1
|
Bohl B, Lei Y, Bewick GA, Hashemi P. Measurement of Real-Time Serotonin Dynamics from Human-Derived Gut Organoids. Anal Chem 2025; 97:5057-5065. [PMID: 40007472 PMCID: PMC11912129 DOI: 10.1021/acs.analchem.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
The importance of the gut in regulating the brain-body immune axis is becoming increasingly evident. Interestingly, the brain and gut share many common signaling molecules, with serotonin being one of the most notable. In fact, the gut is the primary source of serotonin in the body. However, studying serotonin dynamics in a human-specific context remains a challenge. Human stem cell-derived models provide a promising avenue for studying signal transmission in well-controlled, in vitro environments. In this study, we report the first fast-scan cyclic voltammetry (FSCV) measurements of serotonin signaling in a newly developed enterochromaffin cell (ECC)-enriched gut organoid model. First, we characterize the stem cell-derived gut organoids and confirm they are enriched with ECCs, the key cell type responsible for producing and releasing serotonin in the gut. We then optimize an in vitro buffer that maintains cell viability while supporting FSCV measurements. Using this system, we detect spontaneous release events, which increase in frequency and amplitude following stimulation with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Finally, we confirm the identity of the signal as serotonin using a selective serotonin reuptake inhibitor (SSRI), which significantly delayed the reuptake profile. Our study introduces the first real-time measurement of serotonin signaling in a human-derived gut model. We believe this system will be essential for future research on serotonin's role in the gut and for potential novel drug target identification.
Collapse
Affiliation(s)
- Bettina Bohl
- Department
of Bioengineering, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| | - Yuxian Lei
- Diabetes
and Obesity Theme, School of Cardiovascular and Metabolic Medicine
and Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
| | - Gavin A. Bewick
- Diabetes
and Obesity Theme, School of Cardiovascular and Metabolic Medicine
and Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
- Diabetes
Endocrinology and Obesity Clinical academic Partnership Kings Health
Partners, London SE1 9RT, United Kingdom
| | - Parastoo Hashemi
- Department
of Bioengineering, Imperial College London, South Kensington, London SW72AZ, United Kingdom
| |
Collapse
|
2
|
Xue Z, Patel K, Bhatia P, Miller CL, Shergill RS, Patel BA. 3D-Printed Microelectrodes for Biological Measurement. Anal Chem 2024; 96:12701-12709. [PMID: 39039062 DOI: 10.1021/acs.analchem.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 μm in diameter to 400 μm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.
Collapse
Affiliation(s)
- Zehao Xue
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Kanisha Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Paankhuri Bhatia
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Chloe L Miller
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Ricoveer Singh Shergill
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| |
Collapse
|
3
|
Yeoman MS, Fidalgo S, Marcelli G, Patel BA. Amperometry approach curve profiling to understand the regulatory mechanisms governing the concentration of intestinal extracellular serotonin. Sci Rep 2024; 14:10479. [PMID: 38714793 PMCID: PMC11076564 DOI: 10.1038/s41598-024-61296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.
Collapse
Affiliation(s)
- Mark S Yeoman
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
| | - Sara Fidalgo
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK
| | - Gianluca Marcelli
- School of Engineering, University of Kent, Jennison Building, Canterbury, CT2 7NZ, UK
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK.
- Centre for Lifelong Health, University of Brighton, Huxley Building, Brighton, BN2 4GJ, UK.
| |
Collapse
|
4
|
Delong LM, Witt CE, Pennell M, Ross AE. A microfluidic chip for sustained oxygen gradient formation in the intestine ex vivo. LAB ON A CHIP 2024; 24:1918-1929. [PMID: 38372633 PMCID: PMC10998727 DOI: 10.1039/d3lc00793f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The oxygen gradient across the intestine influences intestinal physiology and the microbial environment of the microbiome. The microbiome releases metabolites that communicate with enterochromaffin cells, neuronal cells, and resident immune cells to facilitate the bidirectional communication across the gut-brain axis. Measuring communication between various cell types within the intestine could provide essential information about key regulators of gut and brain health; however, the microbial environment of the intestine is heavily dependent on the physiological oxygen gradient that exists across the intestinal wall. Likewise, there exist a need for methods which enable real-time monitoring of intestinal signaling ex vivo yet this remains challenging due to the inability to adequately culture intestinal tissue ex vivo while also exposing the appropriate locations of the intestine for probe insertion and monitoring. Here, we designed and fabricated a 3D printed microfluidic device to maintain the oxygen gradient across precision cut murine intestinal slices with the capability to couple to external neurochemical recording techniques. The gradient is maintained from outlets below while allowing access to the slice from above for detection with fast scan cyclic voltammetry (FSCV) and carbon-fiber microelectrodes. A series of 11 outlet ports were designed to lay underneath the slice which were connected to channels to deliver oxygenated vs. deoxygenated media. Outlet ports were designed in an oval shape where deoxygenated media was delivered to the center of the slice and oxygenated media is delivered to the outer portion of the slice to mimic the location of oxygen across the intestine. An oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)dichlororuthenium(II), was used to characterize the tunability of the gradient. Viability of the tissue was confirmed by both fluorescence microscopy and FSCV. Additionally, we measured simultaneous serotonin and melatonin signaling with FSCV in the intestine for the first time. Overall, this chip provides a significant advance in our ability to culture intestinal slices ex vivo with the added benefit of direct access for measurements and imaging.
Collapse
Affiliation(s)
- Lauren M Delong
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Madison Pennell
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
5
|
Hu Z, Zhu R, Figueroa-Miranda G, Zhou L, Feng L, Offenhäusser A, Mayer D. Truncated Electrochemical Aptasensor with Enhanced Antifouling Capability for Highly Sensitive Serotonin Detection. BIOSENSORS 2023; 13:881. [PMID: 37754115 PMCID: PMC10527390 DOI: 10.3390/bios13090881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Accurate determination of serotonin (ST) provides insight into neurological processes and enables applications in clinical diagnostics of brain diseases. Herein, we present an electrochemical aptasensor based on truncated DNA aptamers and a polyethylene glycol (PEG) molecule-functionalized sensing interface for highly sensitive and selective ST detection. The truncated aptamers have a small size and adopt a stable stem-loop configuration, which improves the accessibility of the aptamer for the analyte and enhances the sensitivity of the aptasensor. Upon target binding, these aptamers perform a conformational change, leading to a variation in the Faraday current of the redox tag, which was recorded by square wave voltammetry (SWV). Using PEG as blocking molecules minimizes nonspecific adsorption of other interfering molecules and thus endows an enhanced antifouling ability. The proposed electrochemical aptamer sensor showed a wide range of detection lasting from 0.1 nM to 1000 nM with a low limit of detection of 0.14 nM. Owing to the unique properties of aptamer receptors, the aptasensor also exhibits high selectivity and stability. Furthermore, with the reduced unspecific adsorption, assaying of ST in human serum and artificial cerebrospinal fluid (aCSF) showed excellent performance. The reported strategy of utilizing antifouling PEG describes a novel approach to building antifouling aptasensors and holds great potential for neurochemical investigations and clinical diagnosis.
Collapse
Affiliation(s)
- Ziheng Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
- Faculty I, RWTH Aachen University, 52062 Aachen, Germany
| | - Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lingyan Feng
- Department of Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| |
Collapse
|
6
|
Castagnola E, Robbins EM, Krahe DD, Wu B, Pwint MY, Cao Q, Cui XT. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays. Biosens Bioelectron 2023; 230:115242. [PMID: 36989659 PMCID: PMC10101938 DOI: 10.1016/j.bios.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, 818 Nelson Ave, 71272, USA
| | - Elaine M Robbins
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Daniela D Krahe
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA
| | - Qun Cao
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
7
|
Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids. ACS Sens 2023; 8:712-720. [PMID: 36749605 DOI: 10.1021/acssensors.2c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.
Collapse
Affiliation(s)
- Emily L Brooks
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khalil K Hussain
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khushboo Kotecha
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Aya Abdalla
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
8
|
Perez F, Kotecha N, Lavoie B, Mawe GM, Patel BA. Monitoring Gut Epithelium Serotonin and Melatonin Overflow Provides Spatial Mapping of Inflammation. Chembiochem 2023; 24:e202200334. [PMID: 36394122 PMCID: PMC9909162 DOI: 10.1002/cbic.202200334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Electrochemical arrays were used to measure the overflow of serotonin (5-HT) and melatonin (MEL) from the entire colon of healthy mice and mice with chemical-induced inflammatory bowel disease (IBD), to understand the interplay between inflammation and colonic function. We show that 5-HT overflow is increased, whilst MEL levels are reduced, in inflamed tissues. The levels of MEL are increased at the interface between healthy and inflamed regions within the colon and may limit the spread of inflammation. Understanding the interplay between inflammation and mucosal epithelial signalling can provide key insight into colonic function and aid the development of effective therapeutic strategies to treat gastrointestinal diseases.
Collapse
Affiliation(s)
- Fernando Perez
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Nikki Kotecha
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Brigitte Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, 05405 USA
| | - Gary M. Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, 05405 USA
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
9
|
Lete C, López-Iglesias D, García-Guzmán JJ, Leau SA, Stanciu AE, Marin M, Palacios-Santander JM, Lupu S, Cubillana-Aguilera L. A Sensitive Electrochemical Sensor Based on Sonogel-Carbon Material Enriched with Gold Nanoparticles for Melatonin Determination. SENSORS (BASEL, SWITZERLAND) 2021; 22:120. [PMID: 35009659 PMCID: PMC8747361 DOI: 10.3390/s22010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.
Collapse
Affiliation(s)
- Cecilia Lete
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
| | - David López-Iglesias
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Sorina-Alexandra Leau
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, 252 Fundeni, 022328 Bucharest, Romania;
| | - Mariana Marin
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
| | - José Maria Palacios-Santander
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Stelian Lupu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| |
Collapse
|
10
|
Nakatsuka N, Faillétaz A, Eggemann D, Forró C, Vörös J, Momotenko D. Aptamer Conformational Change Enables Serotonin Biosensing with Nanopipettes. Anal Chem 2021; 93:4033-4041. [PMID: 33596063 DOI: 10.1021/acs.analchem.0c05038] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Alix Faillétaz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dominic Eggemann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich CH-8092, Switzerland
| |
Collapse
|
11
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Zhao C, Liu Q, Cheung KM, Liu W, Yang Q, Xu X, Man T, Weiss PS, Zhou C, Andrews AM. Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS NANO 2021; 15:904-915. [PMID: 33337135 PMCID: PMC7855841 DOI: 10.1021/acsnano.0c07503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wafer-scale nanoribbon field-effect transistor (FET) biosensors fabricated by straightforward top-down processes are demonstrated as sensing platforms with high sensitivity to a broad range of biological targets. Nanoribbons with 350 nm widths (700 nm pitch) were patterned by chemical lift-off lithography using high-throughput, low-cost commercial digital versatile disks (DVDs) as masters. Lift-off lithography was also used to pattern ribbons with 2 μm or 20 μm widths (4 or 40 μm pitches, respectively) using masters fabricated by photolithography. For all widths, highly aligned, quasi-one-dimensional (1D) ribbon arrays were produced over centimeter length scales by sputtering to deposit 20 nm thin-film In2O3 as the semiconductor. Compared to 20 μm wide microribbons, FET sensors with 350 nm wide nanoribbons showed higher sensitivity to pH over a broad range (pH 5 to 10). Nanoribbon FETs functionalized with a serotonin-specific aptamer demonstrated larger responses to equimolar serotonin in high ionic strength buffer than those of microribbon FETs. Field-effect transistors with 350 nm wide nanoribbons functionalized with single-stranded DNA showed greater sensitivity to detecting complementary DNA hybridization vs 20 μm microribbon FETs. In all, we illustrate facile fabrication and use of large-area, uniform In2O3 nanoribbon FETs for ion, small-molecule, and oligonucleotide detection where higher surface-to-volume ratios translate to better detection sensitivities.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qingzhou Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| | - Chongwu Zhou
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- Corresponding Authors (AMA), (CZ), and (PSW)
| |
Collapse
|
13
|
Kong M, Jin P, Wei W, Wang W, Qin H, Chen H, He J. Covalent organic frameworks (COF-300-AR) with unique catalytic performance in luminol chemiluminescence for sensitive detection of serotonin. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Brycht M, Baluchová S, Taylor A, Mortet V, Sedláková S, Klimša L, Kopeček J, Schwarzová-Pecková K. Comparison of electrochemical performance of various boron-doped diamond electrodes: Dopamine sensing in biomimicking media used for cell cultivation. Bioelectrochemistry 2020; 137:107646. [PMID: 32957020 DOI: 10.1016/j.bioelechem.2020.107646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Chemically inert and biocompatible boron-doped diamond (BDD) has been successfully used in neuroscience for sensitive neurochemicals sensing and/or as a growth substrate for neurons. In this study, several types of BDD differing in (i) fabrication route, i.e. conventional microwave plasma enhanced chemical vapour deposition (MW-PECVD) reactor vs. MW-PECVD with linear antenna delivery system, (ii) morphology, i.e. planar vs. porous BDD, and (iii) surface treatment, i.e. H-terminated (H-BDDs) vs. O-terminated (O-BDDs), were characterized from a morphological, structural, and electrochemical point of view. Further, planar and porous BDD-based electrodes were tested for sensing of dopamine in common biomimicking environments of pH 7.4, namely phosphate buffer (PB) and HEPES buffered saline (HBS). In HBS, potential windows are narrowed due to electrooxidation of its buffering component (i.e. HEPES), however, dopamine sensing in HBS is possible. H-BDDs (both planar and porous) outperformed O-BDDs as they provided clearer dopamine signals with higher peak currents. As expected, due to its enlarged surface area and increased sp2 content, the highest sensitivity and lowest detection limits of 8 × 10-8 mol L-1 and 6 × 10-8 mol L-1 in PB and HBS media, respectively, were achieved by square-wave voltammetry on porous H-BDD.
Collapse
Affiliation(s)
- Mariola Brycht
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic; University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403 Łódź, Poland
| | - Simona Baluchová
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Vincent Mortet
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic; Czech Technical University in Prague, Faculty of Biomedical Engineering, Sítná Sq. 3105, 272 01 Kladno, Czech Republic
| | - Silvia Sedláková
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Ladislav Klimša
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jaromír Kopeček
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Karolina Schwarzová-Pecková
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 00 Prague, Czech Republic.
| |
Collapse
|
15
|
Hanawa A, Ogata G, Sawamura S, Asai K, Kanzaki S, Hibino H, Einaga Y. In Vivo Real-Time Simultaneous Examination of Drug Kinetics at Two Separate Locations Using Boron-Doped Diamond Microelectrodes. Anal Chem 2020; 92:13742-13749. [PMID: 32786440 DOI: 10.1021/acs.analchem.0c01707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.
Collapse
Affiliation(s)
- Ai Hanawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
16
|
Hamzah HH, Keattch O, Yeoman MS, Covill D, Patel BA. Three-Dimensional-Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction. Anal Chem 2019; 91:12014-12020. [DOI: 10.1021/acs.analchem.9b02958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Hensley AL, Colley AR, Ross AE. Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry. Anal Chem 2018; 90:8642-8650. [PMID: 29932641 DOI: 10.1021/acs.analchem.8b01976] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melatonin is an important hormone whose functions span from regulating circadian rhythm in the brain to providing anti-inflammatory properties in the immune system. Melatonin secretion from the pineal gland is known; however, the mechanism of melatonin signaling in the immune system is not well understood. The lymph node is the hub of the immune system, and melatonin secretion from lymphocytes was proposed to be an important source specifically for regulating cytokine secretion. Methods exist to quantify the concentration of melatonin within biological samples; however, they often suffer from either a lack of selectivity for melatonin over common biological interferences or temporal resolution, which is not amenable to measuring real-time signaling dynamics. Here, we have characterized an electrochemical method for optimal melatonin detection with subsecond resolution using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. The oxidation peaks detected for melatonin were at 1.0, 1.1, and 0.6 V. Evidence for electrode fouling of the tertiary peak was present; therefore, an optimized waveform was developed scanning from 0.2 to 1.3 V at 600 V/s. The optimized waveform eliminated the detection of fouling products on the electrode with a 24 ± 10 nM limit of detection. Melatonin was distinguished between biological interferences, and codetection with the major synthetic precursor, serotonin, was possible. This method was used to detect melatonin in live lymph node slices and provides the first real-time measurements within the lymph node using FSCV. Real-time detection of melatonin dynamics could provide useful information on the mechanism of immunomodulation during inflammatory disease.
Collapse
Affiliation(s)
- Austin L Hensley
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Adam R Colley
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Ashley E Ross
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
18
|
A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens Bioelectron 2018; 107:76-93. [DOI: 10.1016/j.bios.2018.02.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
19
|
MacEachern SJ, Keenan CM, Papakonstantinou E, Sharkey KA, Patel BA. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis. Br J Pharmacol 2018; 175:1535-1547. [PMID: 29447434 DOI: 10.1111/bph.14163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. EXPERIMENTAL APPROACH Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. KEY RESULTS We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. CONCLUSION AND IMPLICATIONS Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, UK.,Centre for Stress and Age-related Diseases, University of Brighton, Huxley Building, Brighton, UK
| |
Collapse
|
20
|
Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites. Mol Metab 2018; 11:70-83. [PMID: 29576437 PMCID: PMC6001397 DOI: 10.1016/j.molmet.2018.03.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
Objectives 5-HT storing enterochromaffin (EC) cells are believed to respond to nutrient and gut microbial components, and 5-HT receptor-expressing afferent vagal neurons have been described to be the major sensors of nutrients in the GI-tract. However, the molecular mechanism through which EC cells sense nutrients and gut microbiota is still unclear. Methods and results TPH1, the 5-HT generating enzyme, and chromogranin A, an acidic protein responsible for secretory granule storage of 5-HT, were highly enriched in FACS-purified EC cells from both small intestine and colon using a 5-HT antibody-based method. Surprisingly, EC cells from the small intestine did not express GPCR sensors for lipid and protein metabolites, such as FFAR1, GPR119, GPBAR1 (TGR5), CaSR, and GPR142, in contrast to the neighboring GLP-1 storing enteroendocrine cell. However, the GLP-1 receptor was particularly highly expressed and enriched in EC cells as judged both by qPCR and by immunohistochemistry using a receptor antibody. GLP-1 receptor agonists robustly stimulated 5-HT secretion from intestinal preparations using both HPLC and a specific amperometric method. Colonic EC cells expressed many different types of known and potential GPCR sensors of microbial metabolites including three receptors for SCFAs, i.e. FFAR2, OLF78, and OLF558 and receptors for aromatic acids, GPR35; secondary bile acids GPBAR1; and acyl-amides and lactate, GPR132. Conclusion Nutrient metabolites apparently do not stimulate EC cells of the small intestine directly but through a paracrine mechanism involving GLP-1 secreted from neighboring enteroendocrine cells. In contrast, colonic EC cells are able to sense a multitude of different metabolites generated by the gut microbiota as well as gut hormones, including GLP-1. Pure intestinal 5-HT cells are obtained through antibody-based FACS sorting. Small intestinal 5-HT cells do not express sensors for nutrient metabolites. Colonic 5-HT cells express multiple types of receptors for gut microbial metabolites. GLP-1 stimulates 5-HT release from ex vivo intestinal preparations. GLP-1 and 5-HT act in series and synergy to control GI-tract and metabolism.
Collapse
Affiliation(s)
- Mari L Lund
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Kristoffer L Egerod
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Maja S Engelstoft
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Elvar Theodorsson
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bhavik A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolite Research, Faculty of Health Sciences, University of Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Research, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
21
|
Patel BA, Fidalgo S, Wang C, Parmar L, Mandona K, Panossian A, Flint MS, Ranson RN, Saffrey MJ, Yeoman MS. The TNF-α antagonist etanercept reverses age-related decreases in colonic SERT expression and faecal output in mice. Sci Rep 2017; 7:42754. [PMID: 28198447 DOI: 10.1038/srep42754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Treatment for chronic constipation in older people is challenging and the condition has a major impact on quality of life. A lack of understanding about the causes of this condition has hampered the development of effective treatments. 5-HT is an important pro-kinetic agent in the colon. We examined whether alterations in colonic 5-HT signalling underlie age-related changes in faecal output in mice and whether these changes were due to an increase in TNF-α. Components of the 5-HT signalling system (5-HT, 5-HIAA, SERT) and TNF-α expression were examined in the distal colon of 3, 12, 18 and 24-month old mice and faecal output and water content monitored under control conditions and following the administration of etanercept (TNF-α inhibitor; 1 mg Kg-1). Faecal output and water content were reduced in aged animals. Age increased mucosal 5-HT availability and TNF-α expression and decreased mucosal SERT expression and 5-HIAA. Etanercept treatment of old mice reversed these changes, suggesting that age-related changes in TNFα expression are an important regulator of mucosal 5-HT signalling and pellet output and water content in old mice. These data point to "anti-TNFα" drugs as potential treatments for age-related chronic constipation.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Sara Fidalgo
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Chunfang Wang
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Leena Parmar
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Kasonde Mandona
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Annabelle Panossian
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Richard N Ranson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Mark S Yeoman
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| |
Collapse
|
22
|
Cinti S, Arduini F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens Bioelectron 2016; 89:107-122. [PMID: 27522348 DOI: 10.1016/j.bios.2016.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023]
Abstract
K.S. Novoselov in his Nobel lecture (December 8, 2010), described graphene as "more than just a flat crystal" and summarized the best possible impression of graphene with (i) it is the first example of 2D atomic crystals, (ii) it demonstrated unique electronic properties, thanks to charge carriers which mimic massless relativistic particles, and (iii) it has promise for a number of applications. The fascinating and unusual properties of this 2D material were indeed recently investigated and exploited in several disciplines including physics, medicine, and chemistry, indicating the extremely versatile and polyedric aspect of this nanomaterial. The utilization of nanomaterials, printed technology, and microfluidics in electroanalysis has resulted in a period that can be called the "Electroanalysis Renaissance" (Escarpa, 2012) in which graphene is without any doubt a forefront nanomaterial. The rise in affordable fabrication processes, along with the great dispersing attitude in a plenty of matrices, have made graphene powerful in large-scale production of electrochemical platforms. Herein, we overview the employment of graphene to customize and/or fabricate printable based (bio)sensors over the past 5 years, including several modification approaches such as drop casting, screen- and inkjet-printing, different strategies of graphene-based sensing, and applications as well. The objective of this review is to provide a critical perspective related to advantages and disadvantages of using graphene in biosensing tools, based on screen-printed sensors.
Collapse
Affiliation(s)
- Stefano Cinti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
23
|
Ripken D, van der Wielen N, Wortelboer HM, Meijerink J, Witkamp RF, Hendriks HFJ. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin. J Nutr Biochem 2016; 32:142-50. [PMID: 27142747 DOI: 10.1016/j.jnutbio.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process.
Collapse
Affiliation(s)
- Dina Ripken
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands; Netherlands Organization for Applied Scientific Research TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands; Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands.
| | - Nikkie van der Wielen
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands; Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Heleen M Wortelboer
- Netherlands Organization for Applied Scientific Research TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Henk F J Hendriks
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands
| |
Collapse
|
24
|
Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility. Sci Rep 2016; 6:23442. [PMID: 27000971 PMCID: PMC4802304 DOI: 10.1038/srep23442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion.
Collapse
|
25
|
Gomez FJV, Martín A, Silva MF, Escarpa A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1520-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Trouillon R, Einaga Y, Gijs MA. Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Di Carlo G, Trani A, Zane D, Ingo GM, Pasquali M, Dell'Era A, Curulli A. Influence of Different Biological Environments on Serotonin (5-HT) Electrochemical Behavior at Gold Screen Printed Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201400051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Patel BA. Mucosal adenosine triphosphate mediates serotonin release from ileal but not colonic guinea pig enterochromaffin cells. Neurogastroenterol Motil 2014; 26:237-46. [PMID: 24188286 DOI: 10.1111/nmo.12254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mechanical stimulation of the mucosal epithelium results in increased serotonin (5-HT) release from enterochromaffin (EC) cells. Little is known about how this process varies in different regions of the intestinal tract; however, purines are felt to play a role. We studied the relationship between mechanical stimulation, adenosine triphosphate (ATP), and 5-HT release from ileal and colonic mucosal tissue. METHODS Amperometric recordings of ATP and 5-HT were carried out using an ATP biosensor and boron-doped diamond microelectrode. Levels of extracellular ATP and 5-HT were monitored using high performance liquid chromatography. KEY RESULTS Under basal conditions, 5-HT levels were significantly decreased in the ileum (p < 0.001) but not the colon in the presence of the P2 antagonist suramin (100 μM). Ecto-ATPase inhibitor ARL67156 (10 μM) elevated ATP levels in the ileum and colon (both p < 0.001), but only 5-HT levels in the ileum (p < 0.001). Exogenous ATP increased 5-HT release in the presence of tetrodotoxin in the ileum (p < 0.001), but had not effect in the colon. Mechanical stimulation increased levels of 5-HT in the ileum (p < 0.001) and colon (p < 0.01), but levels returned to baseline in the presence of suramin and MRS2179 in the ileum. The onset of 5-HT release was delayed following mechanical stimulation. The rise time of the ATP response was quicker than that of 5-HT during mechanical stimulation. CONCLUSIONS & INFERENCES During mechanical stimulation of the mucosal epithelium, ATP mediates 5-HT release from EC cells in the ileum, but not the colon. Mucosal 5-HT signaling following mechanical stimulation is varied in different regions of the intestinal tract.
Collapse
Affiliation(s)
- B A Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
29
|
Diss LB, Robinson SD, Wu Y, Fidalgo S, Yeoman MS, Patel BA. Age-related changes in melatonin release in the murine distal colon. ACS Chem Neurosci 2013; 4:879-87. [PMID: 23631514 DOI: 10.1021/cn4000617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Constipation and fecal impaction are conditions of the bowel whose prevalence increases with age. Limited information is known about how these conditions manifest; however, functional deficits are likely to be due to changes in signaling within the bowel. This study investigated the effects of age on colonic mucosal melatonin (MEL) release and the consequences this had on colonic motility. Electrochemical measurements of MEL overflow demonstrated that both basal and mechanically stimulated MEL release decreased with age. The MEL/serotonin also decreased with increasing age, and the trend was similar to that of MEL overflow, suggestive that age-related changes were primarily due to a reduction in MEL levels. Levels of N-acetylserotonin and the N-acetylserotonin/serotonin ratio were reduced with age, providing an explanation for the reduction in MEL release. Decreases in colonic motility were observed in animals between 3 and 24 months old. Exogenous application of MEL could reverse this deficit in aged colon. In summary, we propose that the age-related decline in MEL release may be due to either decreases or alterations in mechanosensory channels and/or a loss in levels/activity of the N-acetyltransferase enzyme responsible for the synthesis of N-acetylserotonin. Decreases in MEL release may explain the decreases in colonic motility observed in 24 month old animals and could offer a new potential therapeutic treatment for age-related constipation.
Collapse
Affiliation(s)
- Lucy B. Diss
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Stephen D. Robinson
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Yukyee Wu
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Sara Fidalgo
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Mark S. Yeoman
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Bhavik Anil Patel
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
30
|
Patel AN, Unwin PR, Macpherson JV. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 2013; 15:18085-92. [DOI: 10.1039/c3cp53513d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Ball AT, Patel BA. Rapid voltammetric monitoring of melatonin in the presence of tablet excipients. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Fagan-Murphy A, Watt F, Morgan KA, Patel BA. Influence of different biological environments on the stability of serotonin detection on carbon-based electrodes. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Bitziou E, Patel BA. Simultaneous detection of gastric acid and histamine release to unravel the regulation of acid secretion from the guinea pig stomach. Am J Physiol Gastrointest Liver Physiol 2012; 303:G396-403. [PMID: 22595991 DOI: 10.1152/ajpgi.00548.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.
Collapse
Affiliation(s)
- Eleni Bitziou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
34
|
Determination of 1-hydroxypyrene in human urine by HPLC with electrochemical detection at a boron-doped diamond film electrode. Anal Bioanal Chem 2012; 404:693-9. [DOI: 10.1007/s00216-012-6140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 01/10/2023]
|
35
|
Parmar L, Fidalgo S, Yeoman MS, Patel BA. Chromatographic analysis of age-related changes in mucosal serotonin transmission in the murine distal ileum. Chem Cent J 2012; 6:31. [PMID: 22494644 PMCID: PMC3483693 DOI: 10.1186/1752-153x-6-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/27/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the upper bowel, alterations in motility and absorption of key nutrients have been observed as part of the normal ageing process. Serotonin (5-HT) is a key signalling molecule in the gastrointestinal tract and is known to influence motility, however little is known of how the ageing process alters 5-HT signalling processes in the bowel. RESULTS An isocratic chromatographic method was able to detect all 5-HT precursors and metabolites. Using extracellular and intracellular sampling approaches, we were able to monitor all key parameters associated with the transmission process. There was no alteration in the levels of tryptophan and 5-HTP between 3 and 18 month old animals. There was a significant increase in the ratio of 5-HT:5-HTP and an increase in intracellular 5-HT between 3 and 18 month old animals suggesting an increase in 5-HT synthesis. There was also a significant increase in extracellular 5-HT with age, suggesting increased 5-HT release. There was an age-related decrease in the ratio of intracellular 5-HIAA:extracellular 5-HT, whilst the amount of 5-HIAA did not change with age. In the presence of an increase in extracellular 5-HT, the lack of an age-related change in 5-HIAA is suggestive of a decrease in re-uptake via the serotonin transporter (SERT). CONCLUSIONS We have used intracellular and extracellular sampling to provide more insight into alterations in the neurotransmission process of 5-HT during normal ageing. We observed elevated 5-HT synthesis and release and a possible decrease in the activity of SERT. Taken together these changes lead to increased 5-HT availability and may alter motility function and could lead to the changes in adsorption observed in the elderly.
Collapse
Affiliation(s)
- Leena Parmar
- Centre for Biomedical and Health Sciences Research, University of Brighton, Brighton, BN2 4GJ, UK.
| | | | | | | |
Collapse
|
36
|
Levent A. Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. DIAMOND AND RELATED MATERIALS 2012; 21:114-119. [DOI: https:/doi.org/10.1016/j.diamond.2011.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
37
|
Patel BA. Electroanalytical approaches to study signaling mechanisms in the gastrointestinal tract. Neurogastroenterol Motil 2011; 23:595-605. [PMID: 21481101 DOI: 10.1111/j.1365-2982.2011.01708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electroanalytical techniques over the past few years have been applied to study real-time release of various signaling molecules in the GI tract. These approaches have become highly attractive as they provide dynamic spatial information on the amount of signaling molecules released. Although these approaches are relatively new to the field, the studies to date have provided useful insights into the alterations in signaling mechanisms during maturation, obesity and in a model of colitis. New methods and techniques have also allowed the possibility to obtain information on the signaling process and future developments will provide a wide diverse array of information that will be of benefit to all researchers in the field of gastroenterology. This review focuses on the types of techniques utilized, the information they can provide, their potential advantages and disadvantages in monitoring signaling processes in the gastrointestinal tract, the existing scientific studies that have utilized electroanalytical methods to date and the future potential impact of such approaches.
Collapse
Affiliation(s)
- B A Patel
- Centre for Biomedical and Health Sciences Research, University of Brighton, Brighton, UK.
| |
Collapse
|
38
|
MacEachern SJ, Patel BA, McKay DM, Sharkey KA. Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J Physiol 2011; 589:3333-48. [PMID: 21558161 PMCID: PMC3145943 DOI: 10.1113/jphysiol.2011.207902] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/07/2011] [Indexed: 12/14/2022] Open
Abstract
Enteric glia are increasingly recognized as important in the regulation of a variety of gastrointestinal functions.Here we tested the hypothesis that nicotinic signalling in the myenteric plexus results in the release of nitric oxide (NO) from neurons and enteric glia to modulate epithelial ion transport. Ion transport was assessed using full-thickness or muscle-stripped segments of mouse colon mounted in Ussing chambers. The cell-permeant NO-sensitive dye DAR-4M AM and amperometry were utilized to identify the cellular sites of NO production within the myenteric plexus and the contributions from specific NOS isoforms. Nicotinic receptors were localized using immunohistochemistry. Nicotinic cholinergic stimulation of colonic segments resulted in NO-dependent changes in epithelial active electrogenic ion transport that were TTX sensitive and significantly altered in the absence of the myenteric plexus. Nicotinic stimulation of the myenteric plexus resulted in NO production and release from neurons and enteric glia, which was completely blocked in the presence of nitric oxide synthase (NOS) I and NOS II inhibitors. Using the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), neuronal and enteric glial components of NO production were demonstrated. Nicotinic receptors were identified on enteric neurons, which express NOS I, and enteric glia, which express NOS II. These data identify a unique pathway in the mouse colon whereby nicotinic cholinergic signalling in myenteric ganglia mobilizes NO from NOS II in enteric glia, which in coordinated activity with neurons in the myenteric plexus modulates epithelial ion transport, a key component of homeostasis and innate immunity.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada, T2N 4N1
| | | | | | | |
Collapse
|
39
|
Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Anal Chim Acta 2011; 695:89-95. [PMID: 21601035 DOI: 10.1016/j.aca.2011.03.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/25/2011] [Accepted: 03/29/2011] [Indexed: 11/21/2022]
Abstract
We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/μM, a linear range from 2 to 100 nM and a reproducibility of 6.5% for n=6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels.
Collapse
|
40
|
Patel BA, Rogers M, Wieder T, O'Hare D, Boutelle MG. ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue. Biosens Bioelectron 2010; 26:2890-6. [PMID: 21163639 DOI: 10.1016/j.bios.2010.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022]
Abstract
We have developed a stable and selective ATP biosensor for long-term in vitro tissue monitoring. The electrode was fabricated by entrapping glucose oxidase (GOx) and hexokinase (HEX) in a poly-phenol film on a Pt microelectrode. The biosensor was stable to a fixed concentration of glucose for over 20 min and had a limit of detection of 9.9 ± 3.2 nM, with a sensitivity of 45.8 ± 1.22 pA μM(-1). Most significantly of all, the response on the ATP biosensor did not alter in the presence of 1mM ascorbic acid, 5 μM dopamine, 5 μM serotonin, 5 μM ADP and 5 μM AMP. The ATP biosensor was also shown to have excellent stability over 7 days, and showed only a 23.92 ± 3.55% loss in sensitivity. The ATP biosensor was utilised for the in vitro detection of ATP from gastrointestinal tissue. The ATP biosensor response was stable for 5h during in vitro recordings from ileum tissue. ATP release was shown to be greater from the mucosal surface in the ileum compared to the colon.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
41
|
Lwin A, Patel BA. High performance liquid chromatography method for the detection of released purinergic and biogenic amine signaling molecules from in vitro ileum tissue. J Sep Sci 2010; 33:1538-45. [PMID: 20449839 DOI: 10.1002/jssc.200900853] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adenosine triphosphate (ATP) and serotonin (5-HT) are known to play key roles in the function and activity of the gastrointestinal tract; however, no methods have been established for the monitoring of these signaling molecules within one assay. We have developed a simple chromatographic methodology using UV/visible detection for the analysis of purinergic and biogenic amine signaling molecules. The chromatographic separation was achieved in an isocratic mode, where the mobile phase consisted of 5% methanol and 95% ammonium phosphate buffer with 10 mM tetrabutylammonium bisulfate. Column temperature of 45 degrees C provided the means to separate all analytes within 14.7 min. Good resolution and tailing factors were observed for all components within the separation. The LOD for ATP and 5-HT was 30 and 317 nM, respectively, with a linear range from 10-0.02 microM. In vitro measurements were carried out by using aliquots from the buffer the tissue was stored in after 30 min to measure released molecules. In vitro assay of ileum tissue in the presence and absence of endogenous ATP was carried out. Results showed that ATP can elevate 5-HT release. This method can be used to study alterations in these key signaling molecules with gastrointestinal disease.
Collapse
Affiliation(s)
- Ayemon Lwin
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
42
|
Bertrand PP, Bertrand RL, Camello PJ, Pozo MJ. Simultaneous measurement of serotonin and melatonin from the intestine of old mice: the effects of daily melatonin supplementation. J Pineal Res 2010; 49:23-34. [PMID: 20374441 DOI: 10.1111/j.1600-079x.2010.00760.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ageing is associated with important changes in gastrointestinal function and in the levels of intestinal hormones secreted. Enterochromaffin (EC) cells containing serotonin (5-HT) and melatonin may play a major role in maintaining gut function during ageing. Our aim was to characterise the mucosal availability of 5-HT and melatonin in the ileum and colon of a mouse model of ageing. Female young mice (2-5 month; n = 6), aged mice (22-24 months; n = 6) and aged mice treated with melatonin (n = 6; 10 mg/kg/day) were examined. Electrochemical methods were used to measure 5-HT and melatonin concentrations near the mucosal surface of ileum and distal colon. Amperometry studies showed that steady state levels of 5-HT from ileum and colon were decreased in aged mice treated with melatonin when compared to aged mice, while compression-evoked 5-HT release was unchanged. Differential pulse voltammetry studies showed that young mice had concentrations of 5-HT of 4.8 +/- 0.8 mum in the ileum and 4.9 +/- 1.0 mum in the colon. Concentrations of melatonin were 5.7 +/- 1.4 mum in the ileum and 5.6 +/- 1.9 mum in the colon. Compared to young mice, the levels of 5-HT and melatonin were increased in aged mice (combined ileum and colon: 5-HT = 130% and melatonin = 126% of young mice) and decreased in melatonin-treated mice (5-HT = 94% and melatonin = 82%). In conclusion, our data show that the availability of gut 5-HT and melatonin is increased in aged mice and melatonin treatment suppresses natural gastrointestinal production of 5-HT and melatonin in the aged mouse intestine.
Collapse
Affiliation(s)
- P P Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
43
|
Patel BA, Arundell M, Parker KH, Yeoman MS, O'Hare D. Microelectrode investigation of neuroneal ageing from a single identified neurone. Phys Chem Chem Phys 2010; 12:10065-72. [PMID: 20625576 DOI: 10.1039/c0cp00310g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microelectrode amperometry is uniquely suited for characterising the dynamics of neurotransmitter release, as it offers unparalleled spatial and temporal resolution. We have used carbon fibre microelectrodes to study release of the monoamine neurotransmitter serotonin (5-HT) and the gaseous transmitter nitric oxide (NO) in intact central nervous system of the water snail, Lymnaea stagnalis. Analysis of spontaneous vesicular release of 5-HT and depolarisation-induced release of NO reveals significant differences with ageing that may be associated with changes in protein structure and function.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
44
|
Marcelli G, Patel BA. Understanding changes in uptake and release of serotonin from gastrointestinal tissue using a novel electroanalytical approach. Analyst 2010; 135:2340-7. [PMID: 20596571 DOI: 10.1039/c0an00260g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is well known to be a key neurotransmitter within the gastrointestinal (GI) tract, where it is responsible for influencing motility. Obtaining dynamic information about the neurotransmission process (specifically the release and reuptake of 5-HT) requires the development of new approaches to measure the extracellular 5-HT concentration profile. In this work constant-potential amperometry has been utilised at +650 mV vs. Ag|AgCl to measure in vitro the overflow of 5-HT. Steady-state levels of 5-HT have been observed, due to continuous mechanical stimulation of the tissue from the experimental protocol. Measurements are conducted at varying tissue-electrode distances in the range of 5 to 1100 microm. The difference in the current from the bulk media and that from each tissue-electrode distance is obtained, and the natural log of this current is plotted versus the tissue-electrode distance. The linear fit to the log of the current is derived, and its intercept, I(0), with the vertical axis and its slope are calculated. The reciprocal of the slope, indicated as slope(-1), is used as a marker of reuptake. The ratio between intercept, I(0), and the reciprocal of the slope, I(0)/slope(-1), is a measure of the flux at the tissue surface and it can be used as a marker for the 5-HT release rate. Current measurements for ileum and colon tissue indicated a significantly higher reuptake rate in the colon, showed by a lower slope(-1). In addition, the ratio, I(0)/slope(-1), indicated that the colon has a higher 5-HT flux compared to the ileum. Following the application of the serotonin selective reuptake inhibitor (SSRI), fluoxetine, both tissues showed a higher value of slope(-1), as the reuptake process is blocked preventing clearance of 5-HT. No differences were observed in the ratio, I(0)/slope(-1), in the ileum, but a decrease was observed in the colon. These results indicate that ileum and colon are characterised by different reuptake and release processes. The new approach we propose provides pivotal information on the variations in the signalling mechanism, where steady state levels are observed and can be a vital tool to study differences between normal and diseased tissue and also the efficacy of pharmacological agents.
Collapse
Affiliation(s)
- Gianluca Marcelli
- Biomedical Engineering Group, Division of Engineering, King's College London, Strand, London, WC2R 2LS, UK
| | | |
Collapse
|
45
|
Njagi J, Ball M, Best M, Wallace KN, Andreescu S. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal Chem 2010; 82:1822-30. [PMID: 20148518 PMCID: PMC2830383 DOI: 10.1021/ac902465v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 days postfertilization, dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 and 200 nM, and a sensitivity of 83.65 nA x microM(-1) were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9 (+/-1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1 (+/-1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2 (+/-0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos.
Collapse
Affiliation(s)
- John Njagi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Michael Ball
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Marc Best
- Department of Biology, Clarkson University, Potsdam, NY 13699-5810, USA
| | | | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
46
|
Nakanishi T, Ueno T, Matsunaga M, Khan M, Osaka T. Potential Response of Monolayer-Modified Indium Tin Oxide Electrodes to Indole Compounds. ELECTROANAL 2010. [DOI: 10.1002/elan.200900420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Singh YS, Sawarynski LE, Michael HM, Ferrell RE, Murphey-Corb MA, Swain GM, Patel BA, Andrews AM. Boron-Doped Diamond Microelectrodes Reveal Reduced Serotonin Uptake Rates in Lymphocytes from Adult Rhesus Monkeys Carrying the Short Allele of the 5-HTTLPR. ACS Chem Neurosci 2010; 1:49-64. [PMID: 20352073 PMCID: PMC2843923 DOI: 10.1021/cn900012y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 10/24/2009] [Indexed: 12/16/2022] Open
Abstract
Uptake resolved by high-speed chronoamperometry on a second-by-second basis has revealed important differences in brain serotonin transporter function associated with genetic variability. Here, we use chronoamperometry to investigate variations in serotonin transport in primary lymphocytes associated with the rhesus serotonin transporter gene-linked polymorphism (rh5-HTTLPR), a promoter polymorphism whose orthologs occur only in higher order primates including humans. Serotonin clearance by lymphocytes is Na(+)-dependent and inhibited by the serotonin-selective reuptake inhibitor paroxetine (Paxil®), indicative of active uptake by serotonin transporters. Moreover, reductions in serotonin uptake rates are evident in lymphocytes from monkeys with one or two copies of the short 's' allele of the rh5-HTTLPR (s/s
Collapse
Affiliation(s)
| | | | | | | | | | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Bhavik A. Patel
- Department of Bioengineering, Imperial College London, London, U.K. SE7 2AZ
| | - Anne M. Andrews
- Departments of Chemistry
- Veterinary and Biomedical Sciences
- Huck Institutes of Life Sciences
- Department of Psychiatry & Biobehavioral Sciences and California NanoSystems Institute, University of California, Los Angeles, California 90024
| |
Collapse
|
48
|
Güell AG, Meadows KE, Unwin PR, Macpherson JV. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys Chem Chem Phys 2010; 12:10108-14. [DOI: 10.1039/c0cp00675k] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bertrand PP, Bertrand RL. Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 2009; 153:47-57. [PMID: 19729349 DOI: 10.1016/j.autneu.2009.08.002] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/19/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
Abstract
The afferent innervation of the gastrointestinal (GI) tract consists of intrinsic and extrinsic sensory neurons that respond to nutrients, chemicals or mechanical stimuli within the gut lumen. Most stimuli do not interact directly with the afferent nerves but instead activate specialised cells in the epithelium in a process of sensory transduction. It is thought that one of the first steps in this process is the release of serotonin (5-HT) from the enterochromaffin (EC) cells. The EC cells are a sub-type of enteroendocrine (EE) cells which are found among the enterocytes of the intestinal epithelium. The EC cells are responsible for the production and storage of the largest pool of 5 HT in the body. Released 5-HT can act on the intrinsic nerves and vagal endings. This review will focus on the role of 5-HT in sensory transduction and examine how the EC cell produces and releases 5-HT. We will explore recent developments that have helped to elucidate some of the proteins that allow EC cells to sense the luminal environment. Finally, we will highlight some of the findings from new studies using electrochemical techniques which allow the real-time recording of 5-HT concentrations near to the EC cell.
Collapse
Affiliation(s)
- Paul P Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | | |
Collapse
|
50
|
Pecková K, Musilová J, Barek J. Boron-Doped Diamond Film Electrodes—New Tool for Voltammetric Determination of Organic Substances. Crit Rev Anal Chem 2009. [DOI: 10.1080/10408340903011812] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|