1
|
Shivanka S, Shiri F, Chibuike M, McKinney C, Verber M, Choi J, Park S, Hall AR, Soper SA. Insights on using plastic-based dual in-plane nanopore sensors for differentiation and shape determinations of single protein molecules. Sci Rep 2025; 15:13742. [PMID: 40258844 PMCID: PMC12012063 DOI: 10.1038/s41598-025-96232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Techniques to analyze proteins often involves complex workflows and/or sophisticated equipment with modest limits-of-detection. While fluorescence spectroscopy can interrogate single molecules, it often requires fluorescence labeling with lasers and microscopes. We report herein a label-free approach for analyzing intact proteins using resistive pulse sensing (RPS). RPS data were secured using a unique RPS device, which we call a dual in-plane nanopore sensor, fabricated in a thermoplastic. The nanopore sensor was produced via nano-injection molding with critical structures of 30 nm, enabling the detection of individual protein molecules and providing an approach toward their identification. Following nano-injection molding, the pore size could be reduced to ∼ 10 nm using thermal fusion bonding of a cover plate to the molded substrate. The device architecture contained two in-plane nanopores flanking a nanochannel (50 × 50 nm width × depth and 5 µm length) that facilitated the measurement of the apparent electrophoretic mobilities of protein molecules in a label free manner via their molecular-dependent time-of-flight (ToF; time-difference between two consecutive RPS events-peak pair). We investigated four model proteins and collected multiple characteristics including RPS peak amplitude and dwell time, as well as an RPS-independent value, which was the ToF. Furthermore, we analyzed the temporal profiles of RPS events revealing distinct peak shapes for spherical and non-spherical proteins that were influenced by their rotational motion when resident within the nanopore.
Collapse
Affiliation(s)
- Suresh Shivanka
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
| | - Collin McKinney
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- University of North Carolina, Chapel Hill, USA
| | - Matthew Verber
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- University of North Carolina, Chapel Hill, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Engineering Technology, Texas State University, San Marcos, TX, 78666, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, USA.
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Bioengineering Program, The University of Kansas, Lawrence, KS, 66045, USA.
- KU Cancer Center, Medical Center, University of Kansas, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Li Z, Yi Y, Zhang Y, Xiao Y, Ren Q, Zhou K, Liu L, Wu HC. Nanopore-Based High-Resolution Detection of Multiple Post-Translational Modifications in Protein. Angew Chem Int Ed Engl 2025; 64:e202423801. [PMID: 39874178 DOI: 10.1002/anie.202423801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing. Our results demonstrate that the identity of 13 types of PTMs in a specific position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Furthermore, we extend this strategy by incorporating a short peptide into the probe, enabling the discrimination of various PTMs, positional isomers, and even multiple PTMs on the target peptide. With ongoing improvements, our method holds promise for practical applications in sensing PTMs in biologically relevant samples, offering an efficient alternative to traditional mass spectrometry approaches.
Collapse
Affiliation(s)
- Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Xiao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianyuan Ren
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Liu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, P. R. China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Shen Y, Ding M. Discrimination and Translocation of Charged Proteinogenic Amino Acids through a Single-Walled Carbon Nanotube. J Phys Chem B 2025; 129:3502-3513. [PMID: 40130469 DOI: 10.1021/acs.jpcb.4c08692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nanopore sensing relies on associating the measured current signals with specific features of the target molecules. The diversity of amino acids presents significant challenges in detecting and sequencing peptides and proteins. The hollow and uniform tubular structure of single-walled carbon nanotubes (SWCNTs) makes them ideal candidates for nanopore sensors. Here, we demonstrate by molecular dynamics simulations the discrimination and translocation of charged proteinogenic amino acids through the nanopore sensor formed by inserting a SWCNT into lipid bilayers. Moreover, our analysis suggests that the current blockade is influenced not only by excluded atomic volume but also by noncovalent interactions between amino acids and SWCNT during similar helical translocation. The presence of noncovalent interactions enhances the understanding of current differences in nanopore translocation of molecules with similar excluded atomic volume. This finding provides new perspectives and applications for the optimal design of SWCNT nanopore sensors.
Collapse
Affiliation(s)
- Yingjun Shen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Zheng S, Wu M, Wang X, Xu S, Qian R. Nanopipettes for Chemical Analysis in Life Sciences. Chembiochem 2025; 26:e202400879. [PMID: 40014334 DOI: 10.1002/cbic.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Nanopipette-based assays have gained widespread applications in electrochemical and analytical technologies, achieving significant advancements over the past decade in DNA sequencing, biosensing, targeted delivery, and bioimaging. The ultrasmall tip size of nanopipettes bridges the gap between the macro- and nano worlds, which can be attributed to the capability of nanopipettes to transport ultrasmall volumes of liquids, ions, and solutes. In this review, we discuss the fabrication, characterization, and modification of nanopipettes to provide an overview of the recent developments of nanopipette-based sensors and strategies. We also introduce the recent studies developed by our group and other groups using nanopipettes for chemical analysis of life science. Finally, we discuss the future development of nanopipette-based strategies and their exciting potential for studying bioscience and biomedical engineering.
Collapse
Affiliation(s)
- Shiyu Zheng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Mansha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Shuyue Xu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Ruocan Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| |
Collapse
|
5
|
Xi G, Su J, Ma J, Wu L, Tu J. A robust signal processing program for nanopore signals using dynamic correction threshold with compatible baseline fluctuations. Analyst 2025; 150:1386-1397. [PMID: 40047096 DOI: 10.1039/d4an01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Solid-state nanopores represent a powerful platform for the detection and characterization of a wide range of biomolecules and particles, including proteins, viruses, and nanoparticles, for clinical and biochemical applications. Typically, nanopores operate by measuring transient pulses of ionic current during translocation events of molecules passing through the pore. Given the strong noise and stochastic fluctuations in ionic current recordings during nanopore experiments, signal processing based on the statistical analysis of numerous translocation events remains a crucial issue for nanopore sensing. Based on parallel computational processing and efficient memory management, we developed a novel signal processing procedure for translocation events to improve the signal identification performance of solid-state nanopores in the presence of baseline oscillation interference. By using an adaptive threshold within a sliding window, we could correct the baseline determination process in real time. As a result, the features of translocation event signals could be identified more accurately, especially for the intermittent occurrence of high-density complex signals. The program also demonstrated good signal differentiation. As a ready-to-use software, the data program is more efficient and compatible with diverse nanopore signals, making it suitable for more complex nanopore applications.
Collapse
Affiliation(s)
- Guohao Xi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jinmeng Su
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- Monash University-Southeast University Joint Research Institute, Suzhou, 215123, China
| | - Jie Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Lingzhi Wu
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
6
|
Strzelewicz A, Cieśla M, Dybiec B, Krasowska M. Modeling Diffusion of Elongated Particles Through a Narrowing Channel. ENTROPY (BASEL, SWITZERLAND) 2025; 27:293. [PMID: 40149217 PMCID: PMC11941187 DOI: 10.3390/e27030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Simulations of the Brownian dynamics of diffusing particles in complex environments provide important information about the characteristics of the medium and the properties of biological processes. Notable examples include the diffusion of ions and macromolecular solutes through channels of varying cross-section, such as pores in biological membranes, living tissues, zeolites, carbon nanotubes, and synthetic porous materials. In these systems, the observed diffusion can exhibit anomalous behavior characterized by a nonlinear increase in the mean squared displacement. In this article, we present a toy model of the diffusion of rod-shaped particles through a narrowing, conical pore with a trapezoidal longitudinal cross-section. Particles of different sizes undergo a random walk due to interactions with the environment (modeled as noise). We study how the diffusion properties change with particle size as a function of pore width. The numerical analysis of diffusion-driven transport through narrowing conical channels reveals its effective subdiffusive, i.e., anomalous, character.
Collapse
Affiliation(s)
- Anna Strzelewicz
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.S.); (M.K.)
| | - Michał Cieśla
- Institute of Theoretical Physics, and Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland;
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics, and Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348 Kraków, Poland;
| | - Monika Krasowska
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.S.); (M.K.)
| |
Collapse
|
7
|
Mereuta L, Cimpanu A, Park J, Park Y, Luchian T. Vectorial Discrimination of Small Molecules with a Macrocycle Adaptor-Protein Nanopore System and Nanocavity-Dependent, pH Gradient-Controlled Analyte Kinetics. Anal Chem 2025; 97:5225-5233. [PMID: 40019291 PMCID: PMC11912126 DOI: 10.1021/acs.analchem.4c06801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Owing to their intrinsic qualities, protein nanopores became game-changers in the realm of analyte sensing, as they offer an inexpensive and label-free method for sophisticated recognition at the single-molecule level. Here, we exploit the complexation capability of nonfunctionalized γ-cyclodextrin (γ-CD), coupled with its propensity to get reversibly captured inside a wild-type α-hemolysin nanopore (α-HL), and achieve a hybrid construct endowing specific sensing of selected, 5 bases-long oligonucleotides. We find that the molecular discrimination capability of the system has a vectorial-like sensitivity and is influenced by the sidedness and geometry of γ-CD. We showcase that asymmetrical pH changes across the γ-CD-α-HL hybrid and the ensuing electro-osmotic flow offer a simple yet powerful method to control γ-CD capture and residence time inside the nanopore, highlighting the capability of programmable sensing of spatially separated analytes. Unexpectedly, the electro-osmotic flow ensued via pH changes exerted a negligible effect on host (γ-CD)-guest (analyte) interactions, suggesting the complexity arising from a combination of hydrodynamic effects in a restricted environment and electrostatics screening in hydrophobic nanoconfinement. We present evidence that the asymmetric, low pH-mediated, electro-osmotic stabilization of a γ-CD molecule inside α-HL enables probing of β-lactam antibiotic azlocillin encapsulation inside γ-CD under distinct ionization states.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, 32588 Kongju, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, 61452 Gwangju, Republic of Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
8
|
Zhao X, Zhang Y, Qing G. Nanopore toward Genuine Single-Molecule Sensing: Molecular Ping-Pong Technology. NANO LETTERS 2025. [PMID: 40009055 DOI: 10.1021/acs.nanolett.4c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanopore sensing is a so-called label-free, single-molecule technology; however, multiple events of different molecules are recorded to obtain statistically robust data, which can limit both efficiency and sample use. To overcome these challenges, nanopore molecular ping-pong technology enables precise single-molecule manipulation, reducing systematic and stochastic errors by repeatedly measuring the same molecule. This review introduces the fundamentals and advancements of ping-pong technology, highlighting a recent breakthrough achieving over 10,000 recaptures of a single dsDNA molecule within minutes. This innovation not only minimizes sample requirements, which is critical for nonamplifiable samples, but also significantly enhances experimental precision. While current applications focus on dsDNA, extending this technology to protein and glycan analysis could transform nanopore research. Just as nanopore technology revolutionized DNA sequencing, it holds the potential to drive the development of nanopore-based protein and glycan sequencers, paving the way for groundbreaking advancements in molecular biology and biomedicine.
Collapse
Affiliation(s)
- Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yahui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Gao F, Wang JH, Ma H, Xia B, Wen L, Long YT, Ying YL. Identification of Oligosaccharide Isomers Using Electrostatically Asymmetric OmpF Nanopore. Angew Chem Int Ed Engl 2025; 64:e202422118. [PMID: 39856493 DOI: 10.1002/anie.202422118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and possess rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. These unique features, including charge heterogeneity and structural complexity, pose significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore. The natural electroosmotic flow within OmpF generates a robust driving force for unlabeled neutral oligosaccharides, enabling detection at a concentration as low as 6.4 μM. Furthermore, the asymmetric constriction zone of OmpF was employed to construct a stereoselective recognition site, enabling sensitive identification of glycosidic bond differences in cell lysate samples. With the assistance of machine learning algorithms, the OmpF nanopore achieved a recognition accuracy of 99.9 % for tetrasaccharides differing in only one glycosidic bond was achieved. This nanopore sensor provides a highly sensitive analytical tool with a broad dynamic range. It enables chiral recognition of oligosaccharides at low concentrations and is suitable for analysing both low-abundance and practical samples.
Collapse
Affiliation(s)
- Fan Gao
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Hong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Xu Z, Wang C, He S, Wu J, Zhao Y. Enhancing Molecular-Level Biological Monitoring with a Smart Self-Assembling 19F-Labeled Probe. Angew Chem Int Ed Engl 2025; 64:e202417112. [PMID: 39400552 DOI: 10.1002/anie.202417112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/15/2024]
Abstract
Real-time monitoring of molecular transformations is crucial for advancements in biotechnology. In this study, we introduce a novel self-assembling 19F-labeled nuclear magnetic resonance (NMR) probe that disassembles upon interaction with various nucleotides. This interaction not only activates the 19F signals but also produces distinct signatures for each specific component, thereby enabling precise identification and quantification of molecules in evolving samples. We demonstrate the capability of this probe for real-time monitoring of adenosine triphosphate (ATP) hydrolysis and screening potential enzyme inhibitors. These applications highlight the probe's significant potential in enzyme analysis, drug development, and disease diagnostics.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chenyang Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Shengyuan He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Berezhkovskii AM, Bezrukov SM. Flux through membrane channel: linear transport vs. single-molecule approaches. Phys Chem Chem Phys 2025; 27:2192-2196. [PMID: 39781603 DOI: 10.1039/d4cp04109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
One of the most subtle steps in the single-molecule approach to the flux through the membrane channel, which uses the one-dimensional Smoluchowski equation, is to describe the molecule's "behavior" at the contacts between the channel openings and the bulk. Earlier, to handle this issue, we introduced the so-called "radiation boundary conditions" that account for the interplay between the two types of trajectories of the molecules starting at the openings, specifically, the ones that eventually return to the channel and the ones that escape to infinity. The latter trajectories represent the true translocation events on the condition that initially the molecule entered the channel from the opposite side. Here, we demonstrate that the single molecule approach based on the one-dimensional Smoluchowski equation with radiation boundary conditions leads to the same expression for the flux through the channel as the conventional approach based on the linear transport theory.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
12
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Patterson A, Young K, Biever MP, Klein SM, Huang SY, DePhillips PA, Jacobson SC, Jarrold MF, Zlotnick A. Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface. Virology 2024; 600:110211. [PMID: 39276669 PMCID: PMC11560593 DOI: 10.1016/j.virol.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.
Collapse
Affiliation(s)
- Angela Patterson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Kim Young
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - MacRyan P Biever
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Shelby M Klein
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Pete A DePhillips
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Su Z, Zhang X, Wang W, Wu D, Wu Y, Li G. Nanopore-Based Biomimetic ssDNA Reporters for Multiplexed Detection of Meat Adulteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25357-25366. [PMID: 39488844 DOI: 10.1021/acs.jafc.4c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Meat adulteration detection is crucial for ensuring food safety, protecting consumer rights, and maintaining market integrity. However, the current methods face challenges in achieving multiplexed detection through efficient signal conversion and output. This study introduces a nanopore-based approach for the simultaneous detection of multiple meat adulteration. Leveraging the interaction between DADA dipeptide and vancomycin, we designed a series of biomimetic ssDNA reporters with DADA-Van tags for multiplexed signal output. These ssDNA reporters can generate highly distinctive current blockage signals, which can be discriminated simultaneously by the current waveform. Combined with PCR-based strand displacement, ssDNA reporters can be released from magnetic beads in the presence of the target gene and are analyzed using α-hemolysin (α-HL) nanopores for multiplexed signal output. The signal frequency for each target gene has a linear relationship with the specific concentration range (for duck: 1 × 10-3 ∼ 10 nmol/L, for pork: 1 × 10-2 ∼ 10 nmol/L, and for chicken: 1 × 10-3 ∼ 10 nmol/L). The limits of detection are as follows: 0.418 pmol/L for duck, 4.473 pmol/L for pork, and 0.531 pmol/L for chicken. This method effectively enables the simultaneous detection of adulterated chicken, pork, and duck meat in lamb samples and holds potential for broad applications in ensuring the authenticity and safety of meat products.
Collapse
Affiliation(s)
- Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wanxiao Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
15
|
Liu L, Liu Z, Xu X, Wang J, Tong Z. Solid-state nanochannels based on electro-optical dual signals for detection of analytes. Talanta 2024; 279:126615. [PMID: 39096787 DOI: 10.1016/j.talanta.2024.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The sensitive detection of analytes of different sizes is crucial significance for environmental protection, food safety and medical diagnostics. The confined space of nanochannels provides a location closest to the molecular reaction behaviors in real systems, thereby opening new opportunities for the precise detection of analytes. However, due to the susceptibility to external interference on the confined space of nanochannels, the high sensitivity nature of the current signals through the nanochannels is more troubling for the detection reliability. Combining highly sensitive optical signals with the sensitive current signals of solid-state nanochannels establishes a nanochannel detection platform based on electro-optical dual signals, potentially offering more sensitive, specific, and accuracy detection of analytes. This review summarizes the last five years of applications of solid-state nanochannels based on electro-optical dual signals in analytes detection. Firstly, the detection principles of solid-state nanochannels and the construction strategies of nanochannel electro-optical sensing platforms are discussed. Subsequently, the review comprehensively outlines the applications involving nanochannels with electrical signals combined with fluorescence signals, electrical signals combined with surface-enhanced Raman spectroscopy signals, and electrical signals combined with other optical signals in analyte detection. Additionally, the perspectives and difficulties of nanochannels are investigated on the basis of electro-optical dual signals.
Collapse
Affiliation(s)
- Lingxiao Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinrui Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
16
|
Mohapatra S, Teherpuria H, Mogurampelly S, Downton M, Kannam SK. Ionic flow through partially blocked nanopores. Phys Chem Chem Phys 2024; 26:26911-26920. [PMID: 39415632 DOI: 10.1039/d4cp02365j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Employing atomistic molecular dynamics simulations, we investigate the ionic conductivity mechanisms in a partially blocked nanopore containing a centrally positioned spherical constriction, exploring the effects of pore diameter, surface charge, and blockage size. Our results show that ionic mobilities are significantly influenced by the polarity of the surface charge and the size of the pore gap. Particularly, we observe ion-specific effects for K+ and Cl- ions based on their size and charge, especially in sub-nanometer pore gaps. Furthermore, we find that the current flow in partially blocked nanopores sensitively depends on the surface charges, consistent with the calculated free energy profiles. The percentage of the current drop is found to be correlated to the volume of the spherical constriction with the effects more pronounced when the sizes of the spherical blockage and nanopore are comparable.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Hema Teherpuria
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Matthew Downton
- National Computational Infrastructure, The Australian National University, Australia
| | - Sridhar Kumar Kannam
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
17
|
Ali I, Ali MM, Liu Q, Hu L. Unraveling Clinical Glycoproteome by Integrating Affinity Enrichment with Nanopore Sequencing. Chembiochem 2024; 25:e202400419. [PMID: 39234982 DOI: 10.1002/cbic.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Indexed: 09/06/2024]
Abstract
This prospect explores the integration of enrichment strategies with nanopore detection to advance clinical glycoproteomics. Glycoproteins, crucial for understanding biological processes, pose challenges due to their low abundance and structural diversity. Enrichment techniques using lectin affinity, boronate affinity, and hydrazide chemistry and especially molecular imprinted polymers may selectively and specifically isolate glycoproteins from complex samples, while nanopore technology enables label-free, real-time, and single-molecule analysis. This approach holds promise for disease-related glycosylation studies, biomarker discovery, personalized medicine, and streamlined clinical analysis. Standardization, optimization, and data analysis remain challenges, requiring interdisciplinary collaborations and technological advancements. Overall, this integration may offer transformative potential for clinical glycoproteomics and innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irshad Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, US
| | - Quanjun Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Yin B, Fang S, Wu B, Ma W, Zhou D, Yin Y, Tian R, He S, Huang JA, Xie W, Zhang XH, Wang Z, Wang D. Directly Characterizing the Capture Radius of Tethered Double-Stranded DNA by Single-Molecule Nanopipette Manipulation. ACS NANO 2024; 18:27962-27973. [PMID: 39264113 DOI: 10.1021/acsnano.4c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The tethered molecule exhibits characteristics of both free and fixed states, with the electrodynamics involved in its diffusion, electrophoresis, and stretching processes still not fully understood. We developed a Single-Molecule Manipulation, Identification, and Length Examination (SMILE) system by integrating piezoelectric devices with nanopipettes. This system enabled successful capture and stretching of tethered double-stranded DNA within the nanopore. Our research unveiled distinct capture (rcapture) and stretch radii (rstretch) surrounding the DNA's anchor point. Notably, consistent ratios of capture radius for DNA of varying lengths (2k, 4k, and 6k base pairs) were observed across different capturing voltages, approximately 1:1.4:1.83, showing a resemblance to their gyration radius ratios. However, the ratios of stretch radius are consistent to their contour length (L0), with the stretching ratio (rstretch/L0) increasing from 70 to 90% as the voltage rose from 100 to 1000 mV. Additionally, through numerical simulations, we identified the origin of capture and stretch radii, determined by the entropic elasticity-induced capture barrier and the electric field-dominant escape barrier. This research introduces an innovative methodology and outlines research perspectives for a comprehensive exploration of the conformational, electrical, and diffusion characteristics of tethered molecules.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, Jilin, China
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Bin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Xing-Hua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, Jilin, China
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
19
|
Knowles SF, Mackay EKR, Thorneywork AL. Interpreting the power spectral density of a fluctuating colloidal current. J Chem Phys 2024; 161:144905. [PMID: 39387415 DOI: 10.1063/5.0231690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
The transport of molecules through biological and synthetic nanopores is governed by multiple stochastic processes that lead to noisy, fluctuating currents. Disentangling the characteristics of different noise-generating mechanisms is central to better understanding molecular transport at a fundamental level but is extremely challenging in molecular systems due to their complexity and relative experimental inaccessibility. Here, we construct a colloidal model microfluidic system for the experimental measurement of particle currents, where the governing physical properties are directly controllable and particle dynamics directly observable, unlike in the molecular case. Currents of hard spheres fluctuate due to the random arrival times of particles into the channel and the distribution of particle speeds within the channel, which results in characteristic scalings in the power spectral density. We rationalize these scalings by quantitatively comparing to a model for shot noise with a finite transit time, extended to include the distribution of particle speeds. Particle velocity distributions sensitively reflect the confining geometry, and we interpret and model these in terms of the underlying fluid flow profiles. Finally, we explore the extent to which details of these distributions govern the form of the resulting power spectral density, thereby establishing concrete links between the power spectral density and underlying mechanisms for this experimental system. This paves the way for establishing a more systematic understanding of the links between characteristics of transport fluctuations and underlying molecular mechanisms in driven systems such as nanopores.
Collapse
Affiliation(s)
- Stuart F Knowles
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eleanor K R Mackay
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd., Oxford OX1 3QZ, United Kingdom
| | - Alice L Thorneywork
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd., Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
20
|
Zhang Y, Hu C, Liu R, He S, Yang J, Yao W, Li Y, Guo X. Protein nanopore-based sensors for public health analyte detection. J Mater Chem B 2024; 12:9845-9862. [PMID: 39258387 DOI: 10.1039/d4tb01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High-throughput and label-free protein nanopore-based sensors are extensively used in DNA sequencing, single-protein analysis, molecular sensing and chemical catalysis with single channel recording. These technologies show great potential for identifying various harmful substances linked to public health by addressing the limitations of current portability and the speed of existing techniques. In this review, we provide an overview of the fundamental principles of nanopore sensing, with a focus on chemical modification and genetic engineering strategies aimed at enhancing the detection sensitivity and identification accuracy of protein nanopores. The engineered protein nanopores enable direct sensing, while the introduction of aptamers and substrates enables indirect sensing, translating the physical structure and chemical properties of analytes into readable signals. These scientific discoveries and engineering efforts have provided new prospects for detecting and monitoring trace hazardous substances.
Collapse
Affiliation(s)
- Yanhua Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chan Hu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Ronghui Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
21
|
Kiy A, Dutt S, Gregory KP, Notthoff C, Toimil-Molares ME, Kluth P. The Effect of Electrolyte Properties on Ionic Transport through Solid-State Nanopores: Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20888-20896. [PMID: 39317436 DOI: 10.1021/acs.langmuir.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanopore membranes enable versatile technologies that are employed in many different applications, ranging from clean energy generation to filtration and sensing. Improving the performance can be achieved by conducting numerical simulations of the system, for example, by studying how the nanopore geometry or surface properties change the ionic transport behavior or fluid dynamics of the system. A widely employed tool for numerical simulations is finite element analysis (FEA) using software, such as COMSOL Multiphysics. We found that the prevalent method of implementing the electrolyte in the FEA can diverge significantly from physically accurate values. It is often assumed that salt molecules fully dissociate, and the effect of the temperature is neglected. Furthermore, values for the diffusion coefficients of the ions, as well as permittivity, density, and viscosity of the fluid, are assumed to be their bulk values at infinite dilution. By performing conductometry experiments with an amorphous SiO2 nanopore membrane with conical pores and simulating the pore system with FEA, it is shown that the common assumptions do not hold for different mono- and divalent chlorides (LiCl, NaCl, KCl, MgCl2, and CaCl2) at concentrations above 100 mM. Instead, a procedure is presented where all parameters are implemented based on the type of salt and concentration. This modification to the common approach improves the accuracy of the numerical simulations and thus provides a more comprehensive insight into ion transport in nanopores that is otherwise lacking.
Collapse
Affiliation(s)
- Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Kasimir P Gregory
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Christian Notthoff
- Department of Nuclear Physics and Accelerator Applications, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | | | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
22
|
Wei G, Hu R, Lu W, Wang Z, Zhao Q. Bidirectional Peptide Translocation through Ultrasmall Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20831-20839. [PMID: 39301609 DOI: 10.1021/acs.langmuir.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
It is important to obtain the configuration of polypeptides and the sequence information on amino acids for understanding various life processes and many biological applications. Nanopores, as a newly developed single-molecule detection technology, exhibit unique advantages in real-time dynamics detection. Here, we designed a special peptide chain with 10 arginine in the head and achieved successful single-molecule detection by ultrasmall solid-state nanopores (2-3 nm). Unique bidirectional translocation signals were observed and explained under the framework of charge distribution of the peptide and interaction with the nanopore wall. Two natural peptide chains, histatin-5 and angiopep-2, were also explored by nanopore experiments to confirm our conjecture. Our designed peptide chain could realize multiple detections of the same peptide chain, offering possibilities for high-resolution peptide detection and fingerprinting by solid-state nanopores in the future.
Collapse
Affiliation(s)
- Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
23
|
Reany O, Romero-Ruiz M, Khurana R, Mondal P, Keinan E, Bayley H. Stochastic Sensing of Chloride Anions Using an α-Hemolysin Pore with a semiaza-Bambusuril Adapter. Angew Chem Int Ed Engl 2024; 63:e202406719. [PMID: 38850111 DOI: 10.1002/anie.202406719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Pores containing molecular adapters provide internal selective binding sites, thereby allowing the stochastic sensing of analytes. Herein, we demonstrate that semiaza-bambusuril (BU) acts as a non-covalent molecular adapter when lodged within the lumen of the wild-type α-hemolysin (WT-αHL) protein pore. Because the bambusurils are recognized as anion receptors, the anion binding site within the adapter-nanopore complex allows the detection of chloride anions, thus converting a non-selective pore into an anion sensor.
Collapse
Affiliation(s)
- Ofer Reany
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Mercedes Romero-Ruiz
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Raman Khurana
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Pravat Mondal
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200001, Israel
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
24
|
Mereuta L, Park J, Park Y, Luchian T. Repurposing an antimicrobial peptide for the development of a dual ion channel/molecular receptor-like platform for metal ion detection. NANOSCALE 2024; 16:15984-15994. [PMID: 39141323 DOI: 10.1039/d4nr02433h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The presence of non-essential metals in the environment as contaminants is prone to cause hazardous health problems following accumulation in the human body and the ensuing toxic effects. This calls for continuous discovery and innovation in the realm of developing easy-to-operate, cheap and sensitive sensors. Herein, we describe the proof of concept approach for designing a molecular receptor-like, chimeric sensor based on the pore-forming peptide alamethicin (Alm), tethered via a linker with an ultrashort peptide nucleic acid (PNA) moiety, capable of generating functional ion channel oligomers in planar lipid membranes. The working principle of the sensor exploits the ability of Hg2+ ions to complex mismatching thymine-thymine sequences between the PNA receptor moiety on Alm oligomers and free, thymine-based, single-stranded DNAs (ssDNAs) in solution, thus creating a stable base pair at the oligomer entrance. This generates a transducing mechanism which converts the metal ion complexation into a specific electrical signature of the self-assembled Alm oligomers, enabling selective Hg2+ ion detection. The platform is programmable, whereby the simple exchange of the PNA sequence and its ssDNA counterpart in solution rendered the system selective for Cu2+ ion detection. With further optimization, the presented solution has the potential to translate into miniaturized, cost-effective biosensors suitable for the real-time, label-free and continuous detection of metal ions or other biomolecules.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
25
|
Yamazaki H, Mabuchi T, Kaito K, Matsuda K, Kato H, Uemura S. Photothermally Heated Asymmetric Thin Nanopores Suggest the Influence of Temperature on the Intermediate Conformational State of Cytochrome c in an Electric Field. NANO LETTERS 2024; 24:10219-10227. [PMID: 39133007 DOI: 10.1021/acs.nanolett.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanopore sensing is a label-free single-molecule technique that enables the study of the dynamical structural properties of proteins. Here, we detect the translocation of cytochrome c (Cyt c) through an asymmetric thin nanopore with photothermal heating to evaluate the influence of temperature on Cyt c conformation during its translocation in an electric field. Before Cyt c translocates through an asymmetric thin SiNx nanopore, ∼1 ms trapping events occur due to electric field-induced denaturation. These trapping events were corroborated by a control analysis with a transmission electron microscopy-drilled pore and denaturant buffer. Cyt c translocation events exhibited markedly greater broad current blockade when the pores were photothermally heated. Collectively, our molecular dynamics simulation predicted that an increased temperature facilitates denaturation of the α-helical structure of Cyt c, resulting in greater blockade current during Cyt c trapping. Our photothermal heating method can be used to study the influence of temperature on protein conformation at the single-molecule level in a label-free manner.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Mabuchi
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kouta Kaito
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kyosuke Matsuda
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Hiromu Kato
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Zhang S, Fang M, He J, Ma L, Miao X, Li P, Yu S, Cai W. How specific ion effects influence the mechanical behaviors of amide macromolecules? A cross-scale study. RSC Adv 2024; 14:25507-25515. [PMID: 39139238 PMCID: PMC11321207 DOI: 10.1039/d4ra04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(N-isopropylacrylamide) and neutral polyacrylamide (i.e., PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method. The results indicate that the molecular conformation can be markedly influenced by the hydrophilicity (or hydrophobicity) of both macromolecule chain and ions. An extended chain conformation can be obtained when the side groups and ions are relatively hydrophilic, which can also increase the elasticity of a macromolecule chain and film materials. The relatively hydrophobic components promote the collapse of macromolecule chains and reduce the molecular elasticity. It is believed that the hydrogen bonding intensity between a macromolecule chain and aquated ions controls the chain conformation and the elasticity of molecules and films. This study is not only helpful for understanding the self-assembly mechanism of organisms but also provides a way to associate the molecular properties with the macroscopic performance of materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Mengjia Fang
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| | - Junjun He
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Lina Ma
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University Hangzhou 310024 Zhejiang Province China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences) Heze 274000 China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Wanhao Cai
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| |
Collapse
|
27
|
Cieśla M, Dybiec B, Krasowska M, Siwy Z, Strzelewicz A. Numerical Modeling of Anisotropic Particle Diffusion through a Cylindrical Channel. Molecules 2024; 29:3795. [PMID: 39202873 PMCID: PMC11356997 DOI: 10.3390/molecules29163795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The transport of molecules and particles through single pores is the basis of biological processes, including DNA and protein sequencing. As individual objects pass through a pore, they cause a transient change in the current that can be correlated with the object size, surface charge, and even chemical properties. The majority of experiments and modeling have been performed with spherical objects, while much less is known about the transport characteristics of aspherical particles, which would act as a model system, for example, for proteins and bacteria. The transport kinetics of aspherical objects is an especially important, yet understudied, problem in nanopore analytics. Here, using the Wiener process, we present a simplified model of the diffusion of rod-shaped particles through a cylindrical pore, and apply it to understand the translation and rotation of the particles as they pass through the pore. Specifically, we analyze the influence of the particles' geometrical characteristics on the effective diffusion type, the first passage time distribution, and the particles' orientation in the pore. Our model shows that thicker particles pass through the channel slower than thinner ones, while their lengths do not affect the passage time. We also demonstrate that both spherical and rod-shaped particles undergo normal diffusion, and the first passage time distribution follows an exponential asymptotics. The model provides guidance on how the shape of the particle can be modified to achieve an optimal passage time.
Collapse
Affiliation(s)
- Michał Cieśla
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Monika Krasowska
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| | - Zuzanna Siwy
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA;
| | - Anna Strzelewicz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| |
Collapse
|
28
|
Mereuta L, Bhatti H, Asandei A, Cimpanu A, Ying YL, Long YT, Luchian T. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40100-40110. [PMID: 39038810 PMCID: PMC11299134 DOI: 10.1021/acsami.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Huma Bhatti
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Alina Asandei
- Interdisciplinary
Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Yi-Lun Ying
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
29
|
Takei H, Nakada T, Leong LW, Ito A, Hanada K, Maeda H, Sohail MS, Tomiyasu K, Sakamoto O, Naono N, Taniguchi M. Immunological assay using a solid-state pore with a low limit of detection. Sci Rep 2024; 14:16686. [PMID: 39030274 PMCID: PMC11271571 DOI: 10.1038/s41598-024-67112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Emerging infectious diseases, cancer, and other diseases are quickly tested mainly via immune reactions based on specific molecular recognition between antigens and antibodies. By changing the diameter of solid-state pores, biomolecules of various sizes can be rapidly detected at the single-molecule level. The combination of immunoreactions and solid-state pores paves the way for an efficient testing method with high specificity and sensitivity. The challenge in developing this method is achieving quantitative analysis using solid-state pores. Here, we demonstrate a method with a low limit of detection for testing tumor markers using a combination of immunoreactions and solid-state pore technology. Quantitative analysis of the mixing ratio of two and three beads with different diameters was achieved with an error rate of up to 4.7%. The hybrid solid-state pore and immunoreaction methods with prostate-specific antigen (PSA) and anti-PSA antibody-modified beads achieved a detection limit of 24.9 fM PSA in 30 min. The hybrid solid-state pore and immunoreaction enabled the rapid development of easy-to-use tests with lower limit of detection and greater throughput than commercially available immunoassay for point-of-care testing.
Collapse
Affiliation(s)
- Hiroyasu Takei
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Tomoko Nakada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Lat Wai Leong
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Atsuki Ito
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Kakeru Hanada
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Hinako Maeda
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | | | | | - Osamu Sakamoto
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Norihiko Naono
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Masateru Taniguchi
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
30
|
Zhang X, Bai Y, Liu S, Yang J, Hu N. Electrokinetic Nanorod Translocation through a Dual-Nanopipette. ACS OMEGA 2024; 9:24050-24059. [PMID: 38854563 PMCID: PMC11154894 DOI: 10.1021/acsomega.4c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Glass nanopipettes, as important sensing tools, have attracted great interest due to their wide range of applications in detecting single molecules, nanoparticles, and cells. In this study, we investigated the translocation behavior of nanorod particles through dual-nanopipettes using a transient continuum-based model based on an arbitrary Lagrangian-Eulerian approach. Our findings indicate that the translocation of nanorods is slowed down in the dual-nanopipette system, especially in the dual-nanopipette system with a nanobridge. These results are in qualitative agreement with previous experimental findings reported in the literature. Additionally, the translocation of nanorods is influenced by factors such as bulk concentration, initial location of the nanorod, and surface charge of the nanopipette. Notably, when the surface charge density of the nanopipette is relatively high and the initial location of the nanorod is in the reservoir, the nanorod can hardly enter the nanopipette, resulting in a relatively low translocation efficiency. However, the translocation efficiency can be improved by initially positioning the nanorod in one of the barrels. The resulting dual-blockade current signal can be used to correlate the characteristics of the nanorod.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School
of Smart Health, Chongqing College of Electronic
Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Shiping Liu
- School
of Safety Engineering, Chongqing University
of Science and Technology, Chongqing 401331, China
| | - Jun Yang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
31
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
32
|
Xie Z, Chen Z, Li A, Huang B, Guo C, Zhai Y. Specific Small-Molecule Detection Using Designed Nucleic Acid Nanostructure Carriers and Nanopores. Anal Chem 2024; 96:8528-8533. [PMID: 38728651 DOI: 10.1021/acs.analchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In the realm of nanopore sensor technology, an enduring challenge lies in achieving the discerning detection of small biomolecules with a sufficiently high signal-to-noise ratio. This study introduces a method for reliably quantifying the concentration of target small molecules, utilizing tetrahedral DNA nanostructures as surrogates for the captured molecules through a magnetic-bead-based competition substitution mechanism. Magnetic Fe3O4-DNA tetrahedron nanoparticles (MNPs) are incorporated into a nanopore electrochemical system for small-molecule sensing. In the presence of the target, the DNA tetrahedron, featuring an aptamer tail acting as a molecular carrier, detaches from the MNPs due to aptamer deformation. Following removal of the MNPs, the DNA tetrahedron bound to the target traversed the nanopore by applying a positive potential. This approach exhibits various advantages, including heightened sensitivity, selectivity, an improved signal-to-noise ratio (SNR), and robust anti-interference capabilities. Our findings demonstrate that this innovative methodology has the potential to significantly enhance the sensing of various small-molecule targets by nanopores, thereby advancing the sensitivity and dynamic range. This progress holds promise for the development of precise clinical diagnostic tools.
Collapse
Affiliation(s)
- Zhipeng Xie
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zihao Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aijia Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Bing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
33
|
Wells TN, Schmidt H, Hawkins AR. Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems. MICROMACHINES 2024; 15:699. [PMID: 38930668 PMCID: PMC11206162 DOI: 10.3390/mi15060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Particle trapping and enrichment into confined volumes can be useful in particle processing and analysis. This review is an evaluation of the methods used to trap and enrich particles into constrained volumes in microfluidic and nanofluidic systems. These methods include physical, optical, electrical, magnetic, acoustic, and some hybrid techniques, all capable of locally enhancing nano- and microparticle concentrations on a microscale. Some key qualitative and quantitative comparison points are also explored, illustrating the specific applicability and challenges of each method. A few applications of these types of particle trapping are also discussed, including enhancing biological and chemical sensors, particle washing techniques, and fluid medium exchange systems.
Collapse
Affiliation(s)
- Tanner N. Wells
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
34
|
Zhang S, Du Q, Wang J, Huang Y, Xia F. Pore-Size-Dependent Role of Functional Elements at the Outer Surface and Inner Wall in Single-Nanochannel Biosensors. Anal Chem 2024; 96:7163-7171. [PMID: 38664895 DOI: 10.1021/acs.analchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Biological nanopores feature functional elements on the outer surfaces (FEOS) and inner walls (FEIW), enabling precise control over ions and molecules with exceptional sensitivity and specificity. This provides valuable inspiration to scientists for the development of intelligent artificial nanochannel-based platforms, with a wide range of potential applications, including biosensors. Much effort has been dedicated to investigating the distinct contribution of FEOS and FEIW of multichannel membrane biosensors. However, the intricate interactions among neighboring pores in multichannel biosensors have presented challenges. This underscores the untapped potential of single nanochannels as ideal candidates in this field. Here, we employed single nanochannel membranes with different pore sizes to investigate the distinct contributions of FEIW and FEOS to single-nanochannel biosensors, combined with numerical simulations. Our findings revealed that alterations in the negative charges of FEIW and FEOS, induced by target binding, have differential effects on ion transport, contingent upon the degree of nanoconfinement. In the case of smaller pores, such as 20 nm, the ion concentration polarization driven by FEIW can independently control ion transport through the surface's electric double layer. However, as the pore size increases to 40-60 nm, both FEIW and FEOS become essential for effective ion concentration polarization. When the pore size reaches 100 nm, both FEIW and FEOS are ineffective and thus unsuitable for biosensors. Simulations demonstrate that the observed phenomena can be attributed to the interactions between the charges of FEIW and FEOS within the overlapping electric double layer under confinement. These results underscore the critical role of pore size as a key parameter in governing the functionality of probes within or on nanopore-based biosensors as well as in the design of nanopore-based devices.
Collapse
Affiliation(s)
- Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
35
|
Yao G, Ke W, Xia B, Gao Z. Nanopore-based glycan sequencing: state of the art and future prospects. Chem Sci 2024; 15:6229-6243. [PMID: 38699252 PMCID: PMC11062086 DOI: 10.1039/d4sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Sequencing of biomacromolecules is a crucial cornerstone in life sciences. Glycans, one of the fundamental biomolecules, derive their physiological and pathological functions from their structures. Glycan sequencing faces challenges due to its structural complexity and current detection technology limitations. As a highly sensitive sensor, nanopores can directly convert nucleic acid sequence information into electrical signals, spearheading the revolution of third-generation nucleic acid sequencing technologies. However, their potential for deciphering complex glycans remains untapped. Initial attempts demonstrated the significant sensitivity of nanopores in glycan sensing, which provided the theoretical basis and insights for the realization of nanopore-based glycan sequencing. Here, we present three potential technical routes to employ nanopore technology in glycan sequencing for the first time. The three novel technical routes include: strand sequencing, capturing glycan chains as they translocate through nanopores; sequential hydrolysis sequencing, capturing released monosaccharides one by one; splicing sequencing, mapping signals from hydrolyzed glycan fragments to an oligosaccharide database/library. Designing suitable nanopores, enzymes, and motors, and extracting characteristic signals pose major challenges, potentially aided by artificial intelligence. It would be highly desirable to design an all-in-one high-throughput glycan sequencer instrument by integrating a sample processing unit, nanopore array, and signal acquisition system into a microfluidic device. The nanopore sequencer invention calls for intensive multidisciplinary cooperation including electrochemistry, glycochemistry, engineering, materials, enzymology, etc. Advancing glycan sequencing will promote the development of basic research and facilitate the discovery of glycan-based drugs and disease markers, fostering progress in glycoscience and even life sciences.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- School of Life Science and Technology, Shanghai Tech University 201210 Shanghai China
- Lingang Laboratory 200031 Shanghai China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 528400 Zhongshan China
| |
Collapse
|
36
|
Upadhyay G, Kapri R, Chaudhuri A. Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:23. [PMID: 38573533 DOI: 10.1140/epje/s10189-024-00417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.
Collapse
Affiliation(s)
- Gokul Upadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India.
| |
Collapse
|
37
|
Jalboush SA, Wadsworth ID, Sethi K, Rogers LC, Hollis T, Hall AR. Improving the Performance of Selective Solid-State Nanopore Sensing Using a Polyhistidine-Tagged Monovalent Streptavidin. ACS Sens 2024; 9:1602-1610. [PMID: 38451864 PMCID: PMC11056946 DOI: 10.1021/acssensors.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Solid-state (SS-) nanopore sensing has gained tremendous attention in recent years, but it has been constrained by its intrinsic lack of selectivity. To address this, we previously established a novel SS-nanopore assay that produces translocation signals only when a target biotinylated nucleic acid fragment binds to monovalent streptavidin (MS), a protein variant with a single high-affinity biotin-binding domain. While this approach has enabled selective quantification of diverse nucleic acid biomarkers, sensitivity enhancements are needed to improve the detection of low-abundance translational targets. Because the translocation dynamics that determine assay efficacy are largely governed by constituent charge characteristics, we here incorporate a polyhistidine-tagged MS (hMS) to alter the component detectability. We investigate the effects of buffer pH, salt concentration, and SS-nanopore diameter on the performance with the alternate reagent, achieve significant improvements in measurement sensitivity and selectivity, and expand the range of device dimensions viable for the assay. We used this improvement to detect as little as 1 nM miRNA spiked into human plasma. Overall, our findings improve the potential for broader applications of SS-nanopores in the quantitative analyses of molecular biomarkers.
Collapse
Affiliation(s)
- Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ian D. Wadsworth
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Komal Sethi
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - LeAnn C. Rogers
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam R. Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
38
|
Yang CN, Liu W, Liu HT, Zhang JC, Yu RJ, Ying YL, Long YT. Electrochemical Visualization of Single-Molecule Thiol Substitution with Nanopore Measurement. ACS MEASUREMENT SCIENCE AU 2024; 4:76-80. [PMID: 38404487 PMCID: PMC10885329 DOI: 10.1021/acsmeasuresciau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 02/27/2024]
Abstract
Reactions involving sulfhydryl groups play a critical role in maintaining the structure and function of proteins. However, traditional mechanistic studies have mainly focused on reaction rates and the efficiency in bulk solutions. Herein, we have designed a cysteine-mutated nanopore as a biological protein nanoreactor for electrochemical visualization of the thiol substitute reaction. Statistical analysis of characteristic current signals shows that the apparent reaction rate at the single-molecule level in this confined nanoreactor reached 1400 times higher than that observed in bulk solution. This substantial acceleration of thiol substitution reactions within the nanopore offers promising opportunities for advancing the design and optimization of micro/nanoreactors. Moreover, our results could shed light on the understanding of sulfhydryl reactions and the thiol-involved signal transduction mechanisms in biological systems.
Collapse
Affiliation(s)
- Chao-Nan Yang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Wei Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Hao-Tian Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Ji-Chang Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Ru-Jia Yu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center, Nanjing
University, Nanjing 210023, P.R. China
| | - Yi-Lun Ying
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center, Nanjing
University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
39
|
Upadhyay G, Kapri R, Chaudhuri A. Gain reversal in the translocation dynamics of a semiflexible polymer through a flickering pore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185101. [PMID: 38262064 DOI: 10.1088/1361-648x/ad21a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
We study the driven translocation of a semiflexible polymer through an attractive extended pore with a periodically oscillating width. Similar to its flexible counterpart, a stiff polymer translocates through an oscillating pore more quickly than a static pore whose width is equal to the oscillating pore's mean width. This efficiency quantified as a gain in the translocation time, highlights a considerable dependence of the translocation dynamics on the stiffness of the polymer and the attractive nature of the pore. The gain characteristics for various polymer stiffness exhibit a trend reversal when the stickiness of the pore is changed. The gain reduces with increasing stiffness for a lower attractive strength of the pore, whereas it increases with increasing stiffness for higher attractive strengths. Such a dependence leads to the possibility of a high degree of robust selectivity in the translocation process.
Collapse
Affiliation(s)
- Gokul Upadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| |
Collapse
|
40
|
Khatri S, Pandey P, Mejia G, Ghimire G, Leng F, He J. Nanoconfinement and Crowding Enhanced Single-Molecule Detection of Small Molecules with Nanopipettes. J Am Chem Soc 2023; 145:28075-28084. [PMID: 37996390 PMCID: PMC11036617 DOI: 10.1021/jacs.3c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Glass nanopipettes have gained widespread use as a versatile single-entity detector in chemical and biological sensing, analysis, and imaging. Its advantages include low cost, easy accessibility, simplicity of use, and high versatility. However, conventional nanopipettes based on the volume exclusion mechanism have limitations in detecting small biomolecules due to their small volume and high mobility in aqueous solution. To overcome this challenge, we have employed a novel approach by capitalizing on the strong nanoconfinement effect of nanopipettes. This is achieved by utilizing both the hard confinement provided by the long taper nanopipette tip at the cis side and the soft confinement offered by the hydrogel at the trans side. Through this approach, we have effectively slowed down the exit motion of small molecules, allowing us to enrich and jam them at the nanopipette tip. Consequently, we have achieved high throughput detection of small biomolecules with sizes as small as 1 nm, including nucleoside triphosphates, short peptides, and small proteins with excellent signal-to-noise ratios. Furthermore, molecular complex formation through specific intermolecular interactions, such as hydrogen bonding between closely spaced nucleotides in the jam-packed nanopipette tip, has been detected based on the unique ionic current changes.
Collapse
Affiliation(s)
- Santosh Khatri
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Popular Pandey
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - German Mejia
- Chemistry and Biochemistry Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| | - Govinda Ghimire
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Fenfei Leng
- Chemistry and Biochemistry Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| | - Jin He
- Physics Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
41
|
Burden DL, Meyer JJ, Michael RD, Anderson SC, Burden HM, Peña SM, Leong-Fern KJ, Van Ye LA, Meyer EC, Keranen-Burden LM. Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Anal Chem 2023; 95:18020-18028. [PMID: 37991877 PMCID: PMC10719886 DOI: 10.1021/acs.analchem.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Most of what is known concerning the luminal passage of materials through nanopores arises from electrical measurements. Whether nanopores are biological, solid-state, synthetic, hybrid, glass-capillary-based, or protein ion channels in cells and tissues, characteristic signatures embedded in the flow of ionic current are foundational to understanding functional behavior. In contrast, this work describes passage through a nanopore that occurs without producing an electrical signature. We refer to the phenomenon as "silent translocation." By definition, silent translocations are invisible to the standard tools of electrophysiology and fundamentally require a simultaneous ancillary measurement technique for positive identification. As a result, this phenomenon has been largely unexplored in the literature. Here, we report on a derivative of Cyanine 5 (sCy5a) that passes through the α-hemolysin (αHL) nanopore silently. Simultaneously acquired single-molecule fluorescence and single-channel electrical recordings from bilayers formed over a closed microcavity demonstrate that translocation does indeed take place, albeit infrequently. We report observations of silent translocation as a function of time, dye concentration, and nanopore population in the bilayer. Lastly, measurement of the translocation rate as a function of applied potential permits estimation of an effective energy barrier for transport through the pore as well as the effective charge on the dye, all in the absence of an information-containing electrical signature.
Collapse
Affiliation(s)
- Daniel L. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Richard D. Michael
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophie C. Anderson
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Hannah M. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophia M. Peña
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | | - Lily Anne Van Ye
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Elizabeth C. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | |
Collapse
|
42
|
Nakamura H, Okamura T, Tajima M, Kawano R, Yamaji M, Ohsaki S, Watano S. Enhancement of cell membrane permeability by using charged nanoparticles and a weak external electric field. Phys Chem Chem Phys 2023; 25:32356-32363. [PMID: 37975520 DOI: 10.1039/d3cp03281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Because the cell membrane is the main barrier of intracellular delivery, it is important to facilitate and control the translocation of extracellular compounds across it. Our earlier molecular dynamics simulations suggested that charged nanoparticles under a weak external electric field can enhance the permeability of the cell membrane without disrupting it. However, this membrane permeabilization approach has not been tested experimentally. This study investigated the membrane crossing of a model compound (dextran with a Mw of 3000-5000) using charged nanoparticles and a weak external electric field. A model bilayer lipid membrane was prepared by using a droplet contact method. The permeability of the membrane was evaluated using the electrophysiological technique. Even when the applied electric field was below the critical strength for membrane breakdown, dextran was able to cross the membrane without causing membrane breakdown. These results indicate that adding nanomaterials under a weak electric field may enhance the translocation of delivery compounds across the cell membrane with less damage, suggesting a new strategy for intracellular delivery systems.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Takumi Okamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
43
|
Zhang M, Huang X, Wu H. Application of Biological Nanopore Sequencing Technology in the Detection of Microorganisms †. CHINESE J CHEM 2023; 41:3473-3483. [DOI: 10.1002/cjoc.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 01/05/2025]
Abstract
Comprehensive SummaryEnvironmental pollution and the spread of pathogenic microorganisms pose a significant threat to the health of humans and the planet. Thus, understanding and detecting microorganisms is crucial for maintaining a healthy living environment. Nanopore sequencing is a single‐molecule detection method developed in the 1990s that has revolutionized various research fields. It offers several advantages over traditional sequencing methods, including low cost, label‐free, time‐saving detection speed, long sequencing reading, real‐time monitoring, convenient carrying, and other significant advantages. In this review, we summarize the technical principles and characteristics of nanopore sequencing and discuss its applications in amplicon sequencing, metagenome sequencing, and whole‐genome sequencing of environmental microorganisms, as well as its in situ application under some special circumstances. We also analyze the advantages and challenges of nanopore sequencing in microbiology research. Overall, nanopore sequencing has the potential to greatly enhance the detection and understanding of microorganisms in environmental research, but further developments are needed to overcome the current challenges.
Collapse
Affiliation(s)
- Ming‐Qian Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Bin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hai‐Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Subramanian N, Watson B, Li CZ, Moss M, Liu C. Patterning amyloid-β aggregation under the effect of acetylcholinesterase using a biological nanopore - an in vitro study. SENSORS AND ACTUATORS REPORTS 2023; 6:100170. [PMID: 37663321 PMCID: PMC10469531 DOI: 10.1016/j.snr.2023.100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aggregation of amyloid-β peptide (Aβ) is hypothesized to be the primary cause of Alzheimer's disease (AD) progression. Aβ aggregation has been widely studied using conventional sensing tools like emission fluorescence, electron microscopy, mass spectroscopy, and circular dichroism. However, none of these techniques can provide cost-efficient, highly sensitive quantification of Aβ aggregation kinetics at the molecular level. Among the influences on Aβ aggregation of interest to disease progression is the acceleration of Aβ aggregation by acetylcholinesterase (AChE), which is present in the brain and inflicts the fast progression of disease due to its direct interaction with Aβ. In this work, we demonstrate the ability of a biological nanopore to map and quantify AChE accelerated aggregation of Aβ monomers to mixed oligomers and small soluble aggregates with single-molecule precision. This method will allow future work on testing direct and indirect effects of therapeutic drugs on AChE accelerated Aβ aggregation as well as disease prognosis.
Collapse
Affiliation(s)
- Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Watson
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chen-Zhong Li
- Biomedical Engineering Program, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Melissa Moss
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
45
|
Murakami K, Kubota SI, Tanaka K, Tanaka H, Akabane K, Suzuki R, Shinohara Y, Takei H, Hashimoto S, Tanaka Y, Hojyo S, Sakamoto O, Naono N, Takaai T, Sato K, Kojima Y, Harada T, Hattori T, Fuke S, Yokota I, Konno S, Washio T, Fukuhara T, Teshima T, Taniguchi M, Murakami M. High-precision rapid testing of omicron SARS-CoV-2 variants in clinical samples using AI-nanopore. LAB ON A CHIP 2023; 23:4909-4918. [PMID: 37877206 DOI: 10.1039/d3lc00572k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A digital platform that can rapidly and accurately diagnose pathogenic viral variants, including SARS-CoV-2, will minimize pandemics, public anxiety, and economic losses. We recently reported an artificial intelligence (AI)-nanopore platform that enables testing for Wuhan SARS-CoV-2 with high sensitivity and specificity within five minutes. However, which parts of the virus are recognized by the platform are unknown. Similarly, whether the platform can detect SARS-CoV-2 variants or the presence of the virus in clinical samples needs further study. Here, we demonstrated the platform can distinguish SARS-CoV-2 variants. Further, it identified mutated Wuhan SARS-CoV-2 expressing spike proteins of the delta and omicron variants, indicating it discriminates spike proteins. Finally, we used the platform to identify omicron variants with a sensitivity and specificity of 100% and 94%, respectively, in saliva specimens from COVID-19 patients. Thus, our results demonstrate the AI-nanopore platform is an effective diagnostic tool for SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Shimpei I Kubota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Kumiko Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Hiroki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Keiichiroh Akabane
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yuta Shinohara
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Hiroyasu Takei
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo 150-8512, Japan
| | - Shigeru Hashimoto
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yuki Tanaka
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Osamu Sakamoto
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo 150-8512, Japan
| | - Norihiko Naono
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo 150-8512, Japan
| | - Takayui Takaai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, 567-0047, Osaka, Japan
| | - Kazuki Sato
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Yuichi Kojima
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Toshiyuki Harada
- Department of Respiratory Medicine, Japan Community Healthcare Organization Hokkaido Hospital, Sapporo, 062-8618, Japan
| | - Takeshi Hattori
- Department of Respiratory Medicine, Hokkaido Medical Center, National Hospital Organization, Sapporo, 063-0005, Japan
| | - Satoshi Fuke
- Department of Respiratory Medicine, KKR Sapporo Medical Center, Sapporo, 062-0931, Japan
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, 567-0047, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, 060-8638, Japan
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, 567-0047, Osaka, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
46
|
Tan F, Yan R, Zhao C, Zhao N. Translocation Dynamics of an Active Filament through a Long-Length Scale Channel. J Phys Chem B 2023; 127:8603-8615. [PMID: 37782905 DOI: 10.1021/acs.jpcb.3c04250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Active filament translocation through a confined space is crucial for diverse biological processes. By using Langevin dynamics simulations, we investigate the translocation dynamics of an axially self-propelled chain through a channel. First, results show a suggestive reciprocal scaling of translocation time versus active force. Second, in the case of a long channel, we demonstrate a very intriguing nonmonotonic change of translocation time with increasing channel width. The driving force shows a similar trend, providing a consistent picture to understand the unexpected channel width effect. In particular, in a moderately broad channel, the disordered chain conformation results in a loss of driving force and thus inhibits translocation dynamics. Chain adsorption might occur in a wide channel, which accounts for a facilitated translocation. Lastly, we connect the translocation process to tension propagation (TP). A modified TP picture is proposed to interpret the waiting time distribution. Our work highlights the new phenomenology owing to the crucial interplay of activity and spacial confinement, which drives the translocation dynamics, going beyond the traditional entropic barrier scenario.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Trojanowicz M. Impact of nanotechnology on progress of flow methods in chemical analysis: A review. Anal Chim Acta 2023; 1276:341643. [PMID: 37573121 DOI: 10.1016/j.aca.2023.341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
In evolution of instrumentation for analytical chemistry as crucial technological breakthroughs should be considered a common introduction of electronics with all its progress in integration, and then microprocessors which was followed by a widespread computerization. It is seems that a similar role can be attributed to the introduction of various elements of modern nanotechnology, observed with a fast progress since beginning of this century. It concerns all areas of the applications of analytical chemistry, including also progress in flow analysis, which are being developed since the middle of 20th century. Obviously, it should not be omitted the developed earlier and analytically applied planar structures like lipid membranes or self-assembled monolayers They had essential impact prior to discoveries of numerous extraordinary nanoparticles such as fullerenes, carbon nanotubes and graphene, or nanocrystalline semiconductors (quantum dots). Mostly, due to catalytic effects, significantly developed surface and the possibility of easy functionalization, their application in various stages of flow analytical procedures can significantly improve them. The application of new nanomaterials may be used for the development of new detection methods for flow analytical systems in macro-flow setups as well as in microfluidics and lateral flow immunoassay tests. It is also advantageous that quick flow conditions of measurements may be helpful in preventing unfavorable agglomeration of nanoparticles. A vast literature published already on this subject (e.g. almost 1000 papers about carbon nanotubes and flow-injection analytical systems) implies that for this reviews it was necessary to make an arbitrary selection of reported examples of this trend, focused mainly on achievements reported in the recent decade.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Chemistry, University of Warsaw, Poland.
| |
Collapse
|
48
|
Mereuta L, Asandei A, Andricioaei I, Park J, Park Y, Luchian T. Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway. NANOSCALE 2023; 15:14754-14763. [PMID: 37655668 DOI: 10.1039/d3nr03344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A pressing challenge in the realm of nanopore-based sensing technologies for nucleic acid characterization has been the cheap and efficient control of analyte translocation. To address this, a plethora of methods were tested, including mutagenesis, molecular motors, enzymes, or the optimization of experimental conditions. Herein, we present a paradigm exploiting the manipulation of electrostatic interactions between 22-mer single-stranded DNAs (22_ssDNA) and low pH-induced charges in the alpha-hemolysin (α-HL) nanopore, to efficiently control the passage of captured molecules. We discovered that in electrolytes buffered at pH = 5 and pH = 4.5 where the nanopore's vestibule and lumen become oppositely charged as compared to that at neutral pH, the electrostatic anchoring at these regions of a 22_ssDNA fragment leads to a dramatic increase of the translocation time, orders of magnitude larger compared to that at neutral pH. This pH-dependent tethering effect is reversible, side invariant, and sensitive to the ionic strength and ssDNA contour length. In the long run, our discovery has the potential to provide a simple read-out of the sequence of bases pertaining to short nucleotide sequences, thus extending the efficacy of current nanopore-based sequencers.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Ioan Andricioaei
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
49
|
Huang Y, Liu L, Luo C, Liu W, Lou X, Jiang L, Xia F. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev 2023; 52:6270-6293. [PMID: 37581902 DOI: 10.1039/d2cs00865c] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
50
|
Afrasiabian N, Wei M, Denniston C. Enhanced Pulley Effect for Translocation: The Interplay of Electrostatic and Hydrodynamic Forces. Biomacromolecules 2023; 24:4103-4112. [PMID: 37417981 PMCID: PMC10498446 DOI: 10.1021/acs.biomac.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Solid-state nanopore sensors remain a promising solution to the rising global demand for genome sequencing. These single-molecule sensing technologies require single-file translocation for high resolution and accurate detection. In a previous publication, we discovered a hairpin unraveling mechanism, namely, the pulley effect, in a pressure-driven translocation system. In this paper, we further investigate the pulley effect in the presence of pressure-driven fluid flow and an opposing force provided by an electrostatic field as an approach to increase single-file capture probability. A hydrodynamic flow is used to move the polymer forward, and two oppositely charged electrostatic square loops are used to create an opposing force. By optimizing the balance between forces, we show that the single-file capture can be amplified from about 50% to almost 95%. The force location, force strength, and flow rate are used as the optimizing variables.
Collapse
Affiliation(s)
- Navid Afrasiabian
- Department of Physics and
Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Matthew Wei
- Department of Physics and
Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Colin Denniston
- Department of Physics and
Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|