1
|
George A, Jayaraman N. Carbohydrate-Functionalized Anthracene Carboximides as Multivalent Ligands and Bio-Imaging Agents. Chemistry 2024; 30:e202400941. [PMID: 38700909 DOI: 10.1002/chem.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 μM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.
Collapse
Affiliation(s)
- Anne George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
2
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
3
|
Dalle Vedove E, Costabile G, Merkel OM. Mannose and Mannose-6-Phosphate Receptor-Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Adv Healthc Mater 2018; 7:e1701398. [PMID: 29719138 PMCID: PMC6108418 DOI: 10.1002/adhm.201701398] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Indexed: 12/21/2022]
Abstract
In order to overcome the main disadvantages of conventional cancer therapies, which prove to be inadequate because of their lack of selectivity, the development of targeted delivery systems is one of the main focuses in anticancer research. It is repeatedly shown that decorating the surface of nanocarriers with high-affinity targeting ligands, such as peptides or small molecules, is an effective way to selectively deliver therapeutics by enhancing their specific cellular uptake via the binding between a specific receptor and the nanosystems. Nowadays, the need of finding new potential biological targets with a high endocytic efficiency as well as a low tendency to mutate is urgent and, in this context, mannose and mannose-6-phosphate receptors appear promising to target anticancer drugs to cells where their expression is upregulated. Moreover, they open the path to encouraging applications in immune-based and gene therapies as well as in theragnostic purposes. In this work, the potential of mannose- and mannose-6-phosphate-targeted delivery systems in cancer therapy is discussed, emphasizing their broad application both in direct treatments against cancer cells with conventional chemotherapeutics or by gene therapy and also their encouraging capabilities in immunotherapy and diagnostics purposes.
Collapse
Affiliation(s)
- Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| |
Collapse
|
4
|
Muñoz A, Illescas BM, Luczkowiak J, Lasala F, Ribeiro-Viana R, Rojo J, Delgado R, Martín N. Antiviral activity of self-assembled glycodendro[60]fullerene monoadducts. J Mater Chem B 2017; 5:6566-6571. [DOI: 10.1039/c7tb01379e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supramolecular assemblies of amphiphilic glycodendro[60]fullerenes have been tested in an artificial Ebola virus infection assay.
Collapse
Affiliation(s)
- Antonio Muñoz
- Departamento de Química Orgánica
- Fac. C.C. Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Beatriz M. Illescas
- Departamento de Química Orgánica
- Fac. C.C. Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular Instituto de Investigación Hospital 12 de Octubre (imas12)
- 28041 Madrid
- Spain
| | - Fátima Lasala
- Laboratorio de Microbiología Molecular Instituto de Investigación Hospital 12 de Octubre (imas12)
- 28041 Madrid
- Spain
| | - Renato Ribeiro-Viana
- Glycosystems Laboratory Instituto de Investigaciones Químicas (IIQ) CSIC
- Universidad de Sevilla
- 41092 Seville
- Spain
| | - Javier Rojo
- Glycosystems Laboratory Instituto de Investigaciones Químicas (IIQ) CSIC
- Universidad de Sevilla
- 41092 Seville
- Spain
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular Instituto de Investigación Hospital 12 de Octubre (imas12)
- 28041 Madrid
- Spain
| | - Nazario Martín
- Departamento de Química Orgánica
- Fac. C.C. Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
5
|
Kim HW, Yang K, Jeong WJ, Choi SJ, Lee JS, Cho AN, Chang GE, Cheong E, Cho SW, Lim YB. Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26470-26481. [PMID: 27643920 DOI: 10.1021/acsami.6b06796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimuli-responsive hybrid materials that combine the dynamic nature self-assembled organic nanostructures, unique photophysical properties of inorganic materials, and molecular recognition capability of biopolymers can provide sophisticated nanoarchitectures with unprecedented functions. In this report, infrared (IR)-responsive self-assembled peptide-carbon nanotube (CNT) hybrids that enable the spatiotemporal control of bioactive ligand multivalency and subsequent human neural stem cell (hNSC) differentiation are reported. The switching between the ligand presented and hidden states was controlled via IR-induced photothermal heating of CNTs, followed by the shrinkage of the thermoresponsive dendrimers that exhibited lower critical solution temperature (LCST) behavior. The control of the ligand spacing via molecular coassembly and IR-triggered ligand presentation promoted the sequential events of integrin receptor clustering and the differentiation of hNSCs into electrophysiologically functional neurons. Therefore, the combination of our nanohybrid with biomaterial scaffolds may be able to further improve effectiveness, durability, and functionality of the nanohybrid systems for spatiotemporal control of stem cell differentiation. Moreover, these responsive hybrids with remote-controllable functions can be developed as therapeutics for the treatment of neuronal disorders and as materials for the smart control of cell function.
Collapse
Affiliation(s)
- Hee-Won Kim
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Kisuk Yang
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Woo-Jin Jeong
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Sung-Ju Choi
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Jong Seung Lee
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Ann-Na Cho
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Gyeong-Eon Chang
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Eunji Cheong
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Yong-Beom Lim
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
6
|
Ye Z, Zhang Q, Wang S, Bharate P, Varela-Aramburu S, Lu M, Seeberger PH, Yin J. Tumour-Targeted Drug Delivery with Mannose-Functionalized Nanoparticles Self-Assembled from Amphiphilic β-Cyclodextrins. Chemistry 2016; 22:15216-15221. [PMID: 27714939 DOI: 10.1002/chem.201603294] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/18/2023]
Abstract
Multivalent mannose-functionalized nanoparticles self-assembled from amphiphilic β-cyclodextrins (β-CDs) facilitate the targeted delivery of anticancer drugs to specific cancer cells. Doxorubicin (DOX)-loaded nanoparticles equipped with multivalent mannose target units were efficiently taken up via receptor-mediated endocytosis by MDA-MB-231 breast cancer cells that overexpress the mannose receptor. Upon entering the cell, the intracellular pH causes the release of DOX, which triggers apoptosis. Targeting by multivalent mannose significantly improved the capability of DOX-loaded nanoparticles to inhibit the growth of MDA-MB-231 cancer cells with minimal side effects in vivo. This targeted and controlled drug delivery system holds promise as a nanotherapeutic for cancer treatment.
Collapse
Affiliation(s)
- Zhou Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Quan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Shengtao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Priya Bharate
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, Virchowstrasse 179, 45147, Essen, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| |
Collapse
|
7
|
Choi JS, Han SH, Kim H, Lim YB. Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs. Bioconjug Chem 2016; 27:799-808. [PMID: 26886413 DOI: 10.1021/acs.bioconjchem.6b00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although there has been substantial advancement in the development of nanostructures, the development of self-assembled nanostructures that can selectively recognize multivalent targets has been very difficult. Here we show the proof of concept that topology-controlled peptide nanoassemblies can selectively recognize and detect a multivalent RNA target. We compared the differential behaviors of peptides in a linear or cyclic topology in terms of peptide-gold nanoparticle hybrid nanostructure formation, conformational stabilization, monovalent and multivalent RNA binding in vitro, and multivalent RNA recognition in live cells. When the topology-dependent selectivity amplification of the cyclic peptide hybrids is combined with the noninvasive nature of dark-field microscopy, the cellular localization of the viral Rev response element (RRE) RNA can be monitored in situ. Because intracellular interactions are often mediated by overlapping binding partners with weak affinity, the topology-controlled peptide assemblies can provide a versatile means to convert weak ligands into multivalent ligands with high affinity and selectivity.
Collapse
Affiliation(s)
- Jun Shik Choi
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - So-hee Han
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - Hyoseok Kim
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - Yong-Beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
8
|
Abstract
Bacterial infections constitute an increasing problem to human health in response to build-up of resistance to present antibiotics and sluggish development of new pharmaceuticals. However, a means to address this problem is to pinpoint the drug delivery to-and into-the bacteria. This results in a high local concentration of the drug, circumventing the increasingly high doses otherwise necessary. Combined with other effectors, such as covalent attachment to carriers, rendering the drugs less degradable, and the combination with efflux inhibitors, old drugs can be revived. In this context, glyconanomaterials offer exceptional potential, since these materials can be tailored to accommodate different effectors. In this Concept article, we describe the different advantages of glyconanomaterials, and point to their potential in antibiotic "revitalization".
Collapse
Affiliation(s)
- Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology, Stockholm (Sweden).
| | - Mingdi Yan
- Department of Chemistry, KTH - Royal Institute of Technology, Stockholm (Sweden).
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA (USA).
| |
Collapse
|
9
|
Wu F, Jin J, Wang L, Sun P, Yuan H, Yang Z, Chen G, Fan QH, Liu D. Functionalization of DNA-dendron supramolecular fibers and application in regulation of Escherichia coli association. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7351-7356. [PMID: 25782730 DOI: 10.1021/acsami.5b00702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Specific carbohydrate recognition in biology is a dynamic process. Thus, supramolecular multivalent scaffolds with dynamic features have been applied to mimic this process. Herein, we prepared DNA-dendron supramolecular fibers and synthesized carbohydrate-oligonucleotide conjugates (C18-mannose). Via DNA hybridization, the C18-mannose could be guided onto the fiber platform and form multiple mannose-functionalized fibers, which can be utilized to agglutinate E. coli because of high affinity among multivalent mannose ligands and receptors on E. coli. In addition, via chain exchange reaction of DNAs, the E. coli could be dissociated by replacing multivalent mannose ligands with competitive unmodified DNA sequences. The association and dissociation processes of E. coli are confirmed by fluorescent microscope and transmission electron microscope (TEM). These results not only demonstrate the ability of DNA-dendron fibers in reversibly associating E. coli but also illustrate their potential to be an easily modified multivalent supramolecular platform.
Collapse
Affiliation(s)
- Fen Wu
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | - Liying Wang
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Pengfei Sun
- §The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Huanxiang Yuan
- ∥Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | - Guosong Chen
- §The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qing-Hua Fan
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | |
Collapse
|
10
|
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS NANO 2015; 9:2565-2573. [PMID: 25756526 PMCID: PMC5407437 DOI: 10.1021/nn5057595] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Burnapp
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Andrew Bentham
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - David Hillier
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Abigail Zabron
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Shahid Khan
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Matthew Tyreman
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J. Functional supramolecular polymers for biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:498-526. [PMID: 25393728 DOI: 10.1002/adma.201402975] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/17/2014] [Indexed: 05/08/2023]
Abstract
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology.
Collapse
Affiliation(s)
- Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Jeong WJ, Lim YB. Macrocyclic Peptides Self-Assemble into Robust Vesicles with Molecular Recognition Capabilities. Bioconjug Chem 2014; 25:1996-2003. [DOI: 10.1021/bc500367z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Woo-jin Jeong
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
13
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|
14
|
Bini D, Russo L, Battocchio C, Natalello A, Polzonetti G, Doglia SM, Nicotra F, Cipolla L. Dendron Synthesis and Carbohydrate Immobilization on a Biomaterial Surface by a Double-Click Reaction. Org Lett 2014; 16:1298-301. [DOI: 10.1021/ol403476z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Davide Bini
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Chiara Battocchio
- Department
of Sciences, INSTM, CNISM and CISDiC, University Roma Tre, Via della Vasca
Navale 84, 00146 Rome, Italy
| | - Antonino Natalello
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giovanni Polzonetti
- Department
of Sciences, INSTM, CNISM and CISDiC, University Roma Tre, Via della Vasca
Navale 84, 00146 Rome, Italy
| | - Silvia Maria Doglia
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Cipolla
- Department
of Biotechnology and Biosciences, University of Milan—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
15
|
Decroocq C, Joosten A, Sergent R, Mena Barragán T, Ortiz Mellet C, Compain P. The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Valency, Peripheral Ligand Structure, and Topology with Cyclodextrin-Based Iminosugar Click Clusters. Chembiochem 2013; 14:2038-49. [DOI: 10.1002/cbic.201300283] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 01/03/2023]
|
16
|
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. NANOSCALE 2013; 5:7098-140. [PMID: 23832165 DOI: 10.1039/c3nr02176a] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.
Collapse
Affiliation(s)
- Eric Busseron
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
17
|
Petkau-Milroy K, Brunsveld L. Self-Assembling Multivalency - Supramolecular Polymers Assembled from Monovalent Mannose-Labelled Discotic Molecules. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Wang KR, An HW, Wang YQ, Zhang JC, Li XL. Multivalent glycoclusters constructed by chiral self-assembly of mannose functionalized perylene bisimide. Org Biomol Chem 2013; 11:1007-12. [DOI: 10.1039/c2ob27052h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Wang KR, An HW, Qian F, Wang YQ, Zhang JC, Li XL. Synthesis, optical properties and binding interactions of a multivalent glycocluster based on a fluorescent perylene bisimide derivative. RSC Adv 2013. [DOI: 10.1039/c3ra44675a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Synthesis of perylene bisimide-centered glycodendrimer and its interactions with concanavalin A. Bioorg Med Chem Lett 2013; 23:480-3. [DOI: 10.1016/j.bmcl.2012.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022]
|
21
|
Almant M, Mastouri A, Gallego-Yerga L, García Fernandez JM, Ortiz Mellet C, Kovensky J, Morandat S, El Kirat K, Gouin SG. Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin. Chemistry 2012; 19:729-38. [DOI: 10.1002/chem.201202319] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 11/06/2022]
|
22
|
Barnard A, Smith DK. Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Barnard A, Smith DK. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. Angew Chem Int Ed Engl 2012; 51:6572-81. [PMID: 22689381 DOI: 10.1002/anie.201200076] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/12/2022]
Abstract
Multivalency is a powerful strategy for achieving high-affinity molecular recognition in biological systems. Recently, attention has begun to focus on using self-assembly rather than covalent scaffold synthesis to organize multiple ligands. This approach has a number of advantages, including ease of synthesis/assembly, tunability of nanostructure morphology and ligands, potential to incorporate multiple active units, and the responsive nature of self-assembly. We suggest that self-assembled multivalency is a strategy of fundamental importance in the design of synthetic nanosystems to intervene in biological pathways and has potential applications in nanomedicine.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
24
|
Görl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angew Chem Int Ed Engl 2012; 51:6328-48. [PMID: 22573415 DOI: 10.1002/anie.201108690] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 01/28/2023]
Abstract
Perylene bisimides are among the most valuable functional dyes and have numerous potential applications. As a result of their chemical robustness, photostability, and outstanding optical and electronic properties, these dyes have been applied as pigments, fluorescence sensors, and n-semiconductors in organic electronics and photovoltaics. Moreover, the extended quadrupolar π system of this class of dyes has facilitated the construction of numerous supramolecular architectures with fascinating photophysical properties. However, the supramolecular approach to the formation of perylene bisimide aggregates has been restricted mostly to organic media. Pleasingly, considerable progress has been made in the last few years in developing water-soluble perylene bisimides and their application in aqueous media. This Review provides an up-to-date overview on the self-assembly of perylene bisimides through π-π interactions in aqueous media. Synthetic strategies for the preparation of water-soluble perylene bisimides and the influence of water on the π-π stacking of perylene bisimides as well as the resulting applications are discussed.
Collapse
Affiliation(s)
- Daniel Görl
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
25
|
Görl D, Zhang X, Würthner F. Molekülverbände von Perylenbisimid-Farbstoffen in Wasser. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108690] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Wang KR, An HW, Wu L, Zhang JC, Li XL. Chiral self-assembly of lactose functionalized perylene bisimides as multivalent glycoclusters. Chem Commun (Camb) 2012; 48:5644-6. [DOI: 10.1039/c2cc31417g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Wang X, Matei E, Deng L, Ramström O, Gronenborn AM, Yan M. Multivalent glyconanoparticles with enhanced affinity to the anti-viral lectin Cyanovirin-N. Chem Commun (Camb) 2011; 47:8620-2. [PMID: 21720651 DOI: 10.1039/c1cc12981c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-mannose (LM) structures were coupled to gold nanoparticles (Au NPs) to amplify the affinity of LMs with Cyanovirin-N (CV-N) lectins and to study the structures of CV-N variants CVN(Q50C) and CVN(MutDB).
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-0751, USA
| | | | | | | | | | | |
Collapse
|
28
|
Deniaud D, Julienne K, Gouin SG. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org Biomol Chem 2011; 9:966-79. [DOI: 10.1039/c0ob00389a] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Welsh DJ, Smith DK. Comparing dendritic and self-assembly strategies to multivalency—RGD peptide–integrin interactions. Org Biomol Chem 2011; 9:4795-801. [DOI: 10.1039/c1ob05241a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Lim YB, Lee E, Lee M. Toroidal Nanostructures from Self-Assembly of Block Copolypeptides Based on Poly(L
-Arginine) and β-Sheet Peptide. Macromol Rapid Commun 2010; 32:191-6. [DOI: 10.1002/marc.201000512] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Indexed: 11/12/2022]
|
31
|
Miller GJ, Gardiner JM. Adaptable synthesis of C-glycosidic multivalent carbohydrates and succinamide-linked derivatization. Org Lett 2010; 12:5262-5. [PMID: 20961035 DOI: 10.1021/ol102310x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular approach to the synthesis of trivalent C-glycosidic carbohydrates is described. The approach is illustrated employing carboxylate-terminated C-glycosidic d-mannose, d-glucose, and d-galactose derivatives with different length C1-linked spacer units and also core units with different length linker units attached. The central core scaffold is additionally functionalized via a succinamide-based, conjugatable linker unit, exemplified in an extended multivalent derivative [31] and a pyrene-bearing fluorsecent-labeled tris-C-mannosyl conjugate [33].
Collapse
Affiliation(s)
- Gavin J Miller
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
32
|
Koopmans RJ. Nanobiotechnology. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Posocco P, Pricl S, Jones S, Barnard A, Smith DK. Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 2010. [DOI: 10.1039/c0sc00291g] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Perez-Balderas F, Morales-Sanfrutos J, Hernandez-Mateo F, Isac-García J, Santoyo-Gonzalez F. Click Multivalent Homogeneous Neoglycoconjugates - Synthesis and Evaluation of Their Binding Affinities. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Ortega-Muñoz M, Perez-Balderas F, Morales-Sanfrutos J, Hernandez-Mateo F, Isac-García J, Santoyo-Gonzalez F. Click Multivalent Heterogeneous Neoglycoconjugates - Modular Synthesis and Evaluation of Their Binding Affinities. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Lim YB, Moon KS, Lee M. Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 2009; 38:925-34. [DOI: 10.1039/b809741k] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Roy S, Chakraborty A, Ghosh R. Aryl 4,6-O-arylidene-1-thio-β-d-glycopyranoside-based new organogelators and their gels. Carbohydr Res 2008; 343:2523-9. [DOI: 10.1016/j.carres.2008.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/30/2022]
|
38
|
Lim YB, Lee E, Yoon YR, Lee MS, Lee M. Filamentous artificial virus from a self-assembled discrete nanoribbon. Angew Chem Int Ed Engl 2008; 47:4525-8. [PMID: 18464240 DOI: 10.1002/anie.200800266] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong-beom Lim
- Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
39
|
Lim YB, Lee E, Yoon YR, Lee M, Lee M. Filamentous Artificial Virus from a Self-Assembled Discrete Nanoribbon. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Lim YB, Kwon OJ, Lee E, Kim PH, Yun CO, Lee M. A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. Org Biomol Chem 2008; 6:1944-8. [PMID: 18480908 DOI: 10.1039/b802470g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized a peptide-based supramolecular building block consisting of a cyclic Arg-Gly-Asp (cRGD) peptide segment and a beta-sheet-forming peptide segment. The block peptide was shown to self-assemble into a cRGD-coated nanoribbon structure, as revealed by circular dichroism (CD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) studies. We have shown that this cRGD-coated nanoribbon can encapsulate hydrophobic guest molecules and deliver them into cells. Colocalization of the nanoribbon with LysoTracker and the selective intracellular delivery results suggests that the cRGD-coated nanoribbon is likely to be internalized into the cells through integrin receptors.
Collapse
Affiliation(s)
- Yong-Beom Lim
- Centre for Supramolecular Nano-Assembly, Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Lim YB, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angew Chem Int Ed Engl 2008; 46:9011-4. [PMID: 17948317 DOI: 10.1002/anie.200702732] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong-Beom Lim
- Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
42
|
Yoon YR, Lim YB, Lee E, Lee M. Self-assembly of a peptide rod–coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chem Commun (Camb) 2008:1892-4. [DOI: 10.1039/b719868j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Lim YB, Moon KS, Lee M. Rod–coil block molecules: their aqueous self-assembly and biomaterials applications. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b802639d] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Lim YB, Lee M. Nanostructures of β-sheet peptides: steps towards bioactive functional materials. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b711188f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Lim YB, Lee E, Lee M. Controlled Bioactive Nanostructures from Self-Assembly of Peptide Building Blocks. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702732] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Lim YB, Park S, Lee E, Ryu JH, Yoon YR, Kim TH, Lee M. Tunable Bacterial Agglutination and Motility Inhibition by Self-Assembled Glyco-Nanoribbons. Chem Asian J 2007; 2:1363-9. [PMID: 17849402 DOI: 10.1002/asia.200700163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We explored a method of controlling bacterial motility and agglutination by using self-assembled carbohydrate-coated beta-sheet nanoribbons. To this aim, we synthesized triblock peptides that consist of a carbohydrate, a polyethylene glycol (PEG) spacer, and a beta-sheet-forming peptide. An investigation into the effect of PEG-spacer length on the self-assembly of the triblock peptides showed that the PEG should be of sufficiently length to stabilize the beta-sheet nanoribbon structure. It was found that the stabilization of the nanoribbon led to stronger activity in bacterial motility inhibition and agglutination, thus suggesting that antibacterial activity can be controlled by the stabilization strategy. Furthermore, another level of control over bacterial motility and agglutination was attained by co-assembly of bacteria-specific and -nonspecific supramolecular building blocks. The nanoribbon specifically detected bacteria after the encapsulation of a fluorescent probe. Moreover, the detection sensitivity was enhanced by the formation of bacterial clusters. All these results suggest that the carbohydrate-coated beta-sheet nanoribbons can be developed as promising agents for pathogen capture, inactivation, and detection, and that the activity can be controlled at will.
Collapse
Affiliation(s)
- Yong-beom Lim
- Center for Supramolecular Nano-Assembly, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|