnbeh.2020.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
An earlier study in monkeys indicated that lesions to the mid-portion of the ventral orbitofrontal cortex (OFC), including Walker’s areas 11 and 13 (OFC11/13), altered the spontaneous scanning of still pictures of primate faces (neutral and emotional) and the modulation of arousal. Yet, these conclusions were limited by several shortcomings, including the lesion approach, use of static rather than dynamic stimuli, and manual data analyses. To confirm and extend these earlier findings, we compared attention and arousal to social and nonsocial scenes in three groups of rhesus macaques with restricted lesions to one of three OFC areas (OFC12, OFC13, or OFC14) and a sham-operated control group using eye-tracking to capture scanning patterns, focal attention and pupil size. Animals with damage to the lateral OFC areas (OFC12 and OFC13) showed decreased attention specifically to the eyes of negative (threatening) social stimuli and increased arousal (increased pupil diameter) to positive social scenes. In contrast, animals with damage to the ventromedial OFC area (OFC14) displayed no differences in attention or arousal in the presence of social stimuli compared to controls. These findings support the notion that areas of the lateral OFC are critical for directing attention and modulating arousal to emotional social cues. Together with the existence of face-selective neurons in these lateral OFC areas, the data suggest that the lateral OFC may set the stage for multidimensional information processing related to faces and emotion and may be involved in social judgments.
Collapse
Affiliation(s)
- Lauren E Murphy
- Department of Psychology, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Jocelyne Bachevalier
- Department of Psychology, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Francis-Oliveira J, Shieh IC, Vilar Higa GS, Barbosa MA, De Pasquale R. Maternal separation induces changes in TREK-1 and 5HT 1A expression in brain areas involved in the stress response in a sex-dependent way. Behav Brain Res 2020; 396:112909. [PMID: 32949645 DOI: 10.1016/j.bbr.2020.112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022]
Abstract
Depression is a prevalent disease in modern society, and has been linked to stressful events at early ages. Women are more susceptible to depression, and the neural basis for this are still under investigation. Serotonin is known to be involved in depression, and a decrease in 5HT1A expression is observed on temporal and cortical areas in both men and women with depression. As knockout animals for TREK-1 are resilient to depression, this channel has emerged as a new potential pharmacological target for depression treatment. In this study, maternal separation (MS) was used to emulate early-life stress, and evaluate behaviour, as well as TREK-1 and 5HT1A expression in the brain using immunohistochemistry. In juvenile females, 5HT1A reduction coupled to increased TREK-1 in the dentate gyrus (DG) was associated with behavioural despair, as well as increased TREK-1 expression in basolateral amygdala (BLA) and prelimbic cortex (PL). In juvenile males, MS induced an increase in 5HT1A in the BLA, and in TREK-1 in the PL, while no behavioural despair was observed. Anhedonia and anxiety-like behaviour were not induced by MS. We conclude stress-induced increase in TREK-1 in PL and GD is associated to depression, while 5HT1A changes coupled to TREK-1 changes may be necessary to induce depression, with females being more vulnerable to MS effects than males. Thus, TREK-1 and 5HT1A may be potential pharmacological targets for antidepressants development.
Collapse
Affiliation(s)
- J Francis-Oliveira
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil.
| | - I C Shieh
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - G S Vilar Higa
- Neurogenetics Laboratory, Mathematics Computation Cognition Center, Rua Arcturus 03, 09606-070, São Bernardo do Campo, SP, Brazil
| | - M A Barbosa
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - R De Pasquale
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
24
|
The association of PTSD symptom severity with amygdala nuclei volumes in traumatized youths. Transl Psychiatry 2020; 10:288. [PMID: 32807799 PMCID: PMC7431855 DOI: 10.1038/s41398-020-00974-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala is a core component in neurobiological models of stress and stress-related pathologies, including post-traumatic stress disorder (PTSD). While numerous studies have reported increased amygdala activity following traumatic stress exposure and in PTSD, the findings regarding amygdala volume have been mixed. One reason for these mixed findings may be that the amygdala has been considered as a homogenous entity, while it in fact consists of several nuclei with unique cellular and connectivity profiles. Here, we investigated amygdala nuclei volumes of the basolateral and the centrocorticomedial complex in relation to PTSD symptom severity in 47 young survivors from the 2011 Norwegian terror attack 24-36 months post-trauma. PTSD symptoms were assessed 4-5, 14-15 and 24-36 months following the trauma. We found that increased PTSD symptom severity 24-36 months post-trauma was associated with volumetric reductions of all basolateral as well as the central and the medial nuclei. However, only the lateral nucleus was associated with longitudinal symptom development, and mediated the association between 4-5 months and 24-36 months post-trauma symptoms. The results suggest that the amygdala nuclei may be differentially associated with cross-sectional and longitudinal measures of PTSD symptom severity. As such, investigations of amygdala total volume may not provide an adequate index of the association between amygdala and stress-related mental illness.
Collapse
|
25
|
Huang YA, Dupont P, Van de Vliet L, Jastorff J, Peeters R, Theys T, van Loon J, Van Paesschen W, Van den Stock J, Vandenbulcke M. Network level characteristics in the emotion recognition network after unilateral temporal lobe surgery. Eur J Neurosci 2020; 52:3470-3484. [PMID: 32618060 DOI: 10.1111/ejn.14849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The human amygdala is considered a key region for successful emotion recognition. We recently reported that temporal lobe surgery (TLS), including resection of the amygdala, does not affect emotion recognition performance (Journal of Neuroscience, 2018, 38, 9263). In the present study, we investigate the neural basis of this preserved function at the network level. We use generalized psychophysiological interaction and graph theory indices to investigate network level characteristics of the emotion recognition network in TLS patients and healthy controls. Based on conflicting emotion processing theories, we anticipated two possible outcomes: a substantial increase of the non-amygdalar connections of the emotion recognition network to compensate functionally for the loss of the amygdala, in line with basic emotion theory versus only minor changes in network level properties as predicted by psychological construction theory. We defined the emotion recognition network in the total sample and investigated group differences on five network level indices (i.e. characteristic path length, global efficiency, clustering coefficient, local efficiency and small-worldness). The results did not reveal a significant increase in the left or right temporal lobectomy group (compared to the control group) in any of the graph measures, indicating that preserved behavioural emotion recognition in TLS is not associated with a massive connectivity increase between non-amygdalar nodes at network level. We conclude that the emotion recognition network is robust and functionally able to compensate for structural damage without substantial global reorganization, in line with a psychological construction theory.
Collapse
Affiliation(s)
- Yun-An Huang
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Van de Vliet
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Jastorff
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ron Peeters
- Department of Imaging & Pathology, Radiology, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johannes van Loon
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Wim Van Paesschen
- Department of Neurosciences, Research Group Experimental Neurology, Laboratory for Epilepsy Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Van den Stock
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Domínguez-Borràs J, Moyne M, Saj A, Guex R, Vuilleumier P. Impaired emotional biases in visual attention after bilateral amygdala lesion. Neuropsychologia 2020; 137:107292. [PMID: 31811846 DOI: 10.1016/j.neuropsychologia.2019.107292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
It is debated whether the amygdala is critical for the emotional modulation of attention. While some studies show reduced attentional benefits for emotional stimuli in amygdala-damaged patients, others report preserved emotional effects. Various factors may account for these discrepant findings, including the temporal onset of the lesion, the completeness and severity of tissue damage, or the extent of neural plasticity and compensatory mechanisms, among others. Here, we investigated a rare patient with focal acute destruction of bilateral amygdala and adjacent hippocampal structures after late-onset herpetic encephalitis in adulthood. We compared her performance in two classic visual attention paradigms with that of healthy controls. First, we tested for any emotional advantage during an attentional blink task. Whereas controls showed better report of fearful and happy than neutral faces on trials with short lags between targets, the patient showed no emotional advantage, but also globally reduced report rates for all faces. Second, to ensure that memory disturbance due to hippocampal damage would not interfere with report performance, we also used a visual search task with either emotionally or visually salient face targets. Although the patient still exhibited efficient guided search for visually salient, non-emotional faces, her search slopes for emotional versus neutral faces showed no comparable benefit. In both tasks, however, changes in the patient predominated for happy more than fear stimuli, despite her normal explicit recognition of happy expressions. Our results provide new support for a causal role of the amygdala in emotional facilitation of visual attention, especially under conditions of increasing task-demands, and not limited to negative information. In addition, our data suggest that such deficits may not be amenable to plasticity and compensation, perhaps due to sudden and late-onset damage occurring in adulthood.
Collapse
Affiliation(s)
- J Domínguez-Borràs
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1211, Geneva, Switzerland.
| | - M Moyne
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1211, Geneva, Switzerland.
| | - A Saj
- Department of Neurology, University Hospital, CH-1211, Geneva, Switzerland.
| | - R Guex
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1211, Geneva, Switzerland.
| | - P Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1211, Geneva, Switzerland; Geneva Neuroscience Center, University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
27
|
Amygdala Nuclei Volume and Shape in Military Veterans With Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:281-290. [PMID: 32029420 DOI: 10.1016/j.bpsc.2019.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The amygdala is a subcortical structure involved in socioemotional and associative fear learning processes relevant for understanding the mechanisms of posttraumatic stress disorder (PTSD). Research in animals indicates that the amygdala is a heterogeneous structure in which the basolateral and centromedial divisions are susceptible to stress. While the amygdala complex is implicated in the pathophysiology of PTSD, little is known about the specific contributions of the individual nuclei that constitute the amygdala complex. METHODS Military veterans (n = 355), including military veterans with PTSD (n = 149) and trauma-exposed control subjects without PTSD (n = 206), underwent high-resolution T1-weighted anatomical scans. Automated FreeSurfer segmentation of the amygdala yielded 9 structures: basal, lateral, accessory basal, anterior amygdaloid, and central, medial, cortical, and paralaminar nuclei, along with the corticoamygdaloid transition zone. Subregional volumes were compared between groups using ordinary-least-squares regression with relevant demographic and clinical regressors followed by 3-dimensional shape analysis of whole amygdala. RESULTS PTSD was associated with smaller left and right lateral and paralaminar nuclei, but with larger left and right central, medial, and cortical nuclei (p < .05, false discovery rate corrected). Shape analyses revealed lower radial distance in anterior bilateral amygdala and lower Jacobian determinant in posterior bilateral amygdala in PTSD compared with control subjects. CONCLUSIONS Alterations in select amygdala subnuclear volumes and regional shape distortions are associated with PTSD in military veterans. Volume differences of the lateral nucleus and the centromedial complex associated with PTSD demonstrate a subregion-specific pattern that is consistent with their functional roles in fear learning and fear expression behaviors.
Collapse
|
28
|
Rosenberger LA, Eisenegger C, Naef M, Terburg D, Fourie J, Stein DJ, van Honk J. The Human Basolateral Amygdala Is Indispensable for Social Experiential Learning. Curr Biol 2019; 29:3532-3537.e3. [DOI: 10.1016/j.cub.2019.08.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022]
|
29
|
Shao LX, Jiang Q, Liu XX, Gong DM, Yin YX, Wu G, Sun NH, Wang CK, Chen QZ, Yu C, Shi WX, Fan HY, Fukunaga K, Chen Z, Lu YM, Han F. Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons. Mol Psychiatry 2019; 24:1461-1477. [PMID: 30886335 DOI: 10.1038/s41380-019-0402-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders, but their pathogenic mechanism remains poorly understood. Here, we report that transmembrane protein 74 (TMEM74), which contains two putative transmembrane domains and exhibits high levels of mRNA in the brain, is closely associated with the pathogenesis of anxiety disorders. TMEM74 was decreased in the serum of patients with anxiety and the basolateral amygdaloid nucleus (BLA) in chronic stress mice. Furthermore, genetic deletion of Tmem74 or selective knockdown of Tmem74 in BLA pyramidal neurons resulted in anxiety-like behaviors in mice. Whole-cell recordings in BLA pyramidal neurons revealed lower hyperpolarization-activated cation current (Ih) and greater input resistance and excitability in Tmem74-/- neurons than in wild-type neurons. Accordingly, surface expression of hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels was also lower in the BLA of Tmem74-/- mice. The Ih current blocker ZD7288 mimicked these effects in BLA pyramidal neurons in wild-type mice but not in Tmem74-/- mice. Consistent with the improvement in anxiety-like behaviors, Tmem74 overexpression restored HCN1 channel trafficking and pyramidal neuron excitability in the BLA of Tmem74-/- and chronic stress mice. Mechanistically, we demonstrate that interactions between Tmem74 and HCN1 are physiologically relevant and that transmembrane domain 1 (TM1) is essential for the cellular membrane localization of Tmem74 to enhance Ih. Together, our findings suggest that Tmem74 coupling with HCN1 acts as a critical component in the pathophysiology of anxiety and is a potential target for new treatments of anxiety disorders.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiu-Xiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yi-Xuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning-He Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Zhen Chen
- Department of Psychiatry, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Wei-Xing Shi
- Departments of Pharmaceutical, Administrative, and Basic Sciences, Schools of Pharmacy and Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, China. .,Department of Neurobiology, Nanjing Medical University, Nanjing, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Wang S. Brief Report: Atypical Visual Exploration in Autism Spectrum Disorder Cannot be Attributed to the Amygdala. J Autism Dev Disord 2019; 49:2605-2611. [DOI: 10.1007/s10803-019-04009-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
32
|
Reliability of Fronto-Amygdala Coupling during Emotional Face Processing. Brain Sci 2019; 9:brainsci9040089. [PMID: 31010224 PMCID: PMC6523743 DOI: 10.3390/brainsci9040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
One of the most exciting translational prospects for brain imaging research is the potential use of functional magnetic resonance imaging (fMRI) 'biomarkers' to predict an individual's risk of developing a neuropsychiatric disorder or the likelihood of responding to a particular intervention. This proposal depends critically on reliable measurements at the level of the individual. Several previous studies have reported relatively poor reliability of amygdala activation during emotional face processing, a key putative fMRI 'biomarker'. However, the reliability of amygdala connectivity measures is much less well understood. Here, we assessed the reliability of task-modulated coupling between three seed regions (left and right amygdala and the subgenual anterior cingulate cortex) and the dorsomedial frontal/cingulate cortex (DMFC), measured using a psychophysiological interaction analysis in 29 healthy individuals scanned approximately two weeks apart. We performed two runs on each day of three different emotional face-processing tasks: emotion identification, emotion matching, and gender classification. We tested both between-day reliability and within-day (between-run) reliability. We found good-to-excellent within-subject reliability of amygdala-DMFC coupling, both between days (in two tasks), and within day (in one task). This suggests that disorder-relevant regional coupling may be sufficiently reliable to be used as a predictor of treatment response or clinical risk in future clinical studies.
Collapse
|
33
|
Hur J, Stockbridge MD, Fox AS, Shackman AJ. Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework. PROGRESS IN BRAIN RESEARCH 2019; 247:375-436. [PMID: 31196442 PMCID: PMC6578598 DOI: 10.1016/bs.pbr.2019.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early in development, are common and challenging to treat, yet the underlying mechanisms have only recently begun to come into focus. Here, we review new insights into the nature and biological bases of dispositional negativity, a fundamental dimension of childhood temperament and adult personality and a prominent risk factor for the development of pediatric and adult anxiety disorders. Converging lines of epidemiological, neurobiological, and mechanistic evidence suggest that dispositional negativity increases the likelihood of psychopathology via specific neurocognitive mechanisms, including attentional biases to threat and deficits in executive control. Collectively, these observations provide an integrative translational framework for understanding the development and maintenance of anxiety disorders in adults and youth and set the stage for developing improved intervention strategies.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, University of Maryland, College Park, MD, United States.
| | | | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, United States; California National Primate Research Center, University of California, Davis, CA, United States
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States; Maryland Neuroimaging Center, University of Maryland, College Park, MD, United States.
| |
Collapse
|
34
|
Patrick F, Kempton MJ, Marwood L, Williams SCR, Young AH, Perkins AM. Brain activation during human defensive behaviour: A systematic review and preliminary meta-analysis. Neurosci Biobehav Rev 2019; 98:71-84. [PMID: 30611801 DOI: 10.1016/j.neubiorev.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
The neural underpinnings of defensive behaviour have implications for both basic research and clinical translation. This review systematically collates published research on neural response during simple avoidance of threat and approach-avoidance behaviour during goal-conflicting situations and presents an exploratory meta-analysis of available whole-brain data. Scopus, PsychInfo and Web of Science databases were searched for the period up to March 2018. 1348 simple avoidance and 1910 goal-conflict publications were initially identified; following review, 8 simple avoidance and 11 goal-conflict studies were included, with 5 datasets used in a preliminary meta-analysis. A move from forebrain-to-midbrain activation as threat becomes more pertinent was noted, indicating support for the Reinforcement Sensitivity Theory of behaviour and general compatibility with animal work. However, these findings were not reflected in the subsequent preliminary meta-analysis. This review highlights the considerable heterogeneity in currently available defensive behaviour paradigms and the lack of research in clinically relevant populations.
Collapse
Affiliation(s)
- Fiona Patrick
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Lindsey Marwood
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Adam M Perkins
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
The role of the basolateral amygdala in dreaming. Cortex 2018; 113:169-183. [PMID: 30660955 DOI: 10.1016/j.cortex.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/09/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023]
Abstract
Neuroimaging studies have repeatedly shown amygdala activity during sleep (REM and NREM). Consequently, various theorists propose central roles for the amygdala in dreaming - particularly in the generation of dream affects, which seem to play a major role in dream plots. However, a causal role for the amygdala in dream phenomena has never been demonstrated. The traditional first step in determining this role is to observe the functional effects of isolated lesions to the brain structure in question. However, circumscribed bilateral amygdala lesions are extremely rare. Furthermore, the treatment of the amygdala as a unitary structure is problematic, as the basolateral and centromedial amygdala (BLA and CMA) may serve very different functions. We analysed 23 dream reports collected from eight adult patients with bilateral calcification of the BLA as a result of a very rare genetic condition called Urbach-Wiethe Disease (UWD). We compared these dream reports to 52 reports collected from 17 matched controls. Given that the BLA has been implicated in various affective processes in waking life, we predicted that the emotional content of the patients' dreams would differ from that of controls. Due to the exploratory nature of this research, a range of different dream characteristics were analysed. A principal components analysis run on all data returned three key factors, namely pleasantness, length and danger. The UWD patients' dream reports were significantly more pleasant and significantly shorter and less complex than control reports. No differences were found in levels of threat or danger. The results support some current hypotheses concerning the amygdala's role in dreaming, and call others into question. Future research should examine whether these UWD patients show generally impaired emotional episodic memory due to BLA damage, which could explain some of the current findings.
Collapse
|
36
|
|
37
|
Poyo Solanas M, Zhan M, Vaessen M, Hortensius R, Engelen T, de Gelder B. Looking at the face and seeing the whole body. Neural basis of combined face and body expressions. Soc Cogn Affect Neurosci 2018; 13:135-144. [PMID: 29092076 PMCID: PMC5793719 DOI: 10.1093/scan/nsx130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
In the natural world, faces are not isolated objects but are rather encountered in the context of the whole body. Previous work has studied the perception of combined faces and bodies using behavioural and electrophysiological measurements, but the neural correlates of emotional face–body perception still remain unexplored. Here, we combined happy and fearful faces and bodies to investigate the influence of body expressions on the neural processing of the face, the effect of emotional ambiguity between the two and the role of the amygdala in this process. Our functional magnetic resonance imaging analyses showed that the activity in motor, prefrontal and visual areas increases when facial expressions are presented together with bodies rather than in isolation, consistent with the notion that seeing body expressions triggers both emotional and action-related processes. In contrast, psychophysiological interaction analyses revealed that amygdala modulatory activity increases after the presentation of isolated faces when compared to combined faces and bodies. Furthermore, a facial expression combined with a congruent body enhanced both cortical activity and amygdala functional connectivity when compared to an incongruent face–body compound. Finally, the results showed that emotional body postures influence the processing of facial expressions, especially when the emotion conveyed by the body implies danger.
Collapse
Affiliation(s)
- Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Maarten Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Ruud Hortensius
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Tahnée Engelen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Limburg 6200 MD, Maastricht, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
38
|
Chang J, Yu R. Alternations in functional connectivity of amygdalar subregions under acute social stress. Neurobiol Stress 2018; 9:264-270. [PMID: 30450390 PMCID: PMC6234264 DOI: 10.1016/j.ynstr.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
Abstract
The amygdala has long been considered a vital region involved in acute and chronic stress responses. Extensive evidences from animal and human studies suggest that the functional connectivity of amygdalar subnuclei (basolateral amygdala (BLA), centromedial amygdala (CMA) and superficial amygdala (SFA)) undergo specific alterations in stress-related psychopathology. However, whether and how intrinsic functional connectivity within the amygdalar subcomponents is differently altered in the aftermath of an acute stressor remains unknown. In the present study, using a within-subject design, we examined the impact of acute psychological social stress on the functional connectivity of amygdalar subregions at rest. Results showed that stress mainly affected the connectivity pattern of CMA. In particular, in the stress condition compared with the control, the connectivity of CMA to left posterior cingulate cortex and right thalamus was decreased under stress, while the connectivity of CMA to left caudate connectivity was increased at rest post-stressor. The findings suggest that healthy individuals may adapt to threatening surroundings by reducing threatening information input, and shifting to well-learned procedural behaviors.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
39
|
Agoglia AE, Herman MA. The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol 2018; 72:61-73. [PMID: 30220589 PMCID: PMC6165695 DOI: 10.1016/j.alcohol.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
The commonalities between different phases of stress and alcohol use as well as the high comorbidity between alcohol use disorders (AUDs) and anxiety disorders suggest common underlying cellular mechanisms governing the rewarding and aversive aspects of these related conditions. As an integrative center that assigns emotional salience to a wide variety of internal and external stimuli, the amygdala complex plays a major role in how alcohol and stress influence cellular physiology to produce disordered behavior. Previous work has illustrated the broad role of the amygdala in alcohol, stress, and anxiety. However, the challenge of current and future studies is to identify the specific dysregulations that occur within distinct amygdala circuits and subpopulations and the commonalities between these alterations in each disorder, with the long-term goal of identifying potential targets for therapeutic intervention. Specific intra-amygdala circuits and cell type-specific subpopulations are emerging as critical targets for stress- and alcohol-induced plasticity, chief among them the corticotropin releasing factor (CRF) and CRF receptor 1 (CRF1) system. CRF and CRF1 have been implicated in the effects of alcohol in several amygdala nuclei, including the basolateral (BLA) and central amygdala (CeA); however, the precise circuitry involved in these effects and the role of these circuits in stress and anxiety are only beginning to be understood.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
40
|
Terburg D, Scheggia D, Triana Del Rio R, Klumpers F, Ciobanu AC, Morgan B, Montoya ER, Bos PA, Giobellina G, van den Burg EH, de Gelder B, Stein DJ, Stoop R, van Honk J. The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell 2018; 175:723-735.e16. [PMID: 30340041 PMCID: PMC6198024 DOI: 10.1016/j.cell.2018.09.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 11/02/2022]
Abstract
Rodent research delineates how the basolateral amygdala (BLA) and central amygdala (CeA) control defensive behaviors, but translation of these findings to humans is needed. Here, we compare humans with natural-selective bilateral BLA lesions to rats with a chemogenetically silenced BLA. We find, across species, an essential role for the BLA in the selection of active escape over passive freezing during exposure to imminent yet escapable threat (Timm). In response to Timm, BLA-damaged humans showed increased startle potentiation and BLA-silenced rats demonstrated increased startle potentiation, freezing, and reduced escape behavior as compared to controls. Neuroimaging in humans suggested that the BLA reduces passive defensive responses by inhibiting the brainstem via the CeA. Indeed, Timm conditioning potentiated BLA projections onto an inhibitory CeA pathway, and pharmacological activation of this pathway rescued deficient Timm responses in BLA-silenced rats. Our data reveal how the BLA, via the CeA, adaptively regulates escape behavior from imminent threat and that this mechanism is evolutionary conserved across rodents and humans.
Collapse
Affiliation(s)
- David Terburg
- Department of Psychology, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - Diego Scheggia
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Rodrigo Triana Del Rio
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Floris Klumpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alexandru Cristian Ciobanu
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Barak Morgan
- Global Risk Governance Program, Institute for Safety Governance and Criminology, Law Faculty, University of Cape Town, Cape Town, South Africa
| | | | - Peter A Bos
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Gion Giobellina
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Erwin H van den Burg
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Ron Stoop
- Center for Psychiatric Neuroscience, Lausanne University and University Hospital Center, Lausanne, Switzerland.
| | - Jack van Honk
- Department of Psychology, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Importance of amygdala noradrenergic activity and large-scale neural networks in regulating emotional arousal effects on perception and memory. Behav Brain Sci 2018; 39:e222. [PMID: 28347385 DOI: 10.1017/s0140525x15001934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mather and colleagues postulate that norepinephrine promotes selective processing of emotionally salient information through local "hotspots" where norepinephrine release interacts with glutamatergic activity. However, findings in rodents and humans indicate that norepinephrine is ineffective in modulating mnemonic processes in the absence of a functional amygdala. We therefore argue that emphasis should shift toward modulatory effects of amygdala-driven changes at the network level.
Collapse
|
42
|
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19:535-551. [PMID: 30054570 PMCID: PMC6148363 DOI: 10.1038/s41583-018-0039-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Robert J Fenster
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
43
|
Bourgin J, Guyader N, Chauvin A, Juphard A, Sauvée M, Moreaud O, Silvert L, Hot P. Early Emotional Attention is Impacted in Alzheimer's Disease: An Eye-Tracking Study. J Alzheimers Dis 2018; 63:1445-1458. [PMID: 29782325 DOI: 10.3233/jad-180170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Emotional deficits have been repetitively reported in Alzheimer's disease (AD) without clearly identifying how emotional processing is impaired in this pathology. This paper describes an investigation of early emotional processing, as measured by the effects of emotional visual stimuli on a saccadic task involving both pro (PS) and anti (AS) saccades. Sixteen patients with AD and 25 age-matched healthy controls were eye-tracked while they had to quickly move their gaze toward a positive, negative, or neutral image presented on a computer screen (in the PS condition) or away from the image (in the AS condition). The age-matched controls made more AS mistakes for negative stimuli than for other stimuli, and triggered PSs toward negative stimuli more quickly than toward other stimuli. In contrast, patients with AD showed no difference with regard to the emotional category in any of the tasks. The present study is the first to highlight a lack of early emotional attention in patients with AD. These results should be taken into account in the care provided to patients with AD, since this early impairment might seriously degrade their overall emotional functioning.
Collapse
Affiliation(s)
- Jessica Bourgin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| | - Nathalie Guyader
- Université Grenoble Alpes, CNRS UMR 5216, Laboratoire Grenoble Images Parole Signal Automatique (GIPSA-lab), Grenoble, France
| | - Alan Chauvin
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| | | | - Mathilde Sauvée
- Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
- Centre Mémoire de Ressources et de Recherche, Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
| | - Olivier Moreaud
- Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
- Centre Mémoire de Ressources et de Recherche, Pôle de Psychiatrie et Neurologie, CHU Grenoble, Grenoble, France
| | - Laetitia Silvert
- Université Clermont Auvergne, UCA-CNRS UMR 6024, Laboratoire de Psychologie Sociale et Cognitive (LAPSCO), Clermont-Ferrand, France
| | - Pascal Hot
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS UMR 5105, Laboratoire de Psychologie et Neurocognition (LPNC), Grenoble, France
| |
Collapse
|
44
|
Carlisi CO, Robinson OJ. The role of prefrontal-subcortical circuitry in negative bias in anxiety: Translational, developmental and treatment perspectives. Brain Neurosci Adv 2018; 2:2398212818774223. [PMID: 30167466 PMCID: PMC6097108 DOI: 10.1177/2398212818774223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common cause of mental ill health in the developed world, but our understanding of symptoms and treatments is not presently grounded in knowledge of the underlying neurobiological mechanisms. In this review, we discuss accumulating work that points to a role for prefrontal-subcortical brain circuitry in driving a core psychological symptom of anxiety disorders - negative affective bias. Specifically, we point to converging work across humans and animal models, suggesting a reciprocal relationship between dorsal and ventral prefrontal-amygdala circuits in promoting and inhibiting negative bias, respectively. We discuss how the developmental trajectory of these circuits may lead to the onset of anxiety during adolescence and, moreover, how effective pharmacological and psychological treatments may serve to shift the balance of activity within this circuitry to ameliorate negative bias symptoms. Together, these findings may bring us closer to a mechanistic, neurobiological understanding of anxiety disorders and their treatment.
Collapse
Affiliation(s)
- Christina O. Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
45
|
Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 2017; 12:1-23. [PMID: 27798257 PMCID: PMC5390700 DOI: 10.1093/scan/nsw154] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022] Open
Abstract
The science of emotion has been using folk psychology categories derived from philosophy to search for the brain basis of emotion. The last two decades of neuroscience research have brought us to the brink of a paradigm shift in understanding the workings of the brain, however, setting the stage to revolutionize our understanding of what emotions are and how they work. In this article, we begin with the structure and function of the brain, and from there deduce what the biological basis of emotions might be. The answer is a brain-based, computational account called the theory of constructed emotion.
Collapse
Affiliation(s)
- Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA.,Athinoula, A. Martinos Center for Biomedical Imaging.,Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
46
|
Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 2017; 7:e1194. [PMID: 28786979 PMCID: PMC5611728 DOI: 10.1038/tp.2017.161] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
47
|
The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nat Commun 2017; 8:14821. [PMID: 28429707 PMCID: PMC5413952 DOI: 10.1038/ncomms14821] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/06/2017] [Indexed: 11/15/2022] Open
Abstract
The human amygdala is a key structure for processing emotional facial expressions, but it remains unclear what aspects of emotion are processed. We investigated this question with three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is categorized as fearful or happy). We found two populations of neurons, one whose response correlated with increasing degree of fear, or happiness, and a second whose response primarily decreased as a linear function of emotion ambiguity. Together, our results indicate that the human amygdala processes both the degree of emotion in facial expressions and the categorical ambiguity of the emotion shown and that these two aspects of amygdala processing can be most clearly distinguished at the level of single neurons. The amygdala processes emotional facial expressions, but its exact contributions are unclear. Wang. et al. use behavioural analysis of amygdala lesion patients, fMRI, and single-neuron recordings to show that both emotional intensity and ambiguity signals are processed in the human amygdala.
Collapse
|
48
|
Roozendaal B, Hermans EJ. Norepinephrine effects on the encoding and consolidation of emotional memory: improving synergy between animal and human studies. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
The Basolateral Amygdalae and Frontotemporal Network Functions for Threat Perception. eNeuro 2017; 4:eN-NWR-0314-16. [PMID: 28374005 PMCID: PMC5368167 DOI: 10.1523/eneuro.0314-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 11/21/2022] Open
Abstract
Although the amygdalae play a central role in threat perception and reactions, the direct contributions of the amygdalae to specific aspects of threat perception, from ambiguity resolution to reflexive or deliberate action, remain ill understood in humans. Animal studies show that a detailed understanding requires a focus on the different subnuclei, which is not yet achieved in human research. Given the limits of human imaging methods, the crucial contribution needs to come from individuals with exclusive and selective amygdalae lesions. The current study investigated the role of the basolateral amygdalae and their connection with associated frontal and temporal networks in the automatic perception of threat. Functional activation and connectivity of five individuals with Urbach–Wiethe disease with focal basolateral amygdalae damage and 12 matched controls were measured with functional MRI while they attended to the facial expression of a threatening face–body compound stimuli. Basolateral amygdalae damage was associated with decreased activation in the temporal pole but increased activity in the ventral and dorsal medial prefrontal and medial orbitofrontal cortex. This dissociation between the prefrontal and temporal networks was also present in the connectivity maps. Our results contribute to a dynamic, multirole, subnuclei-based perspective on the involvement of the amygdalae in fear perception. Damage to the basolateral amygdalae decreases activity in the temporal network while increasing activity in the frontal network, thereby potentially triggering a switch from resolving ambiguity to dysfunctional threat signaling and regulation, resulting in hypersensitivity to threat.
Collapse
|
50
|
Aghamohammadi-Sereshki A, Huang Y, Olsen F, Malykhin NV. In vivo quantification of amygdala subnuclei using 4.7 T fast spin echo imaging. Neuroimage 2017; 170:151-163. [PMID: 28288907 DOI: 10.1016/j.neuroimage.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/15/2022] Open
Abstract
The amygdala (AG) is an almond-shaped heterogeneous structure located in the medial temporal lobe. The majority of previous structural Magnetic Resonance Imaging (MRI) volumetric methods for AG measurement have so far only been able to examine this region as a whole. In order to understand the role of the AG in different neuropsychiatric disorders, it is necessary to understand the functional role of its subnuclei. The main goal of the present study was to develop a reliable volumetric method to delineate major AG subnuclei groups using ultra-high resolution high field MRI. 38 healthy volunteers (15 males and 23 females, 21-60 years of age) without any history of medical or neuropsychiatric disorders were recruited for this study. Structural MRI datasets were acquired at 4.7 T Varian Inova MRI system using a fast spin echo (FSE) sequence. The AG was manually segmented into its five major anatomical subdivisions: lateral (La), basal (B), accessory basal (AB) nuclei, and cortical (Co) and centromedial (CeM) groups. Inter-(intra-) rater reliability of our novel volumetric method was assessed using intra-class correlation coefficient (ICC) and Dice's Kappa. Our results suggest that reliable measurements of the AG subnuclei can be obtained by image analysts with experience in AG anatomy. We provided a step-by-step segmentation protocol and reported absolute and relative volumes for the AG subnuclei. Our results showed that the basolateral (BLA) complex occupies seventy-eight percent of the total AG volume, while CeM and Co groups occupy twenty-two percent of the total AG volume. Finally, we observed no hemispheric effects and no gender differences in the total AG volume and the volumes of its subnuclei. Future applications of this method will help to understand the selective vulnerability of the AG subnuclei in neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Yushan Huang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|