1
|
Parida L. The locomotory characteristics of Caenorhabditis elegans in various external environments: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
3
|
Wang Y, Wang X, Ge A, Hu L, Du W, Liu BF. A dual-stimulation strategy in a micro-chip for the investigation of mechanical associative learning behavior of C. elegans. Talanta 2020; 215:120900. [PMID: 32312445 DOI: 10.1016/j.talanta.2020.120900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
During the past decades, few micro-devices for analysis of associative learning behavior have been reported. In this work, an agarose-PDMS hybridized micro-chip was developed to establish a new associative learning model between mechanosensation and food reward in C. elegans. The micro-chip consisted of column arrays which mimicked mechanical stimulation to C. elegans. After trained by pairing bacterial food and mechanical stimuli in the chip, the worms exhibited associative learning behavior and gathered in the regions where there was food during training. The key research findings include: (1) Associative learning behavior of C. elegans could be generated and quantitatively analyzed by this developed micro-chip. (2) Associative learning behavior could be enhanced by extending the training time and developmental stage. (3) Mechanosensation-related genes and neurotransmitters signals had effects on the learning behavior. (4) The associative learning ability could be strengthened by exogenous dopamine in both wild type and mutants. We validated that the design of the micro-chip was useful and convenient for the study of learning behavior based on mechanosensation.
Collapse
Affiliation(s)
- Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xixian Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liang Hu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Ophthalmology & Optometry, School of Biomedical Engineering. Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Krenger R, Burri JT, Lehnert T, Nelson BJ, Gijs MAM. Force microscopy of the Caenorhabditis elegans embryonic eggshell. MICROSYSTEMS & NANOENGINEERING 2020; 6:29. [PMID: 32382445 PMCID: PMC7196560 DOI: 10.1038/s41378-020-0137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/20/2019] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Assays focusing on emerging biological phenomena in an animal's life can be performed during embryogenesis. While the embryo of Caenorhabditis elegans has been extensively studied, its biomechanical properties are largely unknown. Here, we demonstrate that cellular force microscopy (CFM), a recently developed technique that combines micro-indentation with high resolution force sensing approaching that of atomic force microscopy, can be successfully applied to C. elegans embryos. We performed, for the first time, a quantitative study of the mechanical properties of the eggshell of living C. elegans embryos and demonstrate the capability of the system to detect alterations of its mechanical parameters and shell defects upon chemical treatments. In addition to investigating natural eggshells, we applied different eggshell treatments, i.e., exposure to sodium hypochlorite and chitinase solutions, respectively, that selectively modified the multilayer eggshell structure, in order to evaluate the impact of the different layers on the mechanical integrity of the embryo. Finite element method simulations based on a simple embryo model were used to extract characteristic eggshell parameters from the experimental micro-indentation force-displacement curves. We found a strong correlation between the severity of the chemical treatment and the rigidity of the shell. Furthermore, our results showed, in contrast to previous assumptions, that short bleach treatments not only selectively remove the outermost vitelline layer of the eggshell, but also significantly degenerate the underlying chitin layer, which is primarily responsible for the mechanical stability of the egg.
Collapse
Affiliation(s)
- Roger Krenger
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jan T. Burri
- Multi-Scale Robotics Laboratory, ETH Zurich, Zürich, 8092 Switzerland
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bradley J. Nelson
- Multi-Scale Robotics Laboratory, ETH Zurich, Zürich, 8092 Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Sofela S, Sahloul S, Stubbs C, Orozaliev A, Refai FS, Esmaeel AM, Fahs H, Abdelgawad MO, Gunsalus KC, Song YA. Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays. LAB ON A CHIP 2019; 19:3685-3696. [PMID: 31576392 DOI: 10.1039/c9lc00660e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a simple model organism, C. elegans plays an important role in gaining insight into the relationship between bodily thrashing forces and biological effects, such as disease and aging, or physical stimuli, like touch and light. Due to their similar length scale, microfluidic chips have been extensively explored for use in various biological studies involving C. elegans. However, a formidable challenge still exists due to the complexity of integrating external stimuli (chemical, mechanical or optical) with free-moving worms and subsequent imaging on the chip. In this report, we use a microfluidic device to partially immobilize a worm, which allows for measurements of the relative changes in the thrashing force under different assay conditions. Using a device adapted to the natural escape-like coiling response of a worm to immobilization, we have quantified the relative changes in the thrashing force during different developmental stages (L1, L3, L4, and young adult) and in response to various glucose concentrations and drug treatment. Our findings showed a loss of thrashing force following the introduction of glucose into a wild type worm culture that could be reversed upon treatment with the type 2 diabetes drug metformin. A morphological study of the actin filament structures in the body wall muscles provided supporting evidence for the force measurement data. Finally, we demonstrated the multiplexing capabilities of our device through recording the thrashing activities of eight worms simultaneously. The multiplexing capabilities and facile imaging available using our device open the door for high-throughput neuromuscular studies using C. elegans.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | | | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | - Fathima Shaffra Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | | | - Hala Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mohamed Omar Abdelgawad
- Department of Mechanical Engineering, Assiut University, Egypt and Department of Mechanical Engineering, American University of Sharjah, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
6
|
Worms on a Chip. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
7
|
Rahman M, Hewitt JE, Van-Bussel F, Edwards H, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans. LAB ON A CHIP 2018; 18:2187-2201. [PMID: 29892747 PMCID: PMC6057834 DOI: 10.1039/c8lc00103k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim AA, Nekimken AL, Fechner S, O'Brien LE, Pruitt BL. Microfluidics for mechanobiology of model organisms. Methods Cell Biol 2018; 146:217-259. [PMID: 30037463 PMCID: PMC6418080 DOI: 10.1016/bs.mcb.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
Collapse
Affiliation(s)
- Anna A Kim
- University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States
| | | | | | | | - Beth L Pruitt
- University of California, Santa Barbara, CA, United States; Stanford University, Stanford, CA, United States.
| |
Collapse
|
9
|
Mathew R, Ravi Sankar A. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors. NANO-MICRO LETTERS 2018; 10:35. [PMID: 30393684 PMCID: PMC6199092 DOI: 10.1007/s40820-018-0189-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 05/30/2023]
Abstract
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.
Collapse
Affiliation(s)
- Ribu Mathew
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| | - A. Ravi Sankar
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT) Chennai, Chennai, Tamil Nadu 600127 India
| |
Collapse
|
10
|
Muthinja JM, Ripp J, Krüger T, Imle A, Haraszti T, Fackler OT, Spatz JP, Engstler M, Frischknecht F. Tailored environments to study motile cells and pathogens. Cell Microbiol 2018; 20. [PMID: 29316156 DOI: 10.1111/cmi.12820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Motile cells and pathogens migrate in complex environments and yet are mostly studied on simple 2D substrates. In order to mimic the diverse environments of motile cells, a set of assays including substrates of defined elasticity, microfluidics, micropatterns, organotypic cultures, and 3D gels have been developed. We briefly introduce these and then focus on the use of micropatterned pillar arrays, which help to bridge the gap between 2D and 3D. These structures are made from polydimethylsiloxane, a moldable plastic, and their use has revealed new insights into mechanoperception in Caenorhabditis elegans, gliding motility of Plasmodium, swimming of trypanosomes, and nuclear stability in cancer cells. These studies contributed to our understanding of how the environment influences the respective cell and inform on how the cells adapt to their natural surroundings on a cellular and molecular level.
Collapse
Affiliation(s)
- Julianne Mendi Muthinja
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Johanna Ripp
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Andrea Imle
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Tamás Haraszti
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Oliver T Fackler
- Integrative Virology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Hui J, Pang SW. Dynamic Tracking of Osteoblastic Cell Traction Force during Guided Migration. Cell Mol Bioeng 2017; 11:11-23. [PMID: 31719876 DOI: 10.1007/s12195-017-0514-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/11/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction Continuous development of cell traction force can regulate cell migration on various extracellular matrixes in vivo. However, the topographical effect on traction force is still not fully understood. Methods Micropost sensors with parallel guiding gratings were fabricated in polydimethylsiloxane to track the cell traction force during topographical guidance in real time. The force distributions along MC3T3-E1 mouse osteoblasts were captured every minute. The traction force in the leading, middle, and trailing regions was monitored during forward and reversed cell migration. Results The traction force showed periodic changes during cell migration when the cell changed from elongated to contracted shape. For cell migration without guiding pattern, the leading region showed the largest traction force among the three regions, typically 5.8 ± 0.8 nanonewton (nN) when the cell contracted and 7.1 ± 0.5 nN when it elongated. During guided cell migration, a lower traction force was obtained. When a cell contracted, the trailing traction force was 4.1 ± 0.4 for non-guided migration and 2.2 ± 0.2 nN for guided migration. As a cell became elongated, the trailing traction force was 6.0 ± 0.5 nN during non-guided migration and 4.8 ± 0.3 nN under guidance. When a cell reversed its migration direction, the magnitudes of the traction force from the leading to the trailing regions also flipped. Conclusion The cell traction force is continuously influenced by topographical guidance, which determines cell migration speed and direction. These results of cell traction force development on various topographies could lead to better cell migration control using topotaxis.
Collapse
Affiliation(s)
- J Hui
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - S W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
13
|
Jung J, Nakajima M, Takeuchi M, Najdovski Z, Huang Q, Fukuda T. Microfluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode. MICROMACHINES 2016; 7:E50. [PMID: 30407423 PMCID: PMC6190434 DOI: 10.3390/mi7030050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
This work presents a novel method to assess the condition of Caenorhabditis elegans (C. elegans) through a resistance measurement of its undulatory locomotion speed inside a micro channel. As the worm moves over the electrode inside the micro channel, the length of the electrode changes, consequently behaving like a strain gauge. In this paper, the electrotaxis was applied for controlling the direction of motion of C. elegans as an external stimulus, resulting in the worm moving towards the cathode of the circuit. To confirm the proposed measurement method, a microfluidic device was developed that employs a sinusoidal channel and a thin polydimethylsiloxane (PDMS) layer with an electrode. The PDMS layer maintains a porous structure to enable the flexibility of the electrode. In this study, 6 measurements were performed to obtain the speed of an early adult stage C. elegans, where the measured average speed was 0.35 (±0.05) mm/s. The results of this work demonstrate the application of our method to measure the speed of C. elegans undulatory locomotion. This novel approach can be applied to make such measurements without an imaging system, and more importantly, allows directly to detect the locomotion of C. elegans using an electrical signal (i.e., the change in resistance).
Collapse
Affiliation(s)
- Jaehoon Jung
- Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-Ro, Dong-gu, Daegu 41061, Korea.
| | - Masahiro Nakajima
- Center for Micro-Nano Mechatronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masaru Takeuchi
- Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Zoran Najdovski
- Center for Intelligent Systems Research, Deakin University, Waurn Ponds, Geelong 3216, Australia.
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronic Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| | - Toshio Fukuda
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Department of Mechatronics Engineering, Meijo University, Shiogamaguchi, Tenpa-ku, Nagoya 468-0073, Japan.
- Intelligent Robotics Institute, School of Mechatronic Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| |
Collapse
|
14
|
Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. BIOMICROFLUIDICS 2015; 9:014123. [PMID: 25759756 PMCID: PMC4336256 DOI: 10.1063/1.4908595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/06/2015] [Indexed: 06/01/2023]
Abstract
Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm(2) elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment.
Collapse
Affiliation(s)
- Zhichang Qiu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Taoyuanmin Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury , Christchurch, New Zealand
| | - Enchao Yu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Xiao Liu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|
15
|
Khare SM, Awasthi A, Venkataraman V, Koushika SP. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms. BIOMICROFLUIDICS 2015; 9:014111. [PMID: 25713693 PMCID: PMC4312341 DOI: 10.1063/1.4906905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment.
Collapse
Affiliation(s)
- Siddharth M Khare
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | | | - V Venkataraman
- Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | | |
Collapse
|
16
|
Hoelzle DJ, Varghese BA, Chan CK, Rowat AC. A microfluidic technique to probe cell deformability. J Vis Exp 2014:e51474. [PMID: 25226269 DOI: 10.3791/51474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~10(2) cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior.
Collapse
Affiliation(s)
- David J Hoelzle
- Department of Integrative Biology and Physiology, University of California, Los Angeles; Department of Aerospace and Mechanical Engineering, University of Notre Dame
| | - Bino A Varghese
- Department of Integrative Biology and Physiology, University of California, Los Angeles; Molecular Imaging Center, University of Southern California
| | - Clara K Chan
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles;
| |
Collapse
|
17
|
Gjorgjieva J, Biron D, Haspel G. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? Bioscience 2014; 64:476-486. [PMID: 26955070 PMCID: PMC4776678 DOI: 10.1093/biosci/biu058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thrust during locomotion. In this Overview, we concentrate on the generation of either forward- or backward-directed motion during crawling and swimming. We describe locomotion behavior, the parts constituting the locomotion system, and the relevant neuronal connectivity. Because it is not yet fully understood how these components combine to generate locomotion, we discuss competing hypotheses and models.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| | - David Biron
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| | - Gal Haspel
- Julijana Gjorgjieva is a postdoctoral research fellow at the Center for Brain Science of Harvard University, in Cambridge, Massachusetts. She uses theoretical and numerical tools to understand how developing neural circuits wire to perform a particular function, from the mammalian visual system to the motor system of small invertebrates. David Biron is a physicist at the University of Chicago, Illinois. He studies the sleep of the roundworm Caenorhabditis elegans and related problems in biological physics. Gal Haspel ( ) is a neuroethologist at the New Jersey Institute of Technology, in Newark. He studies the activity, connectivity and recovery from injury of the neuronal network that underlie locomotion in the nematode Caenorhabditis elegans
| |
Collapse
|
18
|
Schulman RD, Backholm M, Ryu WS, Dalnoki-Veress K. Dynamic force patterns of an undulatory microswimmer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:050701. [PMID: 25353731 DOI: 10.1103/physreve.89.050701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 06/04/2023]
Abstract
We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the forces that we measure, which well describes our data.
Collapse
Affiliation(s)
- Rafael D Schulman
- Department of Physics and Astronomy and The Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Matilda Backholm
- Department of Physics and Astronomy and The Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - William S Ryu
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Kari Dalnoki-Veress
- Department of Physics and Astronomy and The Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 and Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, Paris, France
| |
Collapse
|
19
|
O'Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 2014; 69-70:247-53. [PMID: 24333896 DOI: 10.1016/j.addr.2013.12.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
Caenorhabditis elegans has been proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Cliff J Luke
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Gary A Silverman
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Stephen C Pak
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA.
| |
Collapse
|
20
|
Bakhtina NA, Korvink JG. Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv 2014. [DOI: 10.1039/c3ra43758b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Saldanha JN, Parashar A, Pandey S, Powell-Coffman JA. Multiparameter behavioral analyses provide insights to mechanisms of cyanide resistance in Caenorhabditis elegans. Toxicol Sci 2013; 135:156-168. [PMID: 23805000 PMCID: PMC3748764 DOI: 10.1093/toxsci/kft138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/12/2013] [Indexed: 02/05/2023] Open
Abstract
Environmental toxicants influence development, behavior, and ultimately survival. The nematode Caenorhabditis elegans has proven to be an exceptionally powerful model for toxicological studies. Here, we develop novel technologies to describe the effects of cyanide toxicity with high spatiotemporal resolution. Importantly, we use these methods to examine the genetic underpinnings of cyanide resistance. Caenorhabditis elegans that lack the EGL-9 oxygen sensing enzyme have been shown to be resistant to hydrogen cyanide (HCN) gas produced by the pathogen Pseudomonas aeruginosa PAO1. We demonstrate that the cyanide resistance exhibited by egl-9 mutants is completely dependent on the HIF-1 hypoxia-inducible factor and is mediated by the cysl-2 cysteine synthase, which likely functions in metabolic pathways that inactivate cyanide. Further, the expression of cysl-2 correlates with the degree of cyanide resistance exhibited in each genetic background. We find that each mutant exhibits similar relative resistance to HCN gas on plates or to aqueous potassium cyanide in microfluidic chambers. The design of the microfluidic devices, in combination with real-time imaging, addresses a series of challenges presented by mutant phenotypes and by the chemical nature of the toxicant. The microfluidic assay produces a set of behavioral parameters with increased resolution that describe cyanide toxicity and resistance in C. elegans, and this is particularly useful in analyzing subtle phenotypes. These multiparameter analyses of C. elegans behavior hold great potential as a means to monitor the effects of toxicants or chemical interventions in real time and to study the biological networks that underpin toxicant resistance.
Collapse
Affiliation(s)
| | - Archana Parashar
- †Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011
| | - Santosh Pandey
- †Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011
| | | |
Collapse
|
22
|
Johari S, Nock V, Alkaisi MM, Wang W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. LAB ON A CHIP 2013; 13:1699-707. [PMID: 23511608 DOI: 10.1039/c3lc41403e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The understanding of force interplays between an organism and its environment is imperative in biological processes. Noticeably scarce from the study of C. elegans locomotion is the measurement of the nematode locomotion forces together with other important locomotive metrics. To bridge the current gap, we present the investigation of C. elegans muscular forces and locomotion metrics (speed, amplitude and wavelength) in one single assay. This assay uses polydimethylsiloxane (PDMS) micropillars as force sensing elements and, by variation of the pillar arrangement, introduces microstructure. To show the usefulness of the assay, twelve wild-type C. elegans sample worms were tested to obtain a total of 4665 data points. The experimental results lead to several key findings. These include: (1) maximum force is exerted when the pillar is in contact with the middle part of the worm body, (2) C. elegans locomotion forces are highly dependent on the structure of the surrounding environment, (3) the worms' undulation frequency and locomotion speed increases steadily from the narrow spacing of 'honeycomb' design to the wider spacing of 'lattice' pillar arrangement, and (4) C. elegans maintained their natural sinusoidal movement in the microstructured device, despite the existence of PDMS micropillars. The assay presented here focuses on wild type C. elegans, but the method can be easily applied to its mutants and other organisms. In addition, we also show that, by inverting the measurement device, worm locomotion behaviour can be studied in various substrate environments normally unconducive to flexible pillar fabrication. The quantitative measurements demonstrated in this work further improve the understanding of C. elegans mechanosensation and locomotion.
Collapse
Affiliation(s)
- Shazlina Johari
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
23
|
Liu P, Martin RJ, Dong L. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion. LAB ON A CHIP 2013; 13:650-61. [PMID: 23254956 PMCID: PMC3587735 DOI: 10.1039/c2lc41174a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation frequency extracted from the reconstructed images with the help of software) between the wild-type (N2) and mutant (lev-8) C. elegans worms in response to different doses of the anthelmintic drug, levamisole, were investigated. The locomotive parameters obtained by the MEF grids agreed well with those obtained by optical microscopy. Therefore, this technology will benefit whole-animal assays by providing a structurally simple, potentially cost-effective device capable of tracking the movement and phenotypes of important nematodes in various microenvironments.
Collapse
Affiliation(s)
- Peng Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
24
|
Liu P, Mao D, Martin RJ, Dong L. An integrated fiber-optic microfluidic device for detection of muscular force generation of microscopic nematodes. LAB ON A CHIP 2012; 12:3458-3466. [PMID: 22824814 PMCID: PMC3438457 DOI: 10.1039/c2lc40459a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports development of an integrated fiber-optic microfluidic device for measuring muscular force of small nematode worms with high sensitivity, high data reliability, and simple device structure. A moving nematode worm squeezed through multiple detection points (DPs) created between a thinned single mode fiber (SMF) cantilever and a sine-wave channel with open troughs. The SMF cantilever was deflected by the normal force imposed by the worm, reducing optical coupling from the SMF to a receiving multimode fiber (MMF). Thus, multiple force data could be obtained for the worm-SMF contacts to verify with each other, improving data reliability. A noise equivalent displacement of the SMF cantilever was 0.28 μm and a noise equivalent force of the device was 143 nN. We demonstrated the workability of the device to detect muscular normal forces of the parasitic nematodes Oesophagotomum dentatum L3 larvae on the SMF cantilever. Also, we used this technique to measure force responses of levamisole-sensitive (SENS) and resistant (LERV) O. dentatum isolates in response to different doses of the anthelmintic drug, levamisole. The results showed that both of the isolates generated a larger muscular normal force when exposed to a higher concentration of levamisole. We also noticed muscular force phenotype differences between the SENS and LERV worms: the SENS muscles were more sensitive to levamisole than the LERV muscles. The ability to quantify the muscular forces of small nematode worms will provide a new approach for screening mutants at single animal resolution. Also, the ability to resolve small differences in muscular forces in different environmental conditions will facilitate phenotyping different isolates of nematodes. Thus, the present technology can potentially benefit and advance the current whole animal assays.
Collapse
Affiliation(s)
- Peng Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| | - Depeng Mao
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| |
Collapse
|
25
|
Shen XN, Sznitman J, Krajacic P, Lamitina T, Arratia PE. Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys J 2012; 102:2772-81. [PMID: 22735527 DOI: 10.1016/j.bpj.2012.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
Abstract
The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels within a preexisting groove. We find that the normal and tangential surface drag coefficients during crawling are ∼222 and 22, respectively, and the drag coefficient ratio is ∼10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that one may be able to control the motility gait of C. elegans by judiciously adjusting the magnitude of the surface drag coefficients.
Collapse
Affiliation(s)
- X N Shen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
26
|
Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci 2012; 6:10. [PMID: 22408616 PMCID: PMC3296079 DOI: 10.3389/fncom.2012.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/07/2012] [Indexed: 11/13/2022] Open
Abstract
Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.
Collapse
Affiliation(s)
| | | | - Netta Cohen
- School of Computing, University of LeedsLeeds, UK
- Institute of Membrane and Systems Biology, University of LeedsLeeds, UK
| |
Collapse
|
27
|
Rezai P, Salam S, Selvaganapathy PR, Gupta BP. Effect of pulse direct current signals on electrotactic movement of nematodes Caenorhabditis elegans and Caenorhabditis briggsae. BIOMICROFLUIDICS 2011; 5:44116-441169. [PMID: 22232698 PMCID: PMC3253587 DOI: 10.1063/1.3665224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/11/2011] [Indexed: 05/22/2023]
Abstract
The nematodes (worms) Caenorhabditiselegans and Caenorhabditisbriggsae are well-known model organisms to study the basis of animal development and behaviour. Their sinusoidal pattern of movement is highly stereotypic and serves as a tool to monitor defects in neurons and muscles that control movement. Until recently, a simple yet robust method to initiate movement response on-demand did not exist. We have found that the electrical stimulation in a microfluidic channel, using constant DC electric field, induces movement (termed electrotaxis) that is instantaneous, precise, sensitive, and fully penetrant. We have further characterized this behaviour and, in this paper, demonstrate that electrotaxis can also be induced using a pulse DC electric signal. Worms responded to pulse DC signals with as low as 30% duty cycle by moving towards the negative electrode at the same speed as constant DC fields (average speed of C. elegans = 296 ± 43 μm/s and C. briggsae = 356 ± 20 μm/s, for both constant and pulse DC electric fields with various frequencies). C. briggsae was found to be more sensitive to electric signals compared to C. elegans. We also investigated the turning response of worms to a change in the direction of constant and pulse DC signals. The response for constant DC signal was found to be instantaneous and similar for most worms. However, in the case of pulse DC signal, alterations in duty cycle affected the turning response time as well as the number of responding worms. Our findings show that pulse DC method allows quantitative measurement of response behaviour of worms and suggest that it could be used as a tool to study the neuronal basis of such a behaviour that is not observed under constant DC conditions.
Collapse
|
28
|
Hulme SE, Whitesides GM. Die Chemie und der Wurm: Caenorhabditis elegans als Plattform für das Zusammenführen von chemischer und biologischer Forschung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Ed Engl 2011; 50:4774-807. [DOI: 10.1002/anie.201005461] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/15/2022]
|
30
|
Rajagopalan J, Saif MTA. MEMS Sensors and Microsystems for Cell Mechanobiology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2011; 21:54002-54012. [PMID: 21886944 PMCID: PMC3163288 DOI: 10.1088/0960-1317/21/5/054002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Forces generated by cells play a vital role in many cellular processes like cell spreading, motility, differentiation and apoptosis. Understanding the mechanics of single cells is essential to delineate the link between cellular force generation/sensing and function. MEMS sensors, because of their small size and fine force/displacement resolution, are ideal for force and displacement sensing at the single cell level. In addition, the amenability of MEMS sensors to batch fabrication methods allows the study of large cell populations simultaneously, leading to robust statistical studies. In this review, we discuss various microsystems used for studying cell mechanics and the insights on cell mechanical behavior that have resulted from their use. The advantages and limitations of these microsystems for biological studies are also outlined.
Collapse
Affiliation(s)
- Jagannathan Rajagopalan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street Urbana IL -61801 USA ,
| | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street Urbana IL -61801 USA ,
| |
Collapse
|
31
|
Ye C, Li M, Xue M, Shen W, Cao T, Song Y, Jiang L. Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03176c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Shi W, Wen H, Lin B, Qin J. Microfluidic Platform for the Study of Caenorhabditis elegans. MICROFLUIDICS 2011; 304:323-38. [DOI: 10.1007/128_2011_145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Crane MM, Chung K, Stirman J, Lu H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. LAB ON A CHIP 2010; 10:1509-17. [PMID: 20383347 PMCID: PMC8086031 DOI: 10.1039/b927258e] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper reviews the technologies that have been invented in the last few years on high-throughput phenotyping, imaging, screening, and related techniques using microfluidics. The review focuses on the technical challenges and how microfluidics can help to solve these existing problems, specifically discussing the applications of microfluidics to multicellular model organisms. The challenges facing this field include handling multicellular organisms in an efficient manner, controlling the microenvironment and precise manipulation of the local conditions to allow the phenotyping, screening, and imaging of the small animals. Not only does microfluidics have the proper length scale for manipulating these biological entities, but automation has also been demonstrated with these systems, and more importantly the ability to deliver stimuli or alter biophysical/biochemical conditions to the biological entities with good spatial and temporal controls. In addition, integration with and interfacing to other hardware/software allows quantitative approaches. We include several successful examples of microfluidics solving these high-throughput problems. The paper also highlights other applications that can be developed in the future.
Collapse
Affiliation(s)
- Matthew M. Crane
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
| | - Kwanghun Chung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
| | - Jeffrey Stirman
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA
- Tel: 1-404-894-8473;
| |
Collapse
|
34
|
Abstract
The study of small-size animal models, such as the roundworm C. elegans, has provided great insight into several in vivo biological processes, extending from cell apoptosis to neural network computing. The physical manipulation of this micron-sized worm has always been a challenging task. Here, we discuss the applications, capabilities and future directions of a new family of worm manipulation tools, the 'worm chips'. Worm chips are microfabricated devices capable of precisely manipulating single worms or a population of worms and their environment. Worm chips pose a paradigm shift in current methodologies as they are capable of handling live worms in an automated fashion, opening up a new direction in in vivo small-size organism studies.
Collapse
Affiliation(s)
- Nikos Chronis
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109, USA
| |
Collapse
|
35
|
Ben-Yakar A, Chronis N, Lu H. Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr Opin Neurobiol 2009; 19:561-7. [PMID: 19896831 PMCID: PMC3107678 DOI: 10.1016/j.conb.2009.10.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/02/2009] [Indexed: 01/28/2023]
Abstract
The nematode Caenorhabditis elegans is a widely adopted model organism for studying various neurobiological processes at the molecular and cellular level in vivo. With a small, flexible, and continuously moving body, the manipulation of C. elegans becomes a challenging task. In this review, we highlight recent advances in microfluidic technologies for the manipulation of C. elegans. These new family of microfluidic chips are capable of handling single or populations of worms in a high-throughput fashion and accurately controlling their microenvironment. So far, they have been successfully used to study neural circuits and behavior, to perform large-scale phetotyping and morphology-based screens as well as to understand axon regeneration after injury. We envision that microfluidic chips can further be used to study different aspects of the C. elegans nervous system, extending from fundamental understanding of behavioral dynamics to more complicated biological processes such as neural aging and learning and memory.
Collapse
Affiliation(s)
- Adela Ben-Yakar
- Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78705, USA
| | | | | |
Collapse
|