1
|
Zhao X, Wang D, Chang M, He Z, Zeng Z, Ren M, Hu Y, Li Z. HPA-axis multilocus genetic interaction with stress life events in predicting changes in adolescent suicidal ideation. J Affect Disord 2025; 380:288-297. [PMID: 40139404 DOI: 10.1016/j.jad.2025.03.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/15/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Research suggests that genetic variants linked to the hypothalamic-pituitary-adrenal (HPA) axis moderate the association between stressors and change in suicidal ideation, but examining gene-environment interactions with single polymorphisms limits power. This study investigates how interactions between stressful life events and HPA-axis polygenic risk predict changes in suicidal ideation. METHODS A sample of 760 adolescents (Mage = 14.15 ± 0.63 years; 54.6 % girls) was followed up over two years. The polygenic risk was assessed using a multilocus genetic profile score (MGPS) based on the additive effects of six HPA-axis candidate genes (SKS2, NR3C1, NR3C2, FKBP5). Participants were categorized into distinct trajectories of suicidal ideation based on time-varying changes in their ideation scores. Multivariate logistic regression analyses were conducted to identify predictors of trajectory membership. RESULTS (1) Five distinct trajectories of suicidal ideation were identified: resistance (52.7 %), persistence (13.1 %), delayed (11.4 %), remission (15.6 %), and relapsing (7.2 %). (2) The combination of HPA-axis MGPS and SLEs showed good predictive accuracy for suicidal ideation trajectories, as indicated by the area under the ROC curve. (3) The interaction between all six stressful life events and HPA-axis MGPS is more predictive of developing persistent trajectories of suicidal ideation. Meanwhile, HPA-axis MGPS interacted with factors such as interpersonal relationships, academic pressure, and loss to better predict the delayed and relapsing suicidal ideation compared to the resistance group. CONCLUSIONS This study suggests that genetic variants associated with the HPA axis exert a polygenic, additive effect on the relationship between stressful life events and longitudinal increases in suicidal ideation.
Collapse
Affiliation(s)
- Xian Zhao
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Dongfang Wang
- School of Psychology, Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou 510631, China
| | - Mengmeng Chang
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Zhen He
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Zihao Zeng
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Menghao Ren
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Yiqiu Hu
- School of Educational Science, Hunan Normal University, Changsha 410081, Hunan Province, China; China Research Center for Mental Health Education of Hunan Province, Hunan Normal University, Changsha 410081, Hunan Province, China.
| | - Zhihua Li
- Institute of Education, Hunan University of Science & Technology, Xiangtan 411201, Hunan Province, China.
| |
Collapse
|
2
|
Hartmann J, Klengel C, Dillmann LJ, Hisey EE, Hafner K, Shukla R, Soliva Estruch M, Bajaj T, Ebert T, Mabbott KG, Rostin L, Philipsen A, Carlezon WA, Gisabella B, McCullumsmith RE, Vergis JM, Klengel T, Berretta S, Daskalakis NP, Pantazopoulos H, Gassen NC, Ressler KJ. SKA2 enhances stress-related glucocorticoid receptor signaling through FKBP4-FKBP5 interactions in neurons. Proc Natl Acad Sci U S A 2024; 121:e2417728121. [PMID: 39705315 DOI: 10.1073/pnas.2417728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024] Open
Abstract
Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, SKA2, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear. Here, we demonstrate, using diverse in vitro cell assays, a mechanism by which SKA2 promotes GR signaling through enhancing GR-FKBP4 interaction leading to dissociation of FK506-bindingprotein 51 (FKBP5) from the complex. FKBP4 and FKBP5 are cochaperones known to regulate GR function in opposite directions. Notably in mice, SKA2 in Crh+ neurons of the paraventricular nucleus of the hypothalamus is crucial for HPA axis responsiveness and for maintaining the negative feedback loop underlying allostasis. Moreover, we show that SKA2 expression is increased in postmortem human hippocampus and amygdala from individuals with BD. Our study highlights a critical role of SKA2 in HPA axis function, adds to the understanding of the molecular basis of stress-related psychiatric disorders, and points to potential targets for intervention.
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Larissa J Dillmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Erin E Hisey
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Rammohan Shukla
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071
| | - Marina Soliva Estruch
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Katharine G Mabbott
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Luise Rostin
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital, Bonn 53127, Germany
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | | | - John M Vergis
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| |
Collapse
|
3
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024; 38:79-101. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
4
|
Garcia-Ruiz B, Jiménez E, Aranda S, Verdolini N, Gutiérrez-Zotes A, Sáez C, Losantos E, Alonso-Lana S, Fatjó-Vilas M, Sarró S, Torres L, Panicalli F, Bonnin CDM, Pomarol-Clotet E, Vieta E, Vilella E. Associations of altered leukocyte DDR1 promoter methylation and childhood trauma with bipolar disorder and suicidal behavior in euthymic patients. Mol Psychiatry 2024; 29:2478-2486. [PMID: 38503928 DOI: 10.1038/s41380-024-02522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Altered DNA methylation (DNAm) patterns of discoidin domain receptor 1 (DDR1) have been found in the blood and brain of patients with schizophrenia (SCZ) and the brain of patients with bipolar disorder (BD). Childhood trauma (CT) is associated with changes in DNAm that in turn are related to suicidal behavior (SB) in patients with several psychiatric disorders. Here, using MassARRAY® technology, we studied 128 patients diagnosed with BD in remission and 141 healthy controls (HCs) to compare leukocyte DDR1 promoter DNAm patterns between patients and HCs and between patients with and without SB. Additionally, we investigated whether CT was associated with DDR1 DNAm and mediated SB. We found hypermethylation at DDR1 cg19215110 and cg23953820 sites and hypomethylation at cg14279856 and cg03270204 sites in patients with BD compared to HCs. Logistic regression models showed that hypermethylation of DDR1 cg23953820 but not cg19215110 and CT were risk factors for BD, while cg14279856 and cg03270204 hypomethylation were protective factors. In patients, CT was a risk factor for SB, but DDR1 DNAm, although associated with CT, did not mediate the association of CT with SB. This is the first study demonstrating altered leukocyte DDR1 promoter DNAm in euthymic patients with BD. We conclude that altered DDR1 DNAm may be related to immune and inflammatory mechanisms and could be a potential blood biomarker for the diagnosis and stratification of psychiatric patients.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
| | - Esther Jiménez
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Selena Aranda
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Norma Verdolini
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Alfonso Gutiérrez-Zotes
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sáez
- Hospital Universitari Institut Pere Mata, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
| | | | - Silvia Alonso-Lana
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
- Research Center and Memory Clinic Fundació ACE, Barcelona, Spain
- Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mar Fatjó-Vilas
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Sarró
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Llanos Torres
- Hospital Mare de Déu de la Mercè, Unitat Polivalent, Germanes Hospitalàries, Barcelona, Spain
| | - Francesco Panicalli
- Benito Menni Complex Assistencial en Salut Mental, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Caterina Del Mar Bonnin
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Edith Pomarol-Clotet
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- FIDMAG Research Foundation, Germanes Hospitalàries, Barcelona, Spain
| | - Eduard Vieta
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelon, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain.
- Universitat Rovira i Virgili (URV), Reus, Spain.
- Centro de investigación biomédica en red en salud mental (CIBERSAM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
González-Castro TB, Rodríguez-Fuentes I, Tovilla-Zárate CA, Juárez-Rojop IE, Hernández-Díaz Y, López-Narváez ML, Uresti-Rivera EE, Hernández-Vicencio JL. The role of SKA2 on affective disorder, post-traumatic stress disorder and suicide behavior: systematic review and in silico analysis. Metab Brain Dis 2024; 39:1005-1014. [PMID: 38722562 DOI: 10.1007/s11011-024-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Genes involved in the hypothalamic-pituitary-adrenal axis may be a robust biomarker of psychiatric disorders. Genetic polymorphisms of the SKA2 gene are associated with several behavioral disorders. In this study, we embarked on a systematic search of all possible reports of genetic association with SKA2 and affective disorder, post-traumatic stress disorder, and suicide behavior; the functional consequences of nsSNPs were explored through computational tools with an in silico analysis. Eight eligible articles were included. Our study identified that SKA2 did not show association with risk of Major Depression Disorder. Epigenetic variation at SKA2 mediates vulnerability to Post-Traumatic Stress Disorder. Studies provide strong preliminary evidence that alterations at the SKA2 gene covary with types of suicide behavior, including suicidal ideation, attempts, and completions. Results from in silico analysis predicted that I22S, I22G, I78T, A15L, D18R, R25L, N42I, Y21S, K14I, K14L, and L60R were the most structurally and functionally significant nsSNPs in SKA2. Amino acid conservation analysis revealed that the amino acids were highly conserved and some dissimilarities of mutant type amino acids from wild-type amino acids such as charge, size, and hydrophobicity were observed. In the future, SKA2 gene have the potential to be evaluated as prognostic biomarkers for diagnosis and research.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Itzel Rodríguez-Fuentes
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México.
| | | | - Edith Elena Uresti-Rivera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | |
Collapse
|
6
|
Valenzuela-García LI, Ayala-García VM, Ramos-Rosales DF, Jacquez-Flores RE, Urtiz-Estrada N, Hernández EMM, Barraza-Salas M. The rs7208505 Polymorphism and Differential Expression of the SKA2 Gene in the Prefrontal Cortex of Suicide Victims from the Mexican Population. Arch Suicide Res 2024; 28:674-685. [PMID: 37204142 DOI: 10.1080/13811118.2023.2209155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The main aim of the current study was to investigate whether SKA2 gene expression in the postmortem brain of rs7208505 genotype are altered in suicide victims from a Mexican population. METHODS In this study, we report a genetic analysis of expression levels of the SKA2 gene in the prefrontal cortex of the postmortem brain of suicidal subjects (n = 22) compared to subjects who died of causes other than suicide (n = 22) in a Mexican population using RT-qPCR assays. Additionally, we genotyped the rs7208505 polymorphism in suicide victims (n = 98) and controls (n = 88) and we evaluate the association of genotypes for the SNP rs7208505 with expression level of SKA2. RESULTS The results showed that the expression of the SKA2 gene was significantly higher in suicide victims compared to control subjects (p = 0.044). Interestingly, we observed a greater proportion of allele A of the rs7208505 in suicide victims than controls. Even though there was no association between the SNP with suicide in the study population we found a significative association of the expression level from SKA2 with the allele A of the rs7208505 and suicide. CONCLUSION The evidence suggests that the expression of SKA2 in the prefrontal cortex may be a critical factor in the etiology of suicidal behavior.
Collapse
|
7
|
Chrétienneau C, Spindola LM, Vorspan F, Lagerberg TV, Marie‐Claire C, Bellivier F, Mouly S, Laplanche J, Bloch V, Le Hellard S, Icick R. An epigenetic candidate-gene association study of parental styles in suicide attempters with substance use disorders. Addict Biol 2024; 29:e13392. [PMID: 38564607 PMCID: PMC10986931 DOI: 10.1111/adb.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Suicide attempts (SA) are prevalent in substance use disorders (SUD). Epigenetic mechanisms may play a pivotal role in the molecular mechanisms of environmental effects eliciting suicidal behaviour in this population. Hypothalamic-pituitary-adrenal axis (HPA), oxytocin and neurotrophin pathways have been consistently involved in SA, yet , their interplay with childhood adversity remains unclear, particularly in SUD. In 24 outpatients with SUDs, we examined the relation between three parental dysfunctional styles and history of SA with methylation of 32 genes from these pathways, eventually analysing 823 methylation sites. Extensive phenotypic characterization was obtained using a semi-structured interview. Parental style was patient-reported using the Measure of Parental Style (MOPS) questionnaire, analysed with and without imputation of missing items. Linear regressions were performed to adjust for possible confounders, followed by multiple testing correction. We describe both differentially methylated probes (DMPs) and regions (DMRs) for each set of analyses (with and without imputation of MOPS items). Without imputation, five DMRs in OXTR, CRH and NTF3 significantly interacted with MOPS father abuse to increase the risk for lifetime SA, thus covering the three pathways. After imputation of missing MOPS items, two other DMPs from FKBP5 and SOCS3 significantly interacted with each of the three father styles to increase the risk for SA. Although our findings must be interpreted with caution due to small sample size, they suggest implications of stress reactivity genes in the suicidal risk of SUD patients and highlight the significance of father dysfunction as a potential marker of childhood adversity in SUD patients.
Collapse
Affiliation(s)
- Clara Chrétienneau
- Département Universitaire de Psychiatrie et de Médecine Addictologique, GHU APHP. NordAssistance Publique – Hôpitaux de ParisParisFrance
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| | - Leticia M. Spindola
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical GeneticsHaukeland University HospitalBergenNorway
| | - Florence Vorspan
- Département Universitaire de Psychiatrie et de Médecine Addictologique, GHU APHP. NordAssistance Publique – Hôpitaux de ParisParisFrance
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| | - Trine Vik Lagerberg
- Division of Mental Health and Addiction Department of Psychology, Faculty of Social SciencesOslo University Hospital | University of Oslo, Oslo, NorwayOsloNorway
| | - Cynthia Marie‐Claire
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| | - Frank Bellivier
- Département Universitaire de Psychiatrie et de Médecine Addictologique, GHU APHP. NordAssistance Publique – Hôpitaux de ParisParisFrance
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| | - Stéphane Mouly
- Department of Internal MedicineLariboisière Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
- Université Paris CitéParisFrance
| | - Jean‐Louis Laplanche
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| | - Vanessa Bloch
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
- Pharmacie HospitalièreAssistance Publique – Hôpitaux de Paris, GHU APHP. NordParisFrance
| | - Stéphanie Le Hellard
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical GeneticsHaukeland University HospitalBergenNorway
| | - Romain Icick
- Département Universitaire de Psychiatrie et de Médecine Addictologique, GHU APHP. NordAssistance Publique – Hôpitaux de ParisParisFrance
- INSERM UMR‐S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeNUniversité Paris CitéParisFrance
- FHU NOR‐SUD Network of Research in Substance Use DisordersParisFrance
| |
Collapse
|
8
|
Hartmann J, Bajaj T, Otten J, Klengel C, Ebert T, Gellner AK, Junglas E, Hafner K, Anderzhanova EA, Tang F, Missig G, Rexrode L, Trussell DT, Li KX, Pöhlmann ML, Mackert S, Geiger TM, Heinz DE, Lardenoije R, Dedic N, McCullough KM, Próchnicki T, Rhomberg T, Martinelli S, Payton A, Robinson AC, Stein V, Latz E, Carlezon WA, Hausch F, Schmidt MV, Murgatroyd C, Berretta S, Klengel T, Pantazopoulos H, Ressler KJ, Gassen NC. SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration. Nat Commun 2024; 15:2635. [PMID: 38528004 PMCID: PMC10963788 DOI: 10.1038/s41467-024-46953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Joy Otten
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Ellen Junglas
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Elmira A Anderzhanova
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Fiona Tang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Galen Missig
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel T Trussell
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Katelyn X Li
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Max L Pöhlmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sarah Mackert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Roy Lardenoije
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nina Dedic
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Kenneth M McCullough
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Rhomberg
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Antony Payton
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), 10117, Berlin, Germany
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany.
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
9
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
10
|
Sun S, Liu Q, Wang Z, Huang YY, Sublette M, Dwork A, Rosoklija G, Ge Y, Galfalvy H, Mann JJ, Haghighi F. Functional Architecture of Brain and Blood Transcriptome Delineate Biological Continuity Between Suicidal Ideation and Suicide. RESEARCH SQUARE 2023:rs.3.rs-2958575. [PMID: 37398042 PMCID: PMC10312911 DOI: 10.21203/rs.3.rs-2958575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.
Collapse
|
11
|
Ben David G, Amir Y, Salalha R, Sharvit L, Richter-Levin G, Atzmon G. Can Epigenetics Predict Drug Efficiency in Mental Disorders? Cells 2023; 12:1173. [PMID: 37190082 PMCID: PMC10136455 DOI: 10.3390/cells12081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Psychiatric disorders affect millions of individuals and their families worldwide, and the costs to society are substantial and are expected to rise due to a lack of effective treatments. Personalized medicine-customized treatment tailored to the individual-offers a solution. Although most mental diseases are influenced by genetic and environmental factors, finding genetic biomarkers that predict treatment efficacy has been challenging. This review highlights the potential of epigenetics as a tool for predicting treatment efficacy and personalizing medicine for psychiatric disorders. We examine previous studies that have attempted to predict treatment efficacy through epigenetics, provide an experimental model, and note the potential challenges at each stage. While the field is still in its infancy, epigenetics holds promise as a predictive tool by examining individual patients' epigenetic profiles in conjunction with other indicators. However, further research is needed, including additional studies, replication, validation, and application beyond clinical settings.
Collapse
Affiliation(s)
- Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Yam Amir
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Randa Salalha
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
- Department of Psychology, Faculty of Social Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
- Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| |
Collapse
|
12
|
Hartmann J, Bajaj T, Otten J, Klengel C, Gellner AK, Junglas E, Hafner K, Anderzhanova EA, Tang F, Missig G, Rexrode L, Li K, Pöhlmann ML, Heinz DE, Lardenoije R, Dedic N, McCullough KM, Próchnicki T, Rhomberg T, Martinelli S, Payton A, Robinson AC, Stein V, Latz E, Carlezon WA, Schmidt MV, Murgatroyd C, Berretta S, Klengel T, Pantazopoulos H, Ressler KJ, Gassen NC. SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534570. [PMID: 37066393 PMCID: PMC10103985 DOI: 10.1101/2023.04.03.534570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.
Collapse
|
13
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
14
|
Dionisio-García DM, Genis-Mendoza AD, González-Castro TB, Tovilla-Zárate CA, Juarez-Rojop IE, López-Narváez ML, Hernández-Díaz Y, Nicolini H, Olvera-Hernández V. DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sci 2023; 13:brainsci13040584. [PMID: 37190549 DOI: 10.3390/brainsci13040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
DNA methylation in genes of the hypothalamic–pituitary–adrenal (HPA) axis has been associated with suicide behavior. Through a systematic review, we aimed to evaluate DNA methylation levels of the genes involved in the HPA pathway and their association with suicide behavior. A search of articles was performed using PubMed and Science Direct, EBSCO. The terms included were “DNA methylation”, “suicide”, “epigenetics”, “HPA axis” and “suicide behavior”. This systematic review was performed by the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. Six studies comprising 743 cases and 761 controls were included in this systematic review. The studies included individuals with suicide ideation, suicide attempts or completed suicide and childhood trauma, post-traumatic stress disorder (PTSD), or depression. One study reported hypermethylation in GR in childhood trauma, while two studies found hypermethylation of NR3C1 in childhood trauma and major depressive disorder (MDD). Only one study reported hypermethylation in BNDF in people with MDD. FKBP5 was found to be hypermethylated in people with MDD. Another study reported hypermethylation in CRHBP. SKA2 was reported to be hypermethylated in one study and another study found hypomethylated both in populations with PTSD. CRHR1 was found to be hypermethylated in people with MDD, and the last study found hypomethylation in CRH. Our result showed that patients with suicidal behavior showed a DNA methylation state of genes of the HPA axis in association with psychiatric comorbidity and with adverse events. Genes of the HPA axis could play a role in suicidal behavior associated with adverse events and pathologies. As a result, DNA methylation levels, proteins, and genes involved in the HPA axis could be considered for the search for biomarkers for the prevention of suicidal behavior in future studies.
Collapse
|
15
|
Mediating effect of genome-wide DNA methylation on suicidal ideation induced by stressful events. Psychiatr Genet 2023; 33:26-33. [PMID: 36617744 DOI: 10.1097/ypg.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Schizophrenia is a debilitating disease that is associated with higher rates of death by unnatural causes including suicide. Exposure to stressful events is an important risk factor for suicidal ideation (SI); however, the mechanisms that link stress, SI, and suicide remain unclear. Epigenetic processes are involved in both vulnerability to suicidal behavior and stress. Therefore, we sought to study the relationship between epigenetic modifications and suicidal behavior and stress. METHODS This pilot study was conducted on 39 patients diagnosed with schizophrenia (54% men and age 45.5 ± 12.7). We analyzed the effects of (a) stress exposure and (b) the mediation of DNA methylation [via an epigenetic wide association study (EWAS) of more than 450 000 CpG sites across the genome] on SI severity. RESULTS The top CpG site mediating the effect of global stress exposure on SI was cg27660192 located in an intergenic region on chromosome 11, exerting a facilitating effect on worsening SI through DNA hypomethylation. CONCLUSION These preliminary results indicate that DNA methylation in peripheral tissues can shed light on the complex relationship between stress and SI in schizophrenia.
Collapse
|
16
|
Sokolov AV, Manu DM, Nordberg DOT, Boström ADE, Jokinen J, Schiöth HB. Methylation in MAD1L1 is associated with the severity of suicide attempt and phenotypes of depression. Clin Epigenetics 2023; 15:1. [PMID: 36600305 PMCID: PMC9811786 DOI: 10.1186/s13148-022-01394-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Depression is a multifactorial disorder representing a significant public health burden. Previous studies have linked multiple single nucleotide polymorphisms with depressive phenotypes and suicidal behavior. MAD1L1 is a mitosis metaphase checkpoint protein that has been linked to depression in GWAS. Using a longitudinal EWAS approach in an adolescent cohort at two time points (n = 216 and n = 154), we identified differentially methylated sites that were associated with depression-related genetic variants in MAD1L1. Three methylation loci (cg02825527, cg18302629, and cg19624444) were consistently hypomethylated in the minor allele carriers, being cross-dependent on several SNPs. We further investigated whether DNA methylation at these CpGs is associated with depressive psychiatric phenotypes in independent cohorts. The first site (cg02825527) was hypomethylated in blood (exp(β) = 84.521, p value ~ 0.003) in participants with severe suicide attempts (n = 88). The same locus showed increased methylation in glial cells (exp(β) = 0.041, p value ~ 0.004) in the validation cohort, involving 29 depressed patients and 29 controls, and showed a trend for association with suicide (n = 40, p value ~ 0.089) and trend for association with depression treatment (n = 377, p value ~ 0.075). The second CpG (cg18302629) was significantly hypomethylated in depressed participants (exp(β) = 56.374, p value ~ 0.023) in glial cells, but did not show associations in the discovery cohorts. The last methylation site (cg19624444) was hypomethylated in the whole blood of severe suicide attempters; however, this association was at the borderline for statistical significance (p value ~ 0.061). This locus, however, showed a strong association with depression treatment in the validation cohort (exp(β) = 2.237, p value ~ 0.003) with 377 participants. The direction of associations between psychiatric phenotypes appeared to be different in the whole blood in comparison with brain samples for cg02825527 and cg19624444. The association analysis between methylation at cg18302629 and cg19624444 and MAD1L1 transcript levels in CD14+ cells shows a potential link between methylation at these CpGs and MAD1L1 expression. This study suggests evidence that methylation at MAD1L1 is important for psychiatric health as supported by several independent cohorts.
Collapse
Affiliation(s)
- Aleksandr V. Sokolov
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana-Maria Manu
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Didi O. T. Nordberg
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Adrian D. E. Boström
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.4714.60000 0004 1937 0626Department of Women’s and Children’s Health/Neuropediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Barua PD, Vicnesh J, Lih OS, Palmer EE, Yamakawa T, Kobayashi M, Acharya UR. Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cogn Neurodyn 2022:1-22. [PMID: 36467993 PMCID: PMC9684805 DOI: 10.1007/s11571-022-09904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren't any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.
Collapse
Affiliation(s)
- Prabal Datta Barua
- School of Management and Enterprise, University of Southern Queensland, Springfield, Australia
| | - Jahmunah Vicnesh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Elizabeth Emma Palmer
- Discipline of Pediatric and Child Health, School of Clinical Medicine, University of New South Wales, Kensington, Australia
- Sydney Children’s Hospitals Network, Sydney, Australia
| | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Udyavara Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taizhong, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Mirza S, Docherty AR, Bakian A, Coon H, Soares JC, Walss-Bass C, Fries GR. Genetics and epigenetics of self-injurious thoughts and behaviors: Systematic review of the suicide literature and methodological considerations. Am J Med Genet B Neuropsychiatr Genet 2022; 189:221-246. [PMID: 35975759 PMCID: PMC9900606 DOI: 10.1002/ajmg.b.32917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Suicide is a multifaceted and poorly understood clinical outcome, and there is an urgent need to advance research on its phenomenology and etiology. Epidemiological studies have demonstrated that suicidal behavior is heritable, suggesting that genetic and epigenetic information may serve as biomarkers for suicide risk. Here we systematically review the literature on genetic and epigenetic alterations observed in phenotypes across the full range of self-injurious thoughts and behaviors (SITB). We included 577 studies focused on genome-wide and epigenome-wide associations, candidate genes (SNP and methylation), noncoding RNAs, and histones. Convergence of specific genes is limited across units of analysis, although pathway-based analyses do indicate nervous system development and function and immunity/inflammation as potential underlying mechanisms of SITB. We provide suggestions for future work on the genetic and epigenetic correlates of SITB with a specific focus on measurement issues.
Collapse
Affiliation(s)
- Salahudeen Mirza
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna R. Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA,Department of Psychiatry, The Virginia Commonwealth University, Richmond, Virginia, USA
| | - Amanda Bakian
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Jair C. Soares
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Gabriel R. Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
19
|
Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, Dempster E, Wong CCY, Forti MD. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med 2022; 52:1645-1665. [PMID: 35193719 PMCID: PMC9280283 DOI: 10.1017/s0033291721005559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.
Collapse
Affiliation(s)
- Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Harriet Quigley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romayne Gadelrab
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Chloe C. Y. Wong
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Klimes-Dougan B, Papke V, Carosella KA, Wiglesworth A, Mirza SA, Espensen-Sturges TD, Meester C. Basal and reactive cortisol: A systematic literature review of offspring of parents with depressive and bipolar disorders. Neurosci Biobehav Rev 2022; 135:104528. [PMID: 35031342 DOI: 10.1016/j.neubiorev.2022.104528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
One of the most consistent biological findings in the study of affective disorders is that those with depression commonly show abnormal cortisol response, which suggests dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Children of parents with mood disorders offer the opportunity to explore the biological pathways that may confer risk for psychopathology. This review explores basal and reactive cortisol in the offspring of parents who are currently depressed or have had a history of a depressive or bipolar disorder. Using PRISMA guidelines, search terms yielded 2002 manuscripts. After screening, 87 of these manuscripts were included. Results from the literature suggest that while the degree and direction of dysregulation varies, offspring of a parent with depression tend to show elevations in both basal (particularly morning and evening) and reactive (tentatively for social stressors) cortisol levels. There were few studies focused on offspring of parents with bipolar disorder. This review also discusses implications and recommendations for future research regarding the HPA axis in the intergenerational transmission of depressive disorders.
Collapse
Affiliation(s)
- Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | - Victoria Papke
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Katherine A Carosella
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Salahudeen A Mirza
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Tori D Espensen-Sturges
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Christina Meester
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Dada O, Qian J, Al-Chalabi N, Kolla NJ, Graff A, Zai C, Gerretsen P, De Luca V. Epigenetic studies in suicidal ideation and behavior. Psychiatr Genet 2021; 31:205-215. [PMID: 34694247 DOI: 10.1097/ypg.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most psychiatric disorders are associated with an elevated risk of suicide. Suicidal behavior is the product of the interaction of many risk factors, such as genetics and environmental factors. Hence, epigenetics research may help to understand the mechanisms leading to suicidal ideation and behavior. This review will discuss epigenetic studies in both suicidal ideation and behavior. Epigenetic modifications are likely to be important in both suicidal ideation and behavior. Most of the reviewed studies found significant epigenetic modifications linked with suicidal behavior rather than ideation. Although sizable research has been carried out on this topic, most studies have been done on small-scale samples, and future research is required in larger samples with better clinical characterization of suicide phenotypes to investigate these epigenetic modifications further.
Collapse
|
22
|
Hernández-Díaz Y, Genis-Mendoza AD, González-Castro TB, Tovilla-Zárate CA, Juárez-Rojop IE, López-Narváez ML, Nicolini H. Association and Genetic Expression between Genes Involved in HPA Axis and Suicide Behavior: A Systematic Review. Genes (Basel) 2021; 12:1608. [PMID: 34681002 PMCID: PMC8536196 DOI: 10.3390/genes12101608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Suicide behavior (SB) has been highly associated with the response to stress and the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to summarize the results obtained in genetic studies that analyzed the HPA axis-stress pathway and SB through a systematic review. METHODS We performed an online search in PubMed, EBSCO, Web of Science, Scopus, and PsycoInfo databases up to May 2021. We followed the PRISMA guidelines for systematic reviews. We included case-control and expression studies that provided data on mRNA expression and single-nucleotide polymorphisms of genes associated with SB. RESULTS A total of 21,926 individuals participated across 41 studies (not repeats); 34 studies provided data on single-nucleotide polymorphisms in 21,284 participants and 11 studies reported data on mRNA expression in 1034 participants. Ten genes were identified: FKBP5, CRH, CRHBP, CRHR1, CRHR2, NR3C1, NR3C2, SKA2, MC2R, and POMC. CONCLUSIONS Our findings suggest that key stress pathway genes are significantly associated with SB and show potential as biomarkers for SB.
Collapse
Affiliation(s)
- Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico; (Y.H.-D.); (T.B.G.-C.)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico; (Y.H.-D.); (T.B.G.-C.)
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86150, Tabasco, Mexico;
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
| |
Collapse
|
23
|
Ramos-Rosales DF, Vazquez-Alaniz F, Urtiz-Estrada N, Ramirez-Valles EG, Mendez-Hernádez EM, Salas-Leal AC, Barraza-Salas M. Epigenetic marks in suicide: a review. Psychiatr Genet 2021; 31:145-161. [PMID: 34412082 DOI: 10.1097/ypg.0000000000000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Suicide is a complex phenomenon and a global public health problem that involves several biological factors that could contribute to the pathophysiology of suicide. There is evidence that epigenetic factors influence some psychiatric disorders, suggesting a predisposition to suicide or suicidal behavior. Here, we review studies of molecular mechanisms of suicide in an epigenetic perspective in the postmortem brain of suicide completers and peripheral blood cells of suicide attempters. Besides, we include studies of gene-specific DNA methylation, epigenome-wide association, histone modification, and interfering RNAs as epigenetic factors. This review provides an overview of the epigenetic mechanisms described in different biological systems related to suicide, contributing to an understanding of the genetic regulation in suicide. We conclude that epigenetic marks are potential biomarkers in suicide, and they could become attractive therapeutic targets due to their reversibility and importance in regulating gene expression.
Collapse
Affiliation(s)
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango
- Hospital General 450. Servicios de Salud de Durango
| | | | | | - Edna M Mendez-Hernádez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | |
Collapse
|
24
|
Dada O, Adanty C, Dai N, Zai C, Gerretsen P, Graff A, de Luca V. Mediating effect of genome-wide DNA methylation on suicidal ideation induced by perceived stress. Psychiatr Genet 2021; 31:168-176. [PMID: 34050117 DOI: 10.1097/ypg.0000000000000281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress is an important risk factor for suicidal ideation, but the mechanisms that link stress, suicidal ideation and neurobiology remain unclear. Epigenetic mechanisms are involved in both vulnerability to suicidal behavior and stress. This is a pilot study of 60 patients with schizophrenia spectrum disorders (36 men and 24 women), with an average age of 43.75 ± 12.24 years. We analyzed the effects of (1) perceived stress and (2) the mediation of genome-wide methylation (~450 000 CpG sites) on suicidal ideation severity. The top CpG site mediating the effect of stress on suicidal ideation was the cg10782349 located in the ZNF701 gene on chromosome 19, facilitating the effect through DNA hypermethylation. These preliminary results indicate that DNA methylation in peripheral tissues can clarify the complex relationship between stress and suicidal ideation in schizophrenia.
Collapse
Affiliation(s)
- Oluwagbenga Dada
- Department of Psychiatry, Group for Suicide Studies, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Divoux A, Eroshkin A, Erdos E, Sandor K, Osborne TF, Smith SR. DNA Methylation as a Marker of Body Shape in Premenopausal Women. Front Genet 2021; 12:709342. [PMID: 34394195 PMCID: PMC8358448 DOI: 10.3389/fgene.2021.709342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Preferential accumulation of fat in the gluteo-femoral (GF) depot (pear shape) rather than in the abdominal (A) depot (apple shape), protects against the development of metabolic diseases but the underlying molecular mechanism is still unknown. Recent data, including our work, suggest that differential epigenetic marking is associated with regulation of genes attributed to distinct fat distribution. Here, we aimed to compare the genomic DNA methylation signatures between apple and pear-shaped premenopausal women. To investigate the contribution of upper and lower body fat, we used paired samples of A-FAT and GF-FAT, analyzed on the BeadChip Methylation Array and quantified the differentially methylated sites between the 2 groups of women. We found unique DNA methylation patterns within both fat depots that are significantly different depending on the body fat distribution. Around 60% of the body shape specific DNA methylation sites identified in adipose tissue are maintained ex vivo in cultured preadipocytes. As it has been reported before in other cell types, we found only a hand full of genes showing coordinated differential methylation and expression levels. Finally, we determined that more than 50% of the body shape specific DNA methylation sites could also be detected in whole blood derived DNA. These data reveal a strong DNA methylation program associated with adipose tissue distribution with the possibility that a simple blood test could be used as a predictive diagnostic indicator of young women who are at increased risk for progressing to the apple body shape with a higher risk of developing obesity related complications. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT02728635 and https://clinicaltrials.gov/ct2/show/NCT02226640, identifiers NCT02728635 and NCT02226640.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | | | - Edina Erdos
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Katalin Sandor
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Timothy F. Osborne
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| |
Collapse
|
26
|
Palma-Gudiel H, Prather AA, Lin J, Oxendine JD, Guintivano J, Xia K, Rubinow DR, Wolkowitz O, Epel ES, Zannas AS. HPA axis regulation and epigenetic programming of immune-related genes in chronically stressed and non-stressed mid-life women. Brain Behav Immun 2021; 92:49-56. [PMID: 33221485 PMCID: PMC7897273 DOI: 10.1016/j.bbi.2020.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been associated with altered immune function, but the underlying molecular mechanisms are unclear. Epigenetic processes, including DNA methylation, respond to the glucocorticoid end-products of the HPA axis (cortisol in humans) and could be involved in this neuroendocrine-immune crosstalk. Here we examined the extent to which variations in HPA axis regulation are associated with peripheral blood DNA (CpG) methylation changes in 57 chronically stressed caregivers and 67 control women. DNA methylation was determined with the Illumina 450k array for a panel of genes involved in HPA axis and immune function. HPA axis feedback was assessed with the low-dose dexamethasone suppression test (DST), measuring the extent to which cortisol secretion is suppressed by the synthetic glucocorticoid dexamethasone. After multiple testing correction in the entire cohort, higher post-DST cortisol, reflecting blunted HPA axis negative feedback, but not baseline waking cortisol, was associated with lower DNA methylation at eight TNF and two FKBP5 CpG sites. Caregiver group status was associated with lower methylation at two IL6 CpG sites. Since associations were most robust with TNF methylation (32% of the 450k-covered sites), we further examined functionality of this epigenetic signature in cultured peripheral blood mononuclear cells in 33 participants; intriguingly, lower TNF methylation resulted in higher ex vivo TNF mRNA following immune stimulation. Taken together, our findings link chronic stress and HPA axis regulation with epigenetic signatures at immune-related genes, thereby providing novel insights into how aberrant HPA axis function may contribute to heightened inflammation and disease risk.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Aric A Prather
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Jake D Oxendine
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jerry Guintivano
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Owen Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, and Center for Health and Community, University of California, San Francisco, CA, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA; Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Icick R, Bloch V, Prince N, Karsinti E, Lépine JP, Laplanche JL, Mouly S, Marie-Claire C, Brousse G, Bellivier F, Vorspan F. Clustering suicidal phenotypes and genetic associations with brain-derived neurotrophic factor in patients with substance use disorders. Transl Psychiatry 2021; 11:72. [PMID: 33479229 PMCID: PMC7820499 DOI: 10.1038/s41398-021-01200-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 11/09/2022] Open
Abstract
Suicide attempts (SA), especially recurrent SA or serious SA, are common in substance use disorders (SUD). However, the genetic component of SA in SUD samples remains unclear. Brain-derived neurotrophic factor (BDNF) alleles and levels have been repeatedly involved in stress-related psychopathology. This investigation uses a within-cases study of BDNF and associated factors in three suicidal phenotypes ('any', 'recurrent', and 'serious') of outpatients seeking treatment for opiate and/or cocaine use disorder. Phenotypic characterization was ascertained using a semi-structured interview. After thorough quality control, 98 SNPs of BDNF and associated factors (the BDNF pathway) were extracted from whole-genome data, leaving 411 patients of Caucasian ancestry, who had reliable data regarding their SA history. Binary and multinomial regression with the three suicidal phenotypes were further performed to adjust for possible confounders, along with hierarchical clustering and compared to controls (N = 2504). Bayesian analyses were conducted to detect pleiotropy across the suicidal phenotypes. Among 154 (37%) ever suicide attempters, 104 (68%) reported at least one serious SA and 96 (57%) two SA or more. The median number of non-tobacco SUDs was three. The BDNF gene remained associated with lifetime SA in SNP-based (rs7934165, rs10835210) and gene-based tests within the clinical sample. rs10835210 clustered with serious SA. Bayesian analysis identified genetic correlation between 'any' and 'serious' SA regarding rs7934165. Despite limitations, 'serious' SA was shown to share both clinical and genetic risk factors of SA-not otherwise specified, suggesting a shared BDNF-related pathophysiology of SA in this population with multiple SUDs.
Collapse
Affiliation(s)
- Romain Icick
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France.
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France.
- Université de Paris, Inserm UMR-S1144, Paris, France.
| | - Vanessa Bloch
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Nathalie Prince
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Emily Karsinti
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- ED139, Paris Nanterre University, Nanterre, France
| | - Jean-Pierre Lépine
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Jean-Louis Laplanche
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
| | - Stéphane Mouly
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Cynthia Marie-Claire
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Georges Brousse
- Inserm UMR-1107, Neuro-Dol, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Frank Bellivier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| | - Florence Vorspan
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Paris, France
- INSERM U1144, "Therapeutic Optimization in Neuropsychopharmacology", Paris, France
- Université de Paris, Inserm UMR-S1144, Paris, France
| |
Collapse
|
28
|
Nöthling J, Malan-Müller S, Abrahams N, Hemmings SMJ, Seedat S. Epigenetic alterations associated with childhood trauma and adult mental health outcomes: A systematic review. World J Biol Psychiatry 2020; 21:493-512. [PMID: 30806160 DOI: 10.1080/15622975.2019.1583369] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: Multiple, chronic and repeated trauma exposure in childhood is associated with adverse mental health outcomes in adulthood. In this paper we synthesise the literature on epigenetic modifications in childhood trauma (CT) and the mediating effects of differential epigenetic mechanisms on the association between CT and the later onset of psychiatric disorders.Methods: We reviewed the literature up to March 2018 in four databases: PubMed, Web of Science, EBSCOhost and SCOPUS. Non-human studies were excluded. All studies investigating CT exposure both in healthy adults (18 years and older) and adults with psychiatric disorders were included.Results: Thirty-six publications were included. For mood disorders, methylation of the glucocorticoid receptor NR3C1 gene, specifically at the NGFI-A binding site in exon 1F, and correlation with CT was a robust finding. Several studies documented differential methylation of SLC6A4, BDNF, OXTR and FKBP5 in association with CT. Common pathways identified include neuronal functioning and maintenance, immune and inflammatory processes, chromatin and histone modification, and transcription factor binding.Conclusions: A variety of epigenetic mediators that lie on a common pathway between CT and psychiatric disorders have been identified, although longitudinal studies and consistency in methodological approach are needed to disentangle cause and effect associations.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Naeemah Abrahams
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
29
|
Genome-wide methylation association with current suicidal ideation in schizophrenia. J Neural Transm (Vienna) 2020; 127:1315-1322. [PMID: 32661777 DOI: 10.1007/s00702-020-02225-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigate the epigenetic mechanisms associated with current suicidal ideation. Gene expression changes have been found in post-mortem brain of suicide victims. However, it is not clear how in-vivo gene expression change confers risk for suicide. DNA methylation is a form of epigenetic modification that regulates gene expression. Our primary aim is to investigate genome-wide methylation in conferring risk for current suicidal ideation (SI) in schizophrenia. The presence of current SI and genome-wide methylation patterns were assessed in 107 patients with schizophrenia. DNA methylation has been measured in white blood cells as a possible peripheral biomarker of SI. SI was the primary outcome variable in a model including methylation status of white blood cells using the Illumina 450 array. We have tested the association with genome-wide methylation levels in 19 subjects with current SI and 88 subjects without current SI and we found that higher methylation level in the CpG cg06121808 located in the gene SLC20A1 on chromosome 2 was associated with current SI (p = 0.000003; beta difference = 0.06). Furthermore, the distal promoter analysis showed that the gene SMPD2 was hypermethylated in suicide ideators (p = 0.0001; beta difference = 0.02). Thus, molecular biomarkers could advance our understanding of the molecular mechanisms of stress-related SI. Furthermore, the methylation sites that we have identified should be replicated in other suicide related phenotypes to generate robust biomarkers with high translational value for proof of concept interventions aiming at reducing SI.
Collapse
|
30
|
Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting Circulating MicroRNAs as Biomarkers in Psychiatric Disorders. Mol Diagn Ther 2020; 24:279-298. [PMID: 32304043 PMCID: PMC7269874 DOI: 10.1007/s40291-020-00464-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-invasive peripheral biomarkers play a significant role in both disease diagnosis and progression. In the past few years, microRNA (miRNA) expression changes in circulating peripheral tissues have been found to be correlative with changes in neuronal tissues from patients with neuropsychiatric disorders. This is a notable quality of a biomolecule to be considered as a biomarker for both prognosis and diagnosis of disease. miRNAs, members of the small non-coding RNA family, have recently gained significant attention due to their ability to epigenetically influence almost every aspect of brain functioning. Empirical evidence suggests that miRNA-associated changes in the brain are often translated into behavioral changes. Current clinical understanding further implicates their role in the management of major psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This review aims to critically evaluate the potential advantages and disadvantages of miRNAs as diagnostic/prognostic biomarkers in psychiatric disorders as well as in treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yuta Yoshino
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lauren Allen
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Grant Schell
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
31
|
Lee J, Papa F, Jaini PA, Alpini S, Kenny T. An Epigenetics-Based, Lifestyle Medicine-Driven Approach to Stress Management for Primary Patient Care: Implications for Medical Education. Am J Lifestyle Med 2020; 14:294-303. [PMID: 32477032 PMCID: PMC7232902 DOI: 10.1177/1559827619847436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Over 75% of patients in the primary care setting present with stress-related complaints. Curiously, patients and health care providers all too often see stress as a relatively benign sequela of many common illnesses such as heart disease, cancer, lung disease, dementia, diabetes, and mental illness. Unfortunately, various day-to-day lifestyle choices and environmental factors, unrelated to the presence of any disease, can cause stress sufficient to contribute to the development of various diseases/disorders and suboptimal health. There is evidence suggesting that counseling in stress management-oriented therapeutic interventions (as offered by lifestyle medicine-oriented practitioners) may prevent or reduce the onset, severity, duration, and/or overall burden of stress-related illnesses. Such counseling often involves considerations such as the patient's nutrition, physical activity, interest in/capacity to meditate, drug abuse/cessation, and so on. Unfortunately, lifestyle medicine-oriented approaches to stress management are rarely offered in primary care-the patient care arena wherein such counseling would likely be best received by patients. Would health care outcomes improve if primary care providers offered counseling in both stress management and positive lifestyle choices? The purpose of this article is to provide both primary care practitioners and educators in health care training programs with an introductory overview of epigenetics. An emerging field of science offering insights into how factors such as stress and lifestyle choices interact with our genes in ways that can both positively and negatively impact the various micro (eg, cellular) through macro (eg, physiologic, pathophysiologic) processes that determine our tendencies toward illness or wellness. A deeper understanding of epigenetics, as provided herein, should enable primary care providers and medical educators to more confidently advocate for the primary benefits associated with counseling in both stress reduction and the pursuit of healthy lifestyle choices.
Collapse
Affiliation(s)
- Jenny Lee
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Frank Papa
- Frank Papa, DO, PhD, Medical Education, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107; e-mail:
| | - Paresh Atu Jaini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Sarah Alpini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Tim Kenny
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| |
Collapse
|
32
|
Cheung S, Woo J, Maes MS, Zai CC. Suicide epigenetics, a review of recent progress. J Affect Disord 2020; 265:423-438. [PMID: 32090769 DOI: 10.1016/j.jad.2020.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/17/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Suicide results in over 800,000 deaths every year, making it a major public health concern worldwide. It is highly complex, with genetic and environmental influences. Epigenetic mechanisms, including DNA methylation, miRNA, and histone modifications, could explain the complex interplay of environmental risk factors with genetic risk factors in the emergence of suicidal behavior. METHODS Here, we review the literature on suicide epigenetics over the past 10 years. RESULTS There has been significant progress in the field of suicide epigenetics, with emerging findings in the brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis genes. LIMITATIONS Studying patient subgroups is needed in order to extract more comparable and reproducible epigenetic findings in suicide. CONCLUSIONS It is crucial to consider suicidal patients or suicide victims' distal and proximal past history e.g., early-life adversity and psychiatric disorder in epigenetic studies of suicidality.
Collapse
Affiliation(s)
- Serina Cheung
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Julia Woo
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Faculty of Medicine, University of Toronto, Canada
| | - Miriam S Maes
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Clement C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
33
|
Policicchio S, Washer S, Viana J, Iatrou A, Burrage J, Hannon E, Turecki G, Kaminsky Z, Mill J, Dempster EL, Murphy TM. Genome-wide DNA methylation meta-analysis in the brains of suicide completers. Transl Psychiatry 2020; 10:69. [PMID: 32075955 PMCID: PMC7031296 DOI: 10.1038/s41398-020-0752-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Suicide is the second leading cause of death globally among young people representing a significant global health burden. Although the molecular correlates of suicide remains poorly understood, it has been hypothesised that epigenomic processes may play a role. The objective of this study was to identify suicide-associated DNA methylation changes in the human brain by utilising previously published and unpublished methylomic datasets. We analysed prefrontal cortex (PFC, n = 211) and cerebellum (CER, n = 114) DNA methylation profiles from suicide completers and non-psychiatric, sudden-death controls, meta-analysing data from independent cohorts for each brain region separately. We report evidence for altered DNA methylation at several genetic loci in suicide cases compared to controls in both brain regions with suicide-associated differentially methylated positions enriched among functional pathways relevant to psychiatric phenotypes and suicidality, including nervous system development (PFC) and regulation of long-term synaptic depression (CER). In addition, we examined the functional consequences of variable DNA methylation within a PFC suicide-associated differentially methylated region (PSORS1C3 DMR) using a dual luciferase assay and examined expression of nearby genes. DNA methylation within this region was associated with decreased expression of firefly luciferase but was not associated with expression of nearby genes, PSORS1C3 and POU5F1. Our data suggest that suicide is associated with DNA methylation, offering novel insights into the molecular pathology associated with suicidality.
Collapse
Affiliation(s)
- Stefania Policicchio
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Sam Washer
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joana Viana
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Artemis Iatrou
- grid.240684.c0000 0001 0705 3621Rush Alzheimer’s Neurodisease Center, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612 USA
| | - Joe Burrage
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gustavo Turecki
- grid.14709.3b0000 0004 1936 8649Douglas Institute, Department of Psychiatry, McGill University, Verdun, QC H4H 1R3 Canada
| | - Zachary Kaminsky
- grid.21107.350000 0001 2171 9311Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Emma L. Dempster
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Therese M. Murphy
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK ,grid.497880.aSchool of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin, 2 Ireland
| |
Collapse
|
34
|
Snijders C, Maihofer AX, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Jain S, Kessler RC, Pishva E, Risbrough VB, Stein MB, Ursano RJ, Vermetten E, Vinkers CH, Smith AK, Uddin M, Rutten BPF, Nievergelt CM. Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clin Epigenetics 2020; 12:11. [PMID: 31931860 PMCID: PMC6958602 DOI: 10.1186/s13148-019-0798-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms have been suggested to play a role in the development of post-traumatic stress disorder (PTSD). Here, blood-derived DNA methylation data (HumanMethylation450 BeadChip) collected prior to and following combat exposure in three cohorts of male military members were analyzed to assess whether DNA methylation profiles are associated with the development of PTSD. A total of 123 PTSD cases and 143 trauma-exposed controls were included in the analyses. The Psychiatric Genomics Consortium (PGC) PTSD EWAS QC pipeline was used on all cohorts, and results were combined using a sample size weighted meta-analysis in a two-stage design. In stage one, we jointly analyzed data of two new cohorts (N = 126 and 78) for gene discovery, and sought to replicate significant findings in a third, previously published cohort (N = 62) to assess the robustness of our results. In stage 2, we aimed at maximizing power for gene discovery by combining all three cohorts in a meta-analysis. RESULTS Stage 1 analyses identified four CpG sites in which, conditional on pre-deployment DNA methylation, post-deployment DNA methylation was significantly associated with PTSD status after epigenome-wide adjustment for multiple comparisons. The most significant (intergenic) CpG cg05656210 (p = 1.0 × 10-08) was located on 5q31 and significantly replicated in the third cohort. In addition, 19 differentially methylated regions (DMRs) were identified, but failed replication. Stage 2 analyses identified three epigenome-wide significant CpGs, the intergenic CpG cg05656210 and two additional CpGs located in MAD1L1 (cg12169700) and HEXDC (cg20756026). Interestingly, cg12169700 had an underlying single nucleotide polymorphism (SNP) which was located within the same LD block as a recently identified PTSD-associated SNP in MAD1L1. Stage 2 analyses further identified 12 significant differential methylated regions (DMRs), 1 of which was located in MAD1L1 and 4 were situated in the human leukocyte antigen (HLA) region. CONCLUSIONS This study suggests that the development of combat-related PTSD is associated with distinct methylation patterns in several genomic positions and regions. Our most prominent findings suggest the involvement of the immune system through the HLA region and HEXDC, and MAD1L1 which was previously associated with PTSD.
Collapse
Affiliation(s)
- Clara Snijders
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht, Netherlands
| | - Elbert Geuze
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht, Netherlands
- Brain Research & Innovation Centre, Netherlands Ministry of Defense, Utrecht, Utrecht, Netherlands
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Million Veteran Program, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Eric Vermetten
- Arq, Psychotrauma Research Expert Group, Diemen, North Holland, Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, South Holland, Netherlands
- Military Mental Healthcare, Netherlands Ministry of Defense, Utrecht, Utrecht, Netherlands
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Christiaan H Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, Holland, Netherlands
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, Holland, Netherlands
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, University of South Florida College of Public Health, Tampa, FL, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
| | - Caroline M Nievergelt
- Department of Psychiatry and Neuropsychology, School for Mental health and Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
35
|
Abstract
Suicidal behaviors have been associated with both heritable genetic variables and environmental risk factors. Epigenetic processes, such as DNA methylation, have important roles in mediating the effects of the environment on behavior. Dysregulation of these processes has been observed in many psychiatric disorders, and evidence suggests that they may also be involved in suicidal behaviors. Herein, we have summarized candidate gene and epigenome-wide studies which have investigated DNA methylation in relation to suicidal behaviors, as well as discussed some of the limitations of the field to date.
Collapse
Affiliation(s)
- Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.
| |
Collapse
|
36
|
Nugent AC, Ballard ED, Park LT, Zarate CA. Research on the pathophysiology, treatment, and prevention of suicide: practical and ethical issues. BMC Psychiatry 2019; 19:332. [PMID: 31675949 PMCID: PMC6824024 DOI: 10.1186/s12888-019-2301-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite decades of research, the rate of death from suicide is rising in the United States. Suicide is a complex and multifactorial phenomenon and, to date, no validated biomarkers that predict suicidal behavior have been identified. Only one FDA-approved drug to prevent suicide exists, and it is approved only for patients with schizophrenia. Although anti-suicide psychotherapeutic techniques exist, treatment takes time, and only preliminary data exist for rapid-acting therapies. DISCUSSION While more research into suicidal ideation and acute suicidal behavior is clearly needed, this research is fraught with both practical and ethical concerns. As a result, many investigators and bioethicists have called for restrictions on the types of research that individuals with suicidal behavior can participate in, despite the fact that the available empirical evidence suggests that this research can be done safely. This manuscript presents background information on the phenomenology of suicide, discusses the current state of treatment and prevention strategies, and reviews the practical and ethical issues surrounding suicide research in the context of available empirical data. Currently, the causes of suicide are poorly understood, in part due to the fact that very few studies have investigated the acute suicidal crisis. Although some biomarkers for predicting risk have been developed, none have been sufficiently validated. The most successful current interventions involve means restriction. However, while numerous hurdles face researchers, these are not insurmountable. The available evidence suggests that research into suicide can be conducted both safely and ethically.
Collapse
Affiliation(s)
- Allison C. Nugent
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA ,0000 0004 0464 0574grid.416868.5Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth D. Ballard
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Lawrence T. Park
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Carlos A. Zarate
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
37
|
Abstract
Although recent years have seen large decreases in the overall global rate of suicide fatalities, this trend is not reflected everywhere. Suicide and suicidal behaviour continue to present key challenges for public policy and health services, with increasing suicide deaths in some countries such as the USA. The development of suicide risk is complex, involving contributions from biological (including genetics), psychological (such as certain personality traits), clinical (such as comorbid psychiatric illness), social and environmental factors. The involvement of multiple risk factors in conveying risk of suicide means that determining an individual's risk of suicide is challenging. Improving risk assessment, for example, by using computer testing and genetic screening, is an area of ongoing research. Prevention is key to reduce the number of suicide deaths and prevention efforts include universal, selective and indicated interventions, although these interventions are often delivered in combination. These interventions, combined with psychological (such as cognitive behavioural therapy, caring contacts and safety planning) and pharmacological treatments (for example, clozapine and ketamine) along with coordinated social and public health initiatives, should continue to improve the management of individuals who are suicidal and decrease suicide-associated morbidity.
Collapse
|
38
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
Blacker CJ, Frye MA, Morava E, Kozicz T, Veldic M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes (Basel) 2019; 10:140. [PMID: 30781888 PMCID: PMC6410143 DOI: 10.3390/genes10020140] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an acquired psychiatric disorder with functionally impairing physiological and psychological symptoms following a traumatic exposure. Genetic, epigenetic, and environmental factors act together to determine both an individual's susceptibility to PTSD and its clinical phenotype. In this literature review, we briefly review the candidate genes that have been implicated in the development and severity of the PTSD phenotype. We discuss the importance of the epigenetic regulation of these candidate genes. We review the general epigenetic mechanisms that are currently understood, with examples of each in the PTSD phenotype. Our focus then turns to studies that have examined PTSD in the context of comorbid psychiatric disorders or associated social and behavioral stressors. We examine the epigenetic variation in cases or models of PTSD with comorbid depressive disorders, anxiety disorders, psychotic disorders, and substance use disorders. We reviewed the literature that has explored epigenetic regulation in PTSD in adverse childhood experiences and suicide phenotypes. Finally, we review some of the information available from studies of the transgenerational transmission of epigenetic variation in maternal cases of PTSD. We discuss areas pertinent for future study to further elucidate the complex interactions between epigenetic modifications and this complex psychiatric disorder.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tamas Kozicz
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Vasistha NA, Johnstone M, Barton SK, Mayerl SE, Thangaraj Selvaraj B, Thomson PA, Dando O, Grünewald E, Alloza C, Bastin ME, Livesey MR, Economides K, Magnani D, Makedonopolou P, Burr K, Story DJ, Blackwood DHR, Wyllie DJA, McIntosh AM, Millar JK, ffrench-Constant C, Hardingham GE, Lawrie SM, Chandran S. Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte-myelin dysfunction. Mol Psychiatry 2019; 24:1641-1654. [PMID: 31481758 PMCID: PMC6814440 DOI: 10.1038/s41380-019-0505-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.
Collapse
Affiliation(s)
- Navneet A. Vasistha
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 4905 7710grid.475408.aCentre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065 India ,0000 0001 0674 042Xgrid.5254.6Present Address: Biotech Research and Innovation Centre, Ole Maaløes Vej 5, Copenhagen, N 2200 Denmark
| | - Mandy Johnstone
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Samantha K. Barton
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Steffen E. Mayerl
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Bhuvaneish Thangaraj Selvaraj
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Pippa A. Thomson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Owen Dando
- 0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Ellen Grünewald
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Clara Alloza
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Mark E. Bastin
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Matthew R. Livesey
- 0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | | | - Dario Magnani
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Paraskevi Makedonopolou
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Karen Burr
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - David J. Story
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK ,0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Douglas H. R. Blackwood
- 0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - David J. A. Wyllie
- 0000 0004 4905 7710grid.475408.aCentre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065 India ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Andrew M. McIntosh
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - J. Kirsty Millar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Charles ffrench-Constant
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Giles E. Hardingham
- 0000 0004 1936 7988grid.4305.2UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,0000 0004 1936 7988grid.4305.2Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD UK
| | - Stephen M. Lawrie
- 0000 0004 1936 7988grid.4305.2Division of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. .,MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK. .,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK - Post, Bellary Road, Bangalore, 560065, India. .,UK Dementia Research Institute at Edinburgh, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
41
|
|
42
|
Zhou Y, Lutz P, Ibrahim EC, Courtet P, Tzavara E, Turecki G, Belzeaux R. Suicide and suicide behaviors: A review of transcriptomics and multiomics studies in psychiatric disorders. J Neurosci Res 2018; 98:601-615. [DOI: 10.1002/jnr.24367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Zhou
- McGill Group for Suicide Studies Douglas Mental Health University Institute, McGill University Montréal Canada
| | - Pierre‐Eric Lutz
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 Strasbourg France
| | - El Chérif Ibrahim
- Institut de Neurosciences de la Timone ‐ UMR7289,CNRS Aix‐Marseille Université Marseille France
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
| | - Philippe Courtet
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- CHRU Montpellier, University of Montpellier, INSERM unit 1061 Montpellier France
| | - Eleni Tzavara
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- INSERM, UMRS 1130, CNRS, UMR 8246, Sorbonne University UPMC, Neuroscience Paris‐Seine Paris France
| | - Gustavo Turecki
- McGill Group for Suicide Studies Douglas Mental Health University Institute, McGill University Montréal Canada
| | - Raoul Belzeaux
- Institut de Neurosciences de la Timone ‐ UMR7289,CNRS Aix‐Marseille Université Marseille France
- Fondamental, Fondation de Recherche et de Soins en Santé Mentale Créteil France
- AP‐HM, Pôle de Psychiatrie Marseille France
| |
Collapse
|
43
|
SKA2/FAM33A: A novel gene implicated in cell cycle, tumorigenesis, and psychiatric disorders. Genes Dis 2018; 6:25-30. [PMID: 30906829 PMCID: PMC6411626 DOI: 10.1016/j.gendis.2018.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
SKA2 (spindle and KT associated 2), also referred to as FAM33A (family with sequence similarity 33, member A), is a recently identified gene involved in cell cycle regulation, and growing evidence is implicating its roles in tumorigenesis and psychiatric disorders. It has been demonstrated that SKA2, along with its coworkers SKA1 and SKA3, constitutes the SKA complex which plays a critical role in the maintenance of the metaphase plate and/or spindle checkpoint silencing during mitosis. SKA2 is over-expressed both in cancer cell lines and clinical samples including small cell lung cancer and breast cancer, whereas downregulation of SKA2 is associated with depression and suicidal ideation. The expression of SKA2 is regulated by transcription factors including NF-κΒ and CREB, miRNAs as well as DNA methylation. In this review, we provide an overview of studies that reveal SKA2 gene and protein characteristics as well as physiological function, with a special focus on its transcription regulatory mechanisms, and also provide a summary regarding the translational opportunity of the SKA2 gene as a clinical biomarker for cancers and psychiatric disorders.
Collapse
|
44
|
Nishitani S, Parets SE, Haas BW, Smith AK. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics 2018; 13:352-362. [PMID: 29912612 DOI: 10.1080/15592294.2018.1461295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth. Thus, there are unique challenges to using salivary DNA in methylation studies that can influence data quality. This study assesses: (1) quantification of human DNA after extraction; (2) delineation of human and bacterial DNA; (3) bisulfite conversion (BSC); (4) quantification of BSC DNA; (5) PCR amplification of BSC DNA from saliva and; (6) quantitation of DNA methylation with a targeted assay. The framework proposed will allow saliva samples to be more widely used in targeted epigenetic studies.
Collapse
Affiliation(s)
- Shota Nishitani
- a Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| | - Sasha E Parets
- b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| | - Brian W Haas
- c Department of Psychology , University of Georgia , Athens , GA , USA
| | - Alicia K Smith
- a Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
45
|
Kim GS, Smith AK, Nievergelt CM, Uddin M. Neuroepigenetics of Post-Traumatic Stress Disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:227-253. [PMID: 30072055 PMCID: PMC6474244 DOI: 10.1016/bs.pmbts.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While diagnosis of PTSD is based on behavioral symptom clusters that are most directly associated with brain function, epigenetic studies of PTSD in humans to date have been limited to peripheral tissues. Animal models of PTSD have been key for understanding the epigenetic alterations in the brain most directly relevant to endophenotypes of PTSD, in particular those pertaining to fear memory and stress response. This chapter provides an overview of neuroepigenetic studies based on animal models of PTSD, with an emphasis on the effect of stress on fear memory. Where relevant, we also describe human-based studies with relevance to neuroepigenetic insights gleaned from animal work and suggest promising directions for future studies of PTSD neuroepigenetics in living humans that combine peripheral epigenetic measures with measures of central nervous system activity, structure and function.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
46
|
Zhang H, Peng SH, Liang XL, Wang HY, Zhang XG, Jiang XJ. Ntf3 hypermethylation in antenatal PTSD and preventive effect of the Chinese herbal medicine Jin Kui Shen Qi Wan. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1421101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Hui Zhang
- Section Chinese Medicine Nursing of School of Nursing, Chengdu University of TCM, Chengdu, PR China
| | - Si Han Peng
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, PR China
| | - Xiao Li Liang
- Section Chinese Medicine Nursing of School of Nursing, Chengdu University of TCM, Chengdu, PR China
| | - Hong Yan Wang
- School of Nursing, Sichuan Nursing Vocational College, Chengdu, PR China
| | - Xian Geng Zhang
- Section Chinese Medicine Nursing of School of Nursing, Chengdu University of TCM, Chengdu, PR China
- School of Nursing, Sichuan Nursing Vocational College, Chengdu, PR China
| | - Xiao Jing Jiang
- Section Chinese Medicine Nursing of School of Nursing, Chengdu University of TCM, Chengdu, PR China
| |
Collapse
|
47
|
Yehuda R, Lehrner A, Bierer LM. The public reception of putative epigenetic mechanisms in the transgenerational effects of trauma. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy018. [PMID: 30038801 PMCID: PMC6051458 DOI: 10.1093/eep/dvy018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
There has been great interest in the possibility that effects of trauma might be passed from parent to offspring through epigenetic mechanisms. This topic has stimulated discussion and controversy in the scientific literature, the popular press, and culture at large. This article describes the initial observations that have led to recent examinations of epigenetic mechanisms in association with effects of parental trauma exposure on offspring. Epigenetic research in animals has provided models for how such effects might be transmitted. However, the attribution of any specific epigenetic mechanisms in human studies of offspring of trauma survivors is premature at this time. The article describes some of the ways in which initial epigenetic findings in the offspring of trauma survivors have been represented in the popular media. Reports have ranged from overly simplistic and sensationalistic claims to global dismissals. The authors discuss the importance of clarity in language when describing epigenetic findings for lay audiences, the need to emphasize the limitations as well as the promise of research on intergenerational transmission of trauma effects, and the importance of countering popular interpretations that imply a reductionist biological determinism. Scientists have an obligation to assist in translating important research findings and nascent avenues of research to the public. It is important to recognize the ways in which this research may unintentionally be received as supporting a narrative of permanent and significant damage in offspring, rather than contributing to discussions of potential resilience, adaptability, and mutability in biological systems affected by stress.
Collapse
Affiliation(s)
- Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Lehrner
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda M Bierer
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
De La Vega D, Giner L, Courtet P. Suicidality in Subjects With Anxiety or Obsessive-Compulsive and Related Disorders: Recent Advances. Curr Psychiatry Rep 2018; 20:26. [PMID: 29594718 DOI: 10.1007/s11920-018-0885-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Historically, anxiety disorders have not been considered as important determinants of suicide, but in the last years, many works have challenged this assumption. Here, we will review the available evidence on the relationship between suicide and anxiety disorders (e.g., obsessive-compulsive disorder, post-traumatic stress disorder, generalized anxiety disorder, panic disorder, and body dysmorphic disorder), with special emphasis on findings published in the last years. RECENT FINDINGS Overall, anxiety disorders increase the risk of suicide. Specifically, 16% of patients with social anxiety disorder reported suicidal ideation in the previous month, and 18% of them had a history of suicide attempts. Similarly, in patients with panic disorder, suicidal ideation prevalence ranged between 17 and 32%, and 33% of them had a history of suicide attempts. Generalized anxiety disorder (GAD) was the most frequent anxiety disorder in completed suicides (present in 3% of people who committed suicide) and also subthreshold GAD was clearly linked to suicide ideation. Post-traumatic stress disorder was positively associated with suicidal ideation, and in patients with obsessive-compulsive disorder, suicide ideation rates ranged from 10 to 53% and suicide attempts from 1 to 46%. Body dysmorphic disorders presented a suicide ideation prevalence of about 80%. Suicide risk is increased in subjects with anxiety disorder. This risk is higher in the presence of comorbidities, but it is not clear whether it is independent from such comorbidities in some disorders.
Collapse
Affiliation(s)
- Diego De La Vega
- Unidad de Hospitalización de Salud Mental, Unidad de Gestión Clínica de Salud Mental del Hospital Virgen Macarena, Servicio Andaluz de Salud, Sevilla, Spain
| | - Lucas Giner
- Department of Psychiatry, School of Medicine, Universidad de Sevilla, Av. Sánchez-Pizjuán s/n, 41009, Seville, Spain.
| | - Philippe Courtet
- CHRU Montpellier, University of Montpellier, INSERM unit 1061, Montpellier, France.,Fondamental Foundation, Créteil, France
| |
Collapse
|
49
|
Abstract
Purpose of Review Traumatic stress has profound impacts on many domains of life, yet the mechanisms that confer risk for or resilience to the development of traumatic stress-related psychopathologies are still very much under investigation. The current review highlights recent developments in the field of traumatic stress epigenetics in humans. Recent Findings Recent results reveal traumatic stress-related epigenetic dysregulation in neural, endocrine, and immune system genes and associated networks. Emerging work combining imaging with epigenetic measures holds promise for addressing the correspondence between peripheral and central effects of traumatic stress. A growing literature is also documenting the transgenerational effects of prenatal stress exposures in humans. Summary Moving forward, increasing focus on epigenetic marks of traumatic stress in CNS tissue will create a clearer picture of the relevance of peripheral measures; PTSD brain banks will help in this regard. Similarly, leveraging multigenerational birth cohort data will do much to clarify the extent of transgenerational epigenetic effects of traumatic stress. Greater efforts should be made towards developing prospective studies with longitudinal design.
Collapse
Affiliation(s)
- John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Monica Uddin
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
50
|
Zhao J, Cheng F, Jia P, Cox N, Denny JC, Zhao Z. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies. Genome Med 2018; 10:7. [PMID: 29378629 PMCID: PMC5789733 DOI: 10.1186/s13073-018-0513-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome-phenome studies have identified thousands of variants that are statistically associated with disease or traits; however, their functional roles are largely unclear. A comprehensive investigation of regulatory mechanisms and the gene regulatory networks between phenome-wide association study (PheWAS) and genome-wide association study (GWAS) is needed to identify novel regulatory variants contributing to risk for human diseases. METHODS In this study, we developed an integrative functional genomics framework that maps 215,107 significant single nucleotide polymorphism (SNP) traits generated from the PheWAS Catalog and 28,870 genome-wide significant SNP traits collected from the GWAS Catalog into a global human genome regulatory map via incorporating various functional annotation data, including transcription factor (TF)-based motifs, promoters, enhancers, and expression quantitative trait loci (eQTLs) generated from four major functional genomics databases: FANTOM5, ENCODE, NIH Roadmap, and Genotype-Tissue Expression (GTEx). In addition, we performed a tissue-specific regulatory circuit analysis through the integration of the identified regulatory variants and tissue-specific gene expression profiles in 7051 samples across 32 tissues from GTEx. RESULTS We found that the disease-associated loci in both the PheWAS and GWAS Catalogs were significantly enriched with functional SNPs. The integration of functional annotations significantly improved the power of detecting novel associations in PheWAS, through which we found a number of functional associations with strong regulatory evidence in the PheWAS Catalog. Finally, we constructed tissue-specific regulatory circuits for several complex traits: mental diseases, autoimmune diseases, and cancer, via exploring tissue-specific TF-promoter/enhancer-target gene interaction networks. We uncovered several promising tissue-specific regulatory TFs or genes for Alzheimer's disease (e.g. ZIC1 and STX1B) and asthma (e.g. CSF3 and IL1RL1). CONCLUSIONS This study offers powerful tools for exploring the functional consequences of variants generated from genome-phenome association studies in terms of their mechanisms on affecting multiple complex diseases and traits.
Collapse
Affiliation(s)
- Junfei Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Feixiong Cheng
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Center for Complex Networks Research, Northeastern University, Boston, MA, 02215, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA
| | - Nancy Cox
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joshua C Denny
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 820, Houston, TX, 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|