1
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Liao W, Chen Y, Shan S, Chen Z, Wen Y, Chen W, Zhao C. Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytother Res 2024. [PMID: 38895929 DOI: 10.1002/ptr.8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
In 2022, there were around 20 million new cases and over 9.7 million cancer-related deaths worldwide. An increasing number of metabolites with anticancer activity in algae had been isolated and identified, which were promising candidates for cancer therapy. Red algae are well-known for the production of brominated metabolites, including terpenoids and phenols, which have the capacity to induce cell toxicity. Some non-toxic biological macromolecules, including polysaccharides, are distinct secondary metabolites found in many algae, particularly green algae. They possess anticancer activities by inhibiting tumor angiogenesis, stimulating the immune response, and inducing apoptosis. However, the structure-activity relationship between these components and antitumor activity, as well as certain taxa within the algae, remains relatively unstudied. This work is based on the reports published from 2003 to 2024 in PubMed and ISI Web of Science databases. A comprehensive review of the characterized algal anticancer active compounds, together with their structure and mechanism of action was performed. Also, their structure-activity relationship was preliminarily summarized to better assess their potential properties as a natural, safe bioactive product to be used as an alternative for the treatment of cancers, leading to new opportunities for drug discovery.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaobin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Zhengxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Elnaggar MS, Fayez S, Anwar A, Ebada SS. Cytotoxic naphtho- and benzofurans from an endophytic fungus Epicoccum nigrum Ann-B-2 associated with Annona squamosa fruits. Sci Rep 2024; 14:4940. [PMID: 38418706 PMCID: PMC10901772 DOI: 10.1038/s41598-024-55168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Chemical exploration of the total extract derived from Epicoccum nigrum Ann-B-2, an endophyte associated with Annona squamosa fruits, afforded two new metabolites, epicoccofuran A (1) and flavimycin C (2), along with four known compounds namely, epicocconigrone A (3), epicoccolide B (4), epicoccone (5) and 4,5,6-trihydroxy-7-methyl-1,3-dihydroisobenzofuran (6). Structures of the isolated compounds were elucidated using extensive 1D and 2D NMR along with HR-ESI-MS. Flavimycin C (2) was isolated as an epimeric mixture of its two diastereomers 2a and 2b. The new compounds 1 and 2 displayed moderate activity against B. subtilis, whereas compounds (2, 3, 5, and 6) showed significant antiproliferative effects against a panel of seven different cancer cell lines with IC50 values ranging from 1.3 to 12 µM.
Collapse
Affiliation(s)
- Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Alaa Anwar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif S Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
6
|
Alanzi AR, Parvez MK, Alqahtani MJ, Al-Dosari MS. Deep-sea fungal metabolites as potential inhibitors of glucose-regulatory enzymes: In silico structure-activity analysis. Saudi Pharm J 2023; 31:101776. [PMID: 37868645 PMCID: PMC10587758 DOI: 10.1016/j.jsps.2023.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic diabetes mellites related hyperglycemia is a major cause of mortality and morbidity due to further complications like retinopathy, hypertension and cardiovascular diseases. Though several synthetic anti-diabetes drugs specifically targeting glucose-metabolism enzymes are available, they have their own limitations, including adverse side-effects. Unlike other natural or marine-derived pharmacologically important molecules, deep-sea fungi metabolites still remain under-explored for their anti-diabetes potential. We performed structure-based virtual screening of deep-sea fungal compounds selected by their physiochemical properties, targeting crucial enzymes viz., α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B involved in glucose-metabolism pathway. Following molecular docking scores and MD simulation analyses, the selected top ten compounds for each enzyme, were subjected to pharmacokinetics prediction based on their AdmetSAR- and pharmacophore-based features. Of these, cladosporol C, tenellone F, ozazino-cyclo-(2,3-dihydroxyl-trp-tyr), penicillactam and circumdatin G were identified as potential inhibitors of α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B, respectively. Our in silico data therefore, warrants further experimental and pharmacological studies to validate their anti-diabetes therapeutic potential.
Collapse
Affiliation(s)
- Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Singothu S, Begum PJ, Maddi D, Devsani N, Bhandari V. Unveiling the potential of marine compounds as quorum sensing inhibitors targeting Pseudomonas aeruginosa's LasI: A computational study using molecular docking and molecular dynamics. J Cell Biochem 2023; 124:1573-1586. [PMID: 37642215 DOI: 10.1002/jcb.30465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global public health, with multidrug-resistant Pseudomonas aeruginosa being a leading cause of mortality, accounting for 18%-61% of deaths annually. The quorum sensing (QS) systems of P. aeruginosa, particularly the LasI-LasR system, play a crucial role in promoting biofilm formation and expression of virulent genes, which contribute to the development of AMR. This study focuses on LasI, the mediator of biofilm formation for identifying its inhibitors from a marine compound database comprising of 32 000 compounds using molecular docking and molecular simulation techniques. The virtual screening and docking experiments demonstrated that the top 10 compounds exhibited favorable docking scores of <-7.19 kcal/mol compared to the reported inhibitor 3,5,7-Trihydroxyflavone with a docking score of -3.098 kcal/mol. Additionally, molecular mechanics/Poisson-Boltzmann generalized born surface area (MM-GBSA) analyses were conducted to assess these compounds' suitability for further investigation. Out of 10 compounds, five compounds demonstrated high MM-GBSA binding energy (<-35.33 kcal/mol) and were taken up for molecular dynamics simulations to evaluate the stability of the protein-ligand complex over a 100 ns period. Based on root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions analysis, three marine compounds, namely MC-2 (CMNPD13419) and MC-3 (CMNPD1068), exhibited consistent stability throughout the simulation. Therefore, these compounds show potential as promising LasI inhibitors and warrant further validation through in vitro and in vivo experiments. By exploring the inhibitory effects of these marine compounds on P. aeruginosa's QS system, this research aims to contribute to the development of novel strategies to combat AMR.
Collapse
Affiliation(s)
- Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pathan J Begum
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dhanashri Maddi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Namrata Devsani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Xu J, Liao W, Liu Y, Guo Y, Jiang S, Zhao C. An overview on the nutritional and bioactive components of green seaweeds. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [PMCID: PMC10026244 DOI: 10.1186/s43014-023-00132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
AbstractGreen seaweed, as the most abundant species of macroseaweeds, is an important marine biological resource. It is a rich source of several amino acids, fatty acids, and dietary fibers, as well as polysaccharides, polyphenols, pigments, and other active substances, which have crucial roles in various biological processes such as antioxidant activity, immunoregulation, and anti-inflammatory response. In recent years, attention to marine resources has accelerated the exploration and utilization of green seaweeds for greater economic value. This paper elaborates on the main nutrients and active substances present in different green seaweeds and provides a review of their biological activities and their applications for high-value utilization.
Graphical abstract
Collapse
|
9
|
Chatterjee B, Mondal D, Bera S. Macrocyclization Strategies Towards the Synthesis of Amphidinolide Natural Products. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Bhaskar Chatterjee
- Department of Chemistry Nabadwip Vidyasagar College 741302 Nabadwip West Bengal India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| |
Collapse
|
10
|
Shan X, Gao P, Zhang S, Jia X, Yuan Y. 2,2′‐Azodi(2‐methylbutyronitrile) (AMBN) Promoted Alkenylation of Cyclic Ethers via Radical Addition to β‐Nitrostyrenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojie Shan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Pan Gao
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| |
Collapse
|
11
|
coll toledano J. Pseudopterosins and Seco-Pseudopterosins: Compilation and Revision of Conflicting NMR Data, Names, Numbering Systems and Structural Elucidation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221079415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present review is focussed on the structural elucidation of the bicyclic and tricyclic diterpenoid title compounds isolated from Pseudopterogorgia species, displaying a direct structural relationship with the biosynthetic precursor GGPP (regular isoprenoid skeletons). A compilation of 1H and 13C NMR spectroscopic data is presented grouped by similar spin systems. Apparent inconsistencies or potential missassignments are discussed, pointing out convenient revisions of data assignment to improve structure correlations. Some hemisynthetic intermediates in the structural elucidation process are included, as well as data of representative synthetic compounds.
Collapse
|
12
|
Nag M, Lahiri D, Dey A, Sarkar T, Joshi S, Ray RR. Evaluation of algal active compounds as potent antibiofilm agent. J Basic Microbiol 2021; 62:1098-1109. [PMID: 34939676 DOI: 10.1002/jobm.202100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/08/2022]
Abstract
Biofilm is the syntrophic association of microbial colonies that remain adhered to the biotic and abiotic surfaces with the help of self-secreted polymeric substances also termed extracellular polymeric substances. Chronic pathogenicity caused by biofilm-associated pathogenic microorganisms becomes a significant threat in biomedical research. An extensive search is being made for the antibiofilm agents made from natural sources or their biogenic derivatives due to their effectivity and nontoxicity. Algae being the producer of various biogenic substances are found capable of disintegrating biofilm matrix and eradication of biofilm without exerting any deterrent effect on other biotas in the ecosystem. The current trend in phycological studies includes the exploration of antifouling efficacy among various algal groups. The extracts prepared from about 225 microalgae and cyanobacteria species are found to have antibiofilm activity. Polyunsaturated fatty acids are the most important component in the algal extract with antibacterial and antibiofilm properties. The antibiofilm activity of the sulfated polysaccharides extracted from a marine alga could be effectively used to remove dental biofilm. Algal extracts are also being used for the preparation of different biogenically synthesized nanoparticles, which are being used as potent antibiofilm agents. Genome editing of algal species by CRISPR/Cas9 may make precise modifications in the algal DNA for improving the algal strains and production of a more effective antibiofouling agent.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rina R Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| |
Collapse
|
13
|
Dembitsky VM. In Silico Prediction of Steroids and Triterpenoids as Potential Regulators of Lipid Metabolism. Mar Drugs 2021; 19:650. [PMID: 34822521 PMCID: PMC8618826 DOI: 10.3390/md19110650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on a rare group of steroids and triterpenoids that share common properties as regulators of lipid metabolism. This group of compounds is divided by the type of chemical structure, and they represent: aromatic steroids, steroid phosphate esters, highly oxygenated steroids such as steroid endoperoxides and hydroperoxides, α,β-epoxy steroids, and secosteroids. In addition, subgroups of carbon-bridged steroids, neo steroids, miscellaneous steroids, as well as synthetic steroids containing heteroatoms S (epithio steroids), Se (selena steroids), Te (tellura steroids), and At (astatosteroids) were presented. Natural steroids and triterpenoids have been found and identified from various sources such as marine sponges, soft corals, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in fungi, fungal endophytes, and plants. The pharmacological profile of the presented steroids and triterpenoids was determined using the well-known computer program PASS, which is currently available online for all interested scientists and pharmacologists and is currently used by research teams from more than 130 countries of the world. Our attention has been focused on the biological activities of steroids and triterpenoids associated with the regulation of cholesterol metabolism and related processes such as anti-hyperlipoproteinemic activity, as well as the treatment of atherosclerosis, lipoprotein disorders, or inhibitors of cholesterol synthesis. In addition, individual steroids and triterpenoids were identified that demonstrated rare or unique biological activities such as treating neurodegenerative diseases, Alzheimer's, and Parkinson's diseases with a high degree of certainty over 95 percent. For individual steroids or triterpenoids or a group of compounds, 3D drawings of their predicted biological activities are presented.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
14
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
15
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
16
|
Sun X, Gong M, Huang M, Li Y, Kim JK, Kovalev V, Shokova E, Wu Y. "One-Pot" Synthesis of γ-Pyrones from Aromatic Ketones/Heteroarenes and Carboxylic Acids. J Org Chem 2020; 85:15051-15061. [PMID: 33147963 DOI: 10.1021/acs.joc.0c01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the various attractive properties of γ-pyrones, there are still some deficiencies in their synthetic approaches such as lower atom economy, multistep processes, and prefunctionalization of the reagents. In this work, an efficient and simple (CF3CO)2O/CF3SO3H-mediated "one-pot" approach was realized to produce γ-pyrones by applying aromatic ketones/heteroarenes and carboxylic acids as the starting materials. The target products were isolated in moderate to excellent yields. The reaction mechanism was studied by density functional theory calculational methods. The results of experimental and theoretical investigations not only helped us explain the reason of high selectivity formation of β-diketones but also proved that 1,3,5-ketones might be important intermediates for the cyclization to afford γ-pyrones.
Collapse
Affiliation(s)
- Xiangyu Sun
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Ming Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Mengmeng Huang
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Yabo Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Jung Keun Kim
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Vladimir Kovalev
- Department of Chemistry, Moscow State University, Lenin's Hills, Moscow 119991, Russia
| | - Elvira Shokova
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
18
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
19
|
From Ocean to Medicine: Pharmaceutical Applications of Metabolites from Marine Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9080455. [PMID: 32731464 PMCID: PMC7460513 DOI: 10.3390/antibiotics9080455] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Oceans cover seventy percent of the planet's surface and besides being an immense reservoir of biological life, they serve as vital sources for human sustenance, tourism, transport and commerce. Yet, it is estimated by the National Oceanic and Atmospheric Administration (NOAA) that eighty percent of the oceans remain unexplored. The untapped biological resources present in oceans may be fundamental in solving several of the world's public health crises of the 21st century, which span from the rise of antibiotic resistance in bacteria, pathogenic fungi and parasites, to the rise of cancer incidence and viral infection outbreaks. In this review, health risks as well as how marine bacterial derived natural products may be tools to fight them will be discussed. Moreover, an overview will be made of the research pipeline of novel molecules, from identification of bioactive bacterial crude extracts to the isolation and chemical characterization of the molecules within the framework of the One Health approach. This review highlights information that has been published since 2014, showing the current relevance of marine bacteria for the discovery of novel natural products.
Collapse
|
20
|
Some Biogenetic Considerations Regarding the Marine Natural Product (-)-Mucosin. Molecules 2019; 24:molecules24224147. [PMID: 31731797 PMCID: PMC6891381 DOI: 10.3390/molecules24224147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, the identity of the marine hydrindane natural product (−)-mucosin was revised to the trans-fused structure 6, thereby providing a biogenetic puzzle that remains to be solved. We are now disseminating some of our insights with regard to the possible machinery delivering the established architecture. Aspects with regard to various modes of cyclization in terms of concerted versus stepwise processes are held up against the enzymatic apparatus known to be working on arachidonic acid (8). To provide a contrast to the tentative polyunsaturated fatty acid biogenesis, the structural pattern featured in (−)-mucosin (6) is compared to some marine hydrinane natural products of professed polyketide descent. Our appraisal points to a different origin and strengthens the hypothesis of a polyunsaturated fatty acids (PUFA) as the progenitor of (−)-mucosin (6).
Collapse
|
21
|
Study of molecular interactions by hydrogen bond of charged forms of makaluvamines and complex stability with H 2O and glutamic acid (Glu Ac) by the theory of the functional of density (B3LYP). J Mol Model 2019; 25:344. [PMID: 31720844 DOI: 10.1007/s00894-019-4231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
This work was undertaken to understand the mode of interaction of makaluvamines, a class of marine pyrroloiminoquinone alkaloids isolated from sponges of the genus Zyzzya, used in the treatment of several human cancer cell lines. This analysis was done by the quantum chemistry method. First, we used electrostatic potential (ESP) to reveal the different sites that accept and donate hydrogen bonds (HB) of charged forms (protonated and methylated) of makaluvamines (at level B3LYP/6-311++G(d,p)). In a second step, we studied the interactions by hydrogen bond between these molecules and water molecule on the one hand (at level B3LYP/6-311++G(d,p)) and on the other hand glutamic acid a protein residue of topoisomerase II (at level B3LYP/6-31+G(d,p)). Finally, we calculated the corrected BSSE interaction energies and estimated the relative stability of the formed complexes.
Collapse
|
22
|
Mohamed HA, Al-Shareef HF. Design, Synthesis, Anti-Proliferative Evaluation and Cell Cycle Analysis of Hybrid 2-Quinolones. Anticancer Agents Med Chem 2019; 19:1132-1140. [DOI: 10.2174/1871520619666190319142934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Quinolones are a significant group of nitrogen heterocyclic compounds that exist in therapeutic
agents, alkaloids, and synthetic small molecules that have important biological activities. A wide range of
quinolones have been used as antituberculosis, antibacterial, anti-malarial, antifungal, anticonvulsant, anticancer
agents and urease inhibitors.
Methods:
Ethyl 3,3-disubstituted-2-cyano propionates containing hybride quinolones derivatives were synthesized
by the reaction of 1-amino-7-hydroxy-4-methylquinolin-2(1H)-one and its dibromo derivative with α, β-unsaturated
carbonyl in ethanol.
Results:
A novel series of hybrid 2-quinolone derivatives was designed and synthesized. The compounds structures
were confirmed using different spectroscopic methods and elemental analysis. The cytotoxic activities of all the
compounds were assessed against HepG2 cell line in comparison with doxorubicin as a standard drug.
Conclusion:
Most compounds revealed superior anti-proliferative activity than the standard. Compound 4b, is the
most active compound (IC50 = 0.39mM) compared with doxorubicin (IC50 = 9.23mM). DNA flow cytometric analysis
of compound 4b showed cell cycle arrest at G2/M phase with a concomitant increase of cells in apoptotic phase.
Dual annexin-V/ propidium iodide staining assay of compound 4b revealed that the selected candidate increased the
apoptosis of HepG-2 cells more than control.
Collapse
Affiliation(s)
- Heba A.E. Mohamed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P. O. Box 13401, Makkah 21955, Saudi Arabia
| | - Hossa F. Al-Shareef
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P. O. Box 13401, Makkah 21955, Saudi Arabia
| |
Collapse
|
23
|
Xie LG, Rogers J, Anastasiou I, Leitch JA, Dixon DJ. Iridium-Catalyzed Reductive Allylation of Esters. Org Lett 2019; 21:6663-6667. [PMID: 31397155 DOI: 10.1021/acs.orglett.9b02119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic reductive transformation of carboxylic esters into α-branched ethers is described. The procedure pivots on the chemoselective iridium-catalyzed hydrosilylation of ester and lactone functionality to afford a silyl acetal intermediate. Upon treatment with a Lewis acid, these hemilabile intermediates dissociate to form reactive oxocarbenium ions, which can be intercepted by allyltributyltin nucleophiles, resulting in the formation of valuable α-branched alkyl-alkyl ether derivatives. This reductive allylation procedure was found to be amenable to a range of carboxylic ester starting materials, and good chemoselectivity for ethyl over tert-butyl esters was demonstrated. Furthermore, downstream synthetic manipulation of α-amino acid-derived products led to the efficient formation of pyrrolidine, piperidine, and azepane frameworks.
Collapse
Affiliation(s)
- Lan-Gui Xie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jack Rogers
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ioannis Anastasiou
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jamie A Leitch
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
24
|
Hamed ANE, Schmitz R, Bergermann A, Totzke F, Kubbutat M, Müller WEG, Youssef DTA, Bishr MM, Kamel MS, Edrada-Ebel R, Wätjen W, Proksch P. Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri. ACTA ACUST UNITED AC 2019; 73:199-210. [PMID: 29353267 DOI: 10.1515/znc-2017-0161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
Fifteen pyrrole alkaloids were isolated from the Red Sea marine sponge Stylissa carteri and investigated for their biological activities. Four of them were dibrominated [(+) dibromophakelline, Z-3-bromohymenialdisine, (±) ageliferin and 3,4-dibromo-1H-pyrrole-2-carbamide], nine compounds were monobrominated [(-) clathramide C, agelongine, (+) manzacidin A, (-) 3-bromomanzacidin D, Z-spongiacidin D, Z-hymenialdisine, 2-debromostevensine, 2-bromoaldisine and 4-bromo-1H-pyrrole-2-carbamide)] and finally, two compounds were non-brominated derivatives viz., E-debromohymenialdisine and aldisine. The structure elucidations of isolated compounds were based on 1D & 2D NMR spectroscopic and MS studies, as well as by comparison with literature. In-vitro, Z-spongiacidin D exhibited a moderate activity on (ARK5, CDK2-CycA, CDK4/CycD1, VEGF-R2, SAK and PDGFR-beta) protein kinases. Moreover, Z-3-bromohymenialdisine showed nearly similar pattern. Furthermore, Z-hymenialdisine displayed a moderate effect on (ARK5 & VEGF-R2) and (-) clathramide C showed a moderate activity on AURORA-A protein kinases. While, agelongine, (+) manzacidin A, E-debromohymenialdisine and 3,4-dibromo-1H-pyrrole-2-carbamide demonstrated only marginal inhibitory activities. The cytotoxicity study was evaluated in two different cell lines. The most effective secondary metabolites were (+) dibromophakelline and Z-3-bromohymenialdisine on L5178Y. Finally, Z-hymenialdisine, Z-3-bromohymenialdisine and (±) ageliferin exhibited the highest cytotoxic activity on HCT116. No report about inhibition of AURORA-A and B by hymenialdisine/hymenialdisine analogs existed and no reported toxicity of ageliferin existed in literature.
Collapse
Affiliation(s)
- Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| | - Roland Schmitz
- Institut für Toxikologie, 1011007, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anja Bergermann
- Martin-Luther-Universität Halle-Wittenberg, Faculty III, Institut für Agrar- und Ernährungswissenschaften, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Frank Totzke
- ProQinase GmbH, Breisacher Str. 117, D-79106 Freiburg, Germany
| | | | - Werner E G Müller
- Institut für Physiologische Chemie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Düsbergweg 6, 55128 Mainz, Germany
| | - Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mokhtar M Bishr
- Research and Development Department, Mepaco Company, Cairo, 11361, Egypt
| | - Mohamed S Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0NR, UK
| | - Wim Wätjen
- Institut für Toxikologie, 1011007, Heinrich-Heine-Universität, Düsseldorf, Germany
- Martin-Luther-Universität Halle-Wittenberg, Faculty III, Institut für Agrar- und Ernährungswissenschaften, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
A Novel Marine Natural Product Derived Pyrroloiminoquinone with Potent Activity against Skin Cancer Cells. Mar Drugs 2019; 17:md17080443. [PMID: 31357586 PMCID: PMC6722685 DOI: 10.3390/md17080443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Non-melanoma skin cancer is one of the major ailments in the United States. Effective drugs that can cure skin cancers are limited. Moreover, the available drugs have toxic side effects. Therefore, skin cancer drugs with less toxic side effects are urgently needed. To achieve this goal, we focused our work on identifying potent lead compounds from marine natural products. Five lead compounds identified from a class of pyrroloiminoquinone natural products were evaluated for their ability to selectively kill squamous cell carcinoma (SCC13) skin cancer cells using an MTT assay. The toxicity of these compounds was also evaluated against the normal human keratinocyte HaCaT cell line. The most potent compound identified from these studies, C278 was further evaluated for its ability to inhibit cancer cell migration and invasion using a wound-healing assay and a trans-well migration assay, respectively. To investigate the molecular mechanism of cell death, the expression of apoptotic and autophagy proteins was studied in C278 treated cells compared to untreated cells using western blot. Our results showed that all five compounds effectively killed the SCC13 cells, with compound C278 being the most effective. Compound C278 was more effective in killing the SCC13 cells compared to HaCaT cells with a two-fold selectivity. The migration and the invasion of the SCC13 cells were also inhibited upon treatment with compound C278. The expression of pro-apoptotic and autophagy proteins with concomitant downregulation in the expression of survival proteins were observed in C278 treated cells. In summary, the marine natural product analog compound C278 showed promising anticancer activity against human skin cancer cells and holds potential to be developed as an effective anticancer agent to combat skin cancer.
Collapse
|
26
|
Recent advances in the applications of Wittig reaction in the total synthesis of natural products containing lactone, pyrone, and lactam as a scaffold. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02465-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Harunari E, Imada C, Igarashi Y. Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13 T. JOURNAL OF NATURAL PRODUCTS 2019; 82:1609-1615. [PMID: 31181919 DOI: 10.1021/acs.jnatprod.9b00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Four new aromatic polyketides, konamycins A (1) and B (2) and rubromycins CA1 (3) and CA2 (4), were isolated from the culture extract of the tunicate-derived Streptomyces hyaluromycini MB-PO13T. Compounds 1 and 2 possess a benzo[ b]fluorene aglycon modified by C-glycosylation with l-amicetose. Compounds 3 and 4 are the new congeners of rubromycin in which a naphthoquinone and carboxylated isocoumarin are joined through a spiroketal carbon. The structures of these compounds were determined by extensive analysis of 1D and 2D NMR spectroscopic data. Compound 1 showed radical scavenging activity in DPPH and superoxide quenching assays, and 3 and 4 displayed antimicrobial activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology , Tokyo University of Marine Science and Technology , 4-5-7 Konan, Minato-ku , Tokyo 108-8477 , Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| |
Collapse
|
28
|
Ding R, Lu W, Ci H, Mao Y, Liu L. Copper‐Catalyzed Oxidative Alkylation of Vinylic C
β
‐H of Enamides with Cyclic Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Wang‐Gang Lu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Hao Ci
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Yue‐Yuan Mao
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Lei Liu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| |
Collapse
|
29
|
Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D. Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep 2019; 36:810-841. [PMID: 30556575 DOI: 10.1039/c8np00057c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 1957 to 2017 Algae constitute a heterogeneous group of eukaryotic photosynthetic organisms, mainly found in the marine environment. Algae produce numerous metabolites that help them cope with the harsh conditions of the marine environment. Because of their structural diversity and uniqueness, these molecules have recently gained a lot of interest for the identification of medicinally useful agents, including those with potential anticancer activities. In the current review, which is not a catalogue-based one, we first highlight the major biological events that lead to various types of cancer, including metastatic ones, to chemoresistance, thus to any types of current anticancer treatment relating to the use of chemotherapeutics. We then review algal metabolites for which scientific literature reports anticancer activity. Lastly, we focus on algal metabolites with promising anticancer activity based on their ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. Thus, we highlight compounds that have, among others, one or more of the following characteristics: selectivity in reducing the proliferation of cancer cells over normal ones, potential for killing cancer cells through non-apoptotic signaling pathways, ability to circumvent MDR-related efflux pumps, and activity in vivo in relevant pre-clinical models.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Alcyonium Octocorals: Potential Source of Diverse Bioactive Terpenoids. Molecules 2019; 24:molecules24071370. [PMID: 30965598 PMCID: PMC6479912 DOI: 10.3390/molecules24071370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023] Open
Abstract
Alcyonium corals are benthic animals, which live in different climatic areas, including temperate, Antarctic and sub-Antarctic waters. They were found to produce different chemical substances with molecular diversity and unique architectures. These metabolites embrace several terpenoidal classes with different functionalities. This wide array of structures supports the productivity of genus Alcyonium. Yet, majority of the reported compounds are still biologically unscreened and require substantial efforts to explore their importance. This review is an entryway to push forward the bio-investigation of this genus. It covers the era from the beginning of reporting metabolites from Alcyonium up to March 2019. Ninety-two metabolites are presented; forty-two sesquiterpenes, twenty-five diterpenes and twenty-five steroids have been reported from sixteen species.
Collapse
|
31
|
Shmul G, Benayahu Y, Kashman Y. Abruptoside A, A Novel Glycolipid from the Kenyan Soft Coral Sinularia Abrupta. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two homologue glycolipids, abruptosides A and B were isolated from the Kenyan soft coral Sinularia abrupta. Their structures are composed of a tetrasubstituted diarabinosyl carbohydrate carrying two acetates, a 3-hydroxybutanoate and a 4Z-dodec-4-en-1-ol or 4Z-tridec-4-en-1-ol group. The structures were determined by MS and 1D and 2D NMR spectroscopy.
Collapse
Affiliation(s)
- Guy Shmul
- School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Yehuda Benayahu
- Department of Zoology, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Yoel Kashman
- School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
32
|
Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhulensis In Vitro and In Vivo. Mar Drugs 2019; 17:md17020126. [PMID: 30795557 PMCID: PMC6410303 DOI: 10.3390/md17020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023] Open
Abstract
Gukulenin A is a bis-tropolone tetraterpenoid isolated from the marine sponge Phorbas gukhulensis. In this study, we examined the anticancer activities of gukulenin A in ovarian cancer cell lines (A2780, SKOV3, OVCAR-3, and TOV-21G) and in an ovarian cancer mouse model generated by injecting A2780 cells. We found that gukulenin A suppressed tumor growth in A2780-bearing mice. Gukulenin A markedly inhibited cell viability in four ovarian cancer cell lines, including the A2780 cell line. Gukulenin A treatment increased the fraction of cells accumulated at the sub G1 phase in a dose-dependent manner and the population of annexin V-positive cells, suggesting that gukulenin A induces apoptotic cell death in ovarian cancer cells. In addition, gukulenin A triggered the activation of caspase-3, -8, and -9, and caspase inhibitors attenuated gukulenin A-induced A2780 cell death. The results suggest that gukulenin A may be a potential therapeutic agent for ovarian cancer.
Collapse
|
33
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
34
|
Zarezin DP, Shmatova OI, Kabylda AM, Nenajdenko VG. Efficient Synthesis of the Peptide Fragment of the Natural Depsipeptides Jaspamide and Chondramide. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Danil P. Zarezin
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Olga I. Shmatova
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Adil M. Kabylda
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | | |
Collapse
|
35
|
Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018; 9:777. [PMID: 30127738 PMCID: PMC6089330 DOI: 10.3389/fphar.2018.00777] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine environment has demonstrated to be an interesting source of compounds with uncommon and unique chemical features on which the molecular modeling and chemical synthesis of new drugs can be based with greater efficacy and specificity for the therapeutics. Cancer is a growing public health threat, and despite the advances in biomedical research and technology, there is an urgent need for the development of new anticancer drugs. In this field, it is estimated that more than 60% of commercially available anticancer drugs are natural biomimetic inspired. Among the marine organisms, algae have revealed to be one of the major sources of new compounds of marine origin, including those exhibiting antitumor and cytotoxic potential. These compounds demonstrated ability to mediate specific inhibitory activities on a number of key cellular processes, including apoptosis pathways, angiogenesis, migration and invasion, in both in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This review will focus on the bioactive molecules from algae with antitumor potential, from their origin to their potential uses, with special emphasis to the alga Sphaerococcus coronopifolius as a producer of cytotoxic compounds.
Collapse
Affiliation(s)
- Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Biology Department, DoMar Doctoral Programme on Marine Science, Technology and Management, University of Aveiro, Aveiro, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Maria C Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
36
|
Novel furanyl derivatives from the red seaweed Gracilaria opuntia with pharmacological activities using different in vitro models. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2144-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv 2018; 8:17837-17846. [PMID: 35542054 PMCID: PMC9080480 DOI: 10.1039/c8ra00820e] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/21/2018] [Indexed: 11/22/2022] Open
Abstract
Sponge associated bacteria are a rich source of bioactive secondary metabolites. This study aims to isolate bacteria producing antimicrobial agents from a marine sponge, Callyspongia diffusa. A total of fifty-six bacteria were isolated and screened for antibacterial activity against multidrug resistant S. aureus. Based on the 16S rRNA sequence and phylogenetic analysis the antimicrobial producer strain MSI45 was identified as a novel Bacillus tequilensis. The culture conditions of strain MSI45 were optimized to enhance the yield of the antimicrobial compound. The antimicrobial compound was purified using a silica gel column chromatography and high performance liquid chromatography. On the basis of spectroscopic analysis such as FT-IR, NMR and GC-MS, the bioactive metabolite was identified as pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro. The extracted compound MSI45 showed a potent inhibitory effect on multidrug resistant S. aureus with an MIC of 15 ± 0.172 mg L−1 and MBC of 20 ± 0.072 mg L−1. The compound was non-hemolytic and showed high antioxidant activity. The antioxidant activity may increase the efficacy and safety of the molecule in drug development. Hence, this compound produced by Bacillus tequilensis MSI45 could have potent antimicrobial and antioxidant activity against S. aureus infection. A new antibiotic agent from sponge associated marine bacteria.![]()
Collapse
Affiliation(s)
| | | | - Arya Sajayan
- Department of Food Science and Technology
- Pondicherry University
- India
| | - Amrudha Ravindran
- Department of Food Science and Technology
- Pondicherry University
- India
| | - Joseph Selvin
- Department of Microbiology
- Pondicherry University
- India
| |
Collapse
|
38
|
Coutinho MCL, Teixeira VL, Santos CSG. A Review of “Polychaeta” Chemicals and their Possible Ecological Role. J Chem Ecol 2017; 44:72-94. [DOI: 10.1007/s10886-017-0915-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023]
|
39
|
Maneesh A, Chakraborty K. Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity. PHYTOCHEMISTRY 2017; 144:19-32. [PMID: 28888144 DOI: 10.1016/j.phytochem.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Previously undescribed fridooleanene triterpenoids 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-propyl-21-hex-4'(Z)-enoate, 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-prop-2(E)-en-21-butanoate and oxygenated labdane diterpenoids 2α-hydroxy-8(17), (12E), 14-labdatriene, 3β, 6β, 13α-tri hydroxy 8(17), 12E, 14-labdatriene were purified from the ethyl acetate-methanol and dichloromethane fractions of the air-dried thalli of Sargassum wightii (Sargassaceae), a brown seaweed collected from the Gulf-of-Mannar of Penninsular India. Inhibitory potential of Δ12 oleanenes towards protein tyrosine phosphatase-1B, the critical regulator of insulin-receptor activity were found to be significantly greater (IC50 0.1 × 10-2 and 0.09 × 10-2 mg/mL, respectively) than the standard sodium metavanadate (IC50 0.31 × 10-2 mg/mL). Fridooleanene triterpenoids displayed greater antioxidant activities (IC50DPPH 0.16-0.18 mg/mL) than the commercially available antioxidants, butylated hydroxytoluene and α-tocopherol (IC50DPPH 0.25 and 0.63 mg/mL, respectively). In general, the oxygenated labdane diterpenoids displayed significantly lesser antioxidant and tyrosine phosphatase-1B inhibitory properties than those exhibited by the fridooleanenes. Bioactivities of the titled compounds were primarily determined by the electronic and lipophilic parameters and not by the steric descriptors. Molecular docking simulations and kinetic studies were employed to describe the tyrosine phosphatase-1B inhibitory mechanism. The previously undescribed fridooleanene triterpenoids might be used as potential anti-hyperglycaemic pharmacophore leads to reduce the risk of elevated postprandial glucose levels.
Collapse
Affiliation(s)
- Anusree Maneesh
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
40
|
Antonsen SG, Gallantree-Smith H, Görbitz CH, Hansen TV, Stenstrøm YH, Nolsøe JMJ. Stereopermutation on the Putative Structure of the Marine Natural Product Mucosin. Molecules 2017; 22:molecules22101720. [PMID: 29027970 PMCID: PMC6151738 DOI: 10.3390/molecules22101720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
A stereodivergent total synthesis has been executed based on the plausibly misassigned structure of the unusual marine hydrindane mucosin (1). The topological connectivity of the four contiguous all-carbon stereocenters has been examined by selective permutation on the highlighted core. Thus, capitalizing on an unprecedented stereofacial preference of the cis-fused bicycle[4.3.0]non-3-ene system when a Michael acceptor motif is incorporated, copper-mediated conjugate addition furnished a single diastereomer. Cued by the relative relationship reported for the appendices in the natural product, the resulting anti-adduct was elaborated into a probative target structure 1*.
Collapse
Affiliation(s)
- Simen G Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway.
| | - Harrison Gallantree-Smith
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway.
| | - Carl Henrik Görbitz
- Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway.
| | - Trond Vidar Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway.
- Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway.
| | - Yngve H Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway.
| | - Jens M J Nolsøe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
41
|
Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. Biodiversity of Actinobacteria from the South Pacific and the Assessment of Streptomyces Chemical Diversity with Metabolic Profiling. Mar Drugs 2017; 15:E286. [PMID: 28892017 PMCID: PMC5618425 DOI: 10.3390/md15090286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, bioprospecting in underexplored habitats has gained enhanced focus, since new taxa of marine actinobacteria can be found, and thus possible new metabolites. Actinobacteria are in the foreground due to their versatile production of secondary metabolites that present various biological activities, such as antibacterials, antitumorals and antifungals. Chilean marine ecosystems remain largely unexplored and may represent an important source for the discovery of bioactive compounds. Various culture conditions to enrich the growth of this phylum were used and 232 bacterial strains were isolated. Comparative analysis of the 16S rRNA gene sequences led to identifying genetic affiliations of 32 genera, belonging to 20 families. This study shows a remarkable culturable diversity of actinobacteria, associated to marine environments along Chile. Furthermore, 30 streptomycete strains were studied to establish their antibacterial activities against five model strains, Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa, demonstrating abilities to inhibit bacterial growth of Gram-positive bacteria. To gain insight into their metabolic profiles, crude extracts were submitted to liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis to assess the selection of streptomycete strains with potentials of producing novel bioactive metabolites. The combined approach allowed for the identification of three streptomycete strains to pursue further investigations. Our Chilean marine actinobacterial culture collection represents an important resource for the bioprospection of novel marine actinomycetes and its metabolites, evidencing their potential as producers of natural bioproducts.
Collapse
Affiliation(s)
- Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|
42
|
Carral-Menoyo A, Ortiz-de-Elguea V, Martinez-Nunes M, Sotomayor N, Lete E. Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core. Mar Drugs 2017; 15:md15090276. [PMID: 28867803 PMCID: PMC5618415 DOI: 10.3390/md15090276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023] Open
Abstract
Palladium-catalyzed dehydrogenative coupling is an efficient synthetic strategy for the construction of quinoline scaffolds, a privileged structure and prevalent motif in many natural and biologically active products, in particular in marine alkaloids. Thus, quinolines and 1,2-dihydroquinolines can be selectively obtained in moderate-to-good yields via intramolecular C–H alkenylation reactions, by choosing the reaction conditions. This methodology provides a direct method for the construction of this type of quinoline through an efficient and atom economical procedure, and constitutes significant advance over the existing procedures that require preactivated reaction partners.
Collapse
Affiliation(s)
- Asier Carral-Menoyo
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.
| | - Verónica Ortiz-de-Elguea
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.
| | - Mikel Martinez-Nunes
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.
| | - Nuria Sotomayor
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.
| | - Esther Lete
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
43
|
Tonoi T, Yoshinaga Y, Fujishiro M, Mameda K, Kato T, Shibamoto K, Shiina I. Asymmetric Total Synthesis of (-)-Astakolactin and Confirmation of Its Stereostructure. JOURNAL OF NATURAL PRODUCTS 2017; 80:2335-2344. [PMID: 28767241 DOI: 10.1021/acs.jnatprod.7b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The originally proposed structure of astakolactin was revised, and an asymmetric total synthesis of the newly proposed structure was achieved. The key transformations in the synthesis were a Johnson-Claisen rearrangement, an asymmetric Mukaiyama aldol reaction, and a Mitsunobu-type cyclodehydration. The spectroscopic data and specific rotation of the compound obtained matched well with those reported for naturally occurring astakolactin.
Collapse
Affiliation(s)
- Takayuki Tonoi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yutaka Yoshinaga
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Moe Fujishiro
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keisuke Mameda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takashi Kato
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kentaro Shibamoto
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
44
|
Ledoux JB, Antunes A. Beyond the beaten path: improving natural products bioprospecting using an eco-evolutionary framework - the case of the octocorals. Crit Rev Biotechnol 2017. [PMID: 28651436 DOI: 10.1080/07388551.2017.1331335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Marine natural products (NPs) represent an impressive source of novel bioactive molecules with major biotechnological applications. Nevertheless, the usual chemical and applied perspective leading most of bioprospecting projects come along with various limitations blurring our understanding of the extensive marine chemical diversity. Here, we propose several guidelines: (i) to optimize bioprospecting and (ii) to refine our knowledge on marine chemical ecology focusing on octocorals, one of the most promising sources of marine NPs. We identified a significant phylogenetic bias in the octocoral bioprospecting, which calls for the development of a concerted discovery strategy. Given the gap existing between the number of isolated NPs and the knowledge regarding their functions, we provide an ecologically centered workflow prioritizing biological function ahead of chemical identification. Furthermore, we illustrate how -omic technologies should rapidly increase our knowledge on solving different aspects of the ecology and evolution of marine NPs.
Collapse
Affiliation(s)
- Jean-Baptiste Ledoux
- a CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal.,b Institut de Ciències del Mar (ICM-CSIC) , Barcelona , Spain
| | - Agostinho Antunes
- a CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal.,c Department of Biology, Faculty of Sciences , University of Porto , Porto , Portugal
| |
Collapse
|
45
|
Srilatha A, Yadav JS, Reddy BVS. A Convergent Total Synthesis of Balticolid. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A convergent total synthesis of the 12 membered macrolide, Balticolid (1) is described, starting from readily available homoallylic alcohol and 1,3 propane diol. The synthetic strategy involves the construction of the 12-membered lactone.
Collapse
Affiliation(s)
- Avuluri Srilatha
- Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Jhillu S. Yadav
- Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Basi V. Subba Reddy
- Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
46
|
Suleria HAR, Masci PP, Gobe GC, Osborne SA. Therapeutic potential of abalone and status of bioactive molecules: A comprehensive review. Crit Rev Food Sci Nutr 2017; 57:1742-1748. [PMID: 26114550 DOI: 10.1080/10408398.2015.1031726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Marine organisms are increasingly being investigated as sources of bioactive molecules with therapeutic applications as nutraceuticals and pharmaceuticals. In particular, nutraceuticals are gaining popularity worldwide owing to their therapeutic potential and incorporation in functional foods and dietary supplements. Abalone, a marine gastropod, contains a variety of bioactive compounds with anti-oxidant, anti-thrombotic, anti-inflammatory, anti-microbial, and anti-cancer activities. For thousands of years different cultures have used abalone as a traditional functional food believing consumption provides health benefits. Abalone meat is one of the most precious commodities in Asian markets where it is considered a culinary delicacy. Recent research has revealed that abalone is composed of many vital moieties like polysaccharides, proteins, and fatty acids that provide health benefits beyond basic nutrition. A review of past and present research is presented with relevance to the therapeutic potential of bioactive molecules from abalone.
Collapse
Affiliation(s)
- H A R Suleria
- a Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland , Brisbane , Australia.,b CSIRO Agriculture Flagship , St. Lucia , Australia
| | - P P Masci
- a Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland , Brisbane , Australia
| | - G C Gobe
- a Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland , Brisbane , Australia
| | - S A Osborne
- b CSIRO Agriculture Flagship , St. Lucia , Australia
| |
Collapse
|
47
|
Einarsdottir E, Magnusdottir M, Astarita G, Köck M, Ögmundsdottir HM, Thorsteinsdottir M, Rapp HT, Omarsdottir S, Paglia G. Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland. Mar Drugs 2017; 15:md15020052. [PMID: 28241423 PMCID: PMC5334632 DOI: 10.3390/md15020052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea (Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA) responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens.
Collapse
Affiliation(s)
- Eydis Einarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík 107, Iceland.
| | | | - Giuseppe Astarita
- Denali Therapeutics, South San Francisco, CA 94080, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA.
| | - Matthias Köck
- Helmholtz Center for Polar and Marine Research, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany.
| | | | | | - Hans Tore Rapp
- Department of Biology and KG Jebsen Centre for Deep Sea Research, University of Bergen, Bergen 5020, Norway.
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík 107, Iceland.
| | - Giuseppe Paglia
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano 39100, Italy.
| |
Collapse
|
48
|
Lan Y, Fan P, Liu XW, Meng FF, Ahmad T, Xu YH, Loh TP. An iron-catalyzed hydroalkylation reaction of α,β-unsaturated ketones with ethers. Chem Commun (Camb) 2017; 53:12353-12356. [DOI: 10.1039/c7cc07235j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general strategy for the hydroalkylation of vinyl ketones using ethers catalyzed by an iron catalyst is described.
Collapse
Affiliation(s)
- Yun Lan
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Pei Fan
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiao-Wei Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Fei-Fan Meng
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Tanveer Ahmad
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yun-He Xu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Teck-Peng Loh
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
- Institute of Advanced Synthesis
| |
Collapse
|
49
|
Babazadeh M, Soleimani-Amiri S, Vessally E, Hosseinian A, Edjlali L. Transition metal-catalyzed [2 + 2 + 2] cycloaddition of nitrogen-linked 1,6-diynes: a straightforward route to fused pyrrolidine systems. RSC Adv 2017. [DOI: 10.1039/c7ra05398c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transition metal-catalyzed [2 + 2 + 2] cycloadditions of nitrogen-linked 1,6-diynes with unsaturated motifs have recently attracted more attention from synthetic organic chemists because of their high efficiency in the construction of numerous pyrrolidine based systems.
Collapse
Affiliation(s)
| | | | | | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Ladan Edjlali
- Department of Chemistry
- Tabriz Branch
- Islamic Azad University
- Tabriz
- Iran
| |
Collapse
|
50
|
|