1
|
Redolfi-Bristol D, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis. NANOSCALE 2024; 16:9985-9997. [PMID: 38695726 DOI: 10.1039/d4nr00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
2
|
Sezer G, Onses MS, Sakir M, Sahin F, Çamdal A, Sezer Z, Inal A, Ciftci Z. Indomethacin prevents TGF-β-induced epithelial-to-mesenchymal transition in pancreatic cancer cells; evidence by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121493. [PMID: 35728400 DOI: 10.1016/j.saa.2022.121493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very low survival rate due to the late detection and poor response to chemotherapy. Epithelial-to-mesenchymal transition (EMT) is considered an important step in tumor progression with regard to invasion and metastasis, and Transforming Growth Factor-beta (TGF-β) signaling has been shown to play an important role in EMT. Therefore, we aimed to investigate whether indomethacin, an anti-inflammatory and analgesic drug, has any effect on TGF-β-induced EMT in pancreatic cancer cell line and analyze the changes in their molecular structures by Raman spectroscopy and other molecular techniques. Indomethacin treated Panc-1 cells were analyzed with Raman spectroscopy, quantitative polymerase chain reaction and immunofluorescence techniques after the induction of EMT with TGF-β. The exposure of Panc-1 cells to TGF-β resulted in characteristic morphological alterations of EMT, and indomethacin inhibits TGF-β-induced EMT through up-regulation of E-cadherin and down-regulation of N-cadherin and Snail expressions. Raman spectroscopy supported by principal component analysis (PCA) confirmed the effects of both TGF-β and indomethacin. Raman spectra were further analyzed using the PCA-assisted vector machine algorithm and it was seen that the data could be classified with 97.6% accuracy. Our results suggest that indomethacin may have a significant effect on PDAC metastasis, and Raman spectroscopy was able to probe EMT-related changes and the efficacy of indomethacin in a short time and without the need for specific reagents compared to other molecular techniques.
Collapse
Affiliation(s)
- Gulay Sezer
- Department of Pharmacology, Faculty of Medicine, University of Erciyes, Kayseri, Turkiye; Genkok Genome and Stem Cell Centre, University of Erciyes, Kayseri, Turkiye.
| | - Mustafa Serdar Onses
- Department of Materials Science and Engineering, University of Erciyes, Kayseri, Turkiye; ERNAM - Nanotechnology Application and Research Center, University of Erciyes, Kayseri, Turkiye
| | - Menekse Sakir
- Department of Materials Science and Engineering, University of Erciyes, Kayseri, Turkiye; ERNAM - Nanotechnology Application and Research Center, University of Erciyes, Kayseri, Turkiye
| | - Furkan Sahin
- ERNAM - Nanotechnology Application and Research Center, University of Erciyes, Kayseri, Turkiye
| | - Ali Çamdal
- Department of Electronic Engineering, Trinity College Dublin, University of Dublin College Green Dublin 2, Ireland
| | - Zafer Sezer
- Department of Pharmacology, Faculty of Medicine, University of Erciyes, Kayseri, Turkiye
| | - Ahmet Inal
- Department of Pharmacology, Faculty of Medicine, University of Erciyes, Kayseri, Turkiye
| | - Zeynep Ciftci
- Department of Pharmacology, Faculty of Medicine, University of Erciyes, Kayseri, Turkiye
| |
Collapse
|
3
|
Zhao Y, Zhang W, Van Devener B, Bunch TD, Zhou A, Isom SC. In-situ characterization of porcine fibroblasts in response to silver ions by Raman spectroscopy and liquid scanning transmission electron microscopy. Talanta 2022; 246:123522. [DOI: 10.1016/j.talanta.2022.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022]
|
4
|
Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev 2022; 184:114184. [PMID: 35306126 DOI: 10.1016/j.addr.2022.114184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a very sensitive technique offering unique opportunities for detection and identification of molecules and molecular structures at extremely low concentrations even in complex sample matrixes. Since a nanostructured noble metal surface is required for the enhancement of Raman scattering, the acquired spectral information naturally originates from nanometer size domains making it a nanospectroscopic technique by breaking the diffraction limit of light. In this review, first Raman spectroscopy, its comparison to other related techniques, its modes and instrumentation are briefly introduced. Then, the SERS mechanism, substrates and the parameters influencing a SERS experiment are discussed. Finally, its applications in pharmaceuticals including drug discovery, drug metabolism, multifunctional chemo-photothermal-therapy-delivery-release-imaging, drug stability and drug/metabolite detection in complex biological samples are summarized and elaborated.
Collapse
|
5
|
Huang X, Song D, Li J, Qin J, Wang D, Li J, Wang H, Wang S. Validating Multivariate Classification Algorithms in Raman Spectroscopy-Based Osteosarcoma Cellular Analysis. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, Shaanxi, China
| | - Dongliang Song
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, Shaanxi, China
| | - Jie Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, Shaanxi, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Difan Wang
- School of Life, Xidian University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haifeng Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, Shaanxi, China
| | - Shuang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Li J, Li J, Wang H, Qin J, Zeng H, Wang K, Wang S. Unveiling osteosarcoma responses to DAPT combined with cisplatin by using confocal Raman microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5514-5528. [PMID: 34692198 PMCID: PMC8515968 DOI: 10.1364/boe.432933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to clarify the dose- and time-dependent effect of the γ-secretase inhibitor (DAPT) combined with cisplatin on osteosarcoma (OS) cells, evaluated by confocal Raman microspectral imaging (CRMI) technology. The intracellular composition significantly changed after combined drug action compared with the sole cisplatin treatment, proving the synergistic effect of DAPT combined with cisplatin on OS cells. The principal component analysis-linear discriminant analysis revealed the main compositional variations by distinguishing spectral characteristics. K-means cluster and univariate imaging were used to visualize the changes in subcellular morphology and biochemical distribution. The results showed that the increase of the DAPT dose and cisplatin treatment time in the combination treatment induced the division of the nucleus in OS cells, and other organelles also showed significant physiological changes compared with the effect of sole cisplatin treatment. After understanding the cellular response to the combined drug treatment at a molecular level, the achieved results provide an experimental fact for developing suitable individualized tumor treatment protocols.
Collapse
Affiliation(s)
- Jie Li
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
- These authors contributed equally to this work
| | - Jing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
- These authors contributed equally to this work
| | - Haifeng Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jie Qin
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haishan Zeng
- Imaging Unit-Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, V5Z1L3, Canada
| | - Kaige Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
7
|
Yang C, Yang C, Yarden Y, To KKW, Fu L. The prospects of tumor chemosensitivity testing at the single-cell level. Drug Resist Updat 2021; 54:100741. [PMID: 33387814 DOI: 10.1016/j.drup.2020.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023]
Abstract
Tumor chemosensitivity testing plays a pivotal role in the optimal selection of chemotherapeutic regimens for cancer patients in a personalized manner. High-throughput drug screening approaches have been developed but they failed to take into account intratumor heterogeneity and therefore only provided limited predictive power of therapeutic response to individual cancer patients. Single cancer cell drug sensitivity testing (SCC-DST) has been recently developed to evaluate the variable sensitivity of single cells to different anti-tumor drugs. In this review, we discuss how SCC-DST overcomes the obstacles of traditional drug screening methodologies. We outline critical procedures of SCC-DST responsible for single-cell generation and sorting, cell-drug encapsulation on a microfluidic chip and detection of cell-drug interactions. In SCC-DST, droplet-based microfluidics is emerging as an important platform that integrated various assays and analyses for drug susceptibility tests for individual patients. With the advancement of technology, both fluorescence imaging and label-free analysis have been used for detecting single cell-drug interactions. We also discuss the feasibility of integrating SCC-DST with single-cell RNA sequencing to unravel the mechanisms leading to drug resistance, and utilizing artificial intelligence to facilitate the analysis of various omics data in the evaluation of drug susceptibility. SCC-DST is setting the stage for better drug selection for individual cancer patients in the era of precision medicine.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Caibo Yang
- Guangzhou Handy Biotechnology CO., LTD, Guangzhou, 510000, China.
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Guangzhou Handy Biotechnology CO., LTD, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Li J, Li J, Qin J, Zeng H, Wang K, Wang D, Wang S. Confocal Raman microspectroscopic analysis on the time-dependent impact of DAPT, a γ-secretase inhibitor, to osteosarcoma cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118372. [PMID: 32416170 DOI: 10.1016/j.saa.2020.118372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Confocal Raman microspectroscopy (CRM) analysis provides subcellular compositional and morphology related information. In this study, we used CRM in conjunction with multivariate statistical analysis to elucidate the time-dependent impact of the γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) of osteosarcoma (OS) cells. The interactions of DAPT (20 μM) with a murine OS cell line K7M2 at 24 and 48 h were monitored. The spectral characteristics of drug action were identified to illustrate the cellular compositional alterations, showing that DAPT induced apoptosis by reducing the protein, lipid and nucleic acid content and structural changes. Multivariate algorithms, principal component analysis (PCA) and linear discriminant analysis (LDA) revealed a clear separation among cells in the untreated control (UT), 24H (DAPT-treated for 24 h), and 48H (DAPT-treated for 48 h) groups, achieving sensitivities of 100%, 96%, 100% and specificities of 98%, 100%, 100%, respectively. After point-scanned spectral imaging, K-means clustering analysis (KCA) was further used to visualize sub-cellular morphological changes and the underlying spectral characteristics in a temporal sequence. Compared with the UT group, Raman imaging results exhibited gradually increased nuclear division of OS cells with DAPT treatment duration extension, along with changes in the physiology of other organelles within the cell. By providing a unique perspective for understanding the temporary cellular responses to DAPT at molecular level, the achieved results form the foundation of strategies for the application of CRM and other Raman-based techniques for studying the therapeutic responses of other anticancer agents in cancer model systems.
Collapse
Affiliation(s)
- Jie Li
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, BC V5Z1L3, Canada
| | - Kaige Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Difan Wang
- School of Life, Xidian University, Xi'an, Shaanxi 710071, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
9
|
Zhao Y, Tang P, He X, Xie Y, Cheng W, Xing X, Xing M, Lu X, Liu S, Zhong L. Study on the precise mechanism of Mitoxantrone-induced Jurkat cell apoptosis using surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117718. [PMID: 31818647 DOI: 10.1016/j.saa.2019.117718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Mitoxantrone (MTX), one representative of anthraquinone ring anticancer drugs, reveals excellent anticancer effects in acute leukemia. Though current studies have shown that MTX-induced acute leukemia cell apoptosis is implemented by inserting into DNA, and then leading to DNA breakage and the subsequent transcription termination, but the specific location information of MTX embedded in DNA remains unknown. In this study, combining surface enhanced Raman scattering (SERS) and principal component analysis (PCA), we achieve the biochemical changes of MTX-induced Jurkat cell apoptosis and the location information of MTX embedded in DNA. In contrast, we also present the corresponding result of Daunorubicin (DNR)-induced Jurkat cell apoptosis. It is found that the location of MTX embedded in DNA of Jurkat cell is different from DNR, in which the action site of MTX is mainly implemented by blocking and destroying AT base pairs while DNR is performed by embedding and destroying GC base pairs and then the base A. Clearly, this achieved information is very useful for the designing and modification of anthraquinone ring anticancer drugs.
Collapse
Affiliation(s)
- Yao Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Ping Tang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xuanmeng He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Meishuang Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Li J, Wang R, Qin J, Zeng H, Wang K, He Q, Wang D, Wang S. Confocal Raman Spectral Imaging Study of DAPT, a γ-secretase Inhibitor, Induced Physiological and Biochemical Reponses in Osteosarcoma Cells. Int J Med Sci 2020; 17:577-590. [PMID: 32210707 PMCID: PMC7085205 DOI: 10.7150/ijms.43506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Confocal Raman microspectral imaging was adopted to elucidate the cellular drug responses of osteosarcoma cells (OC) to N-[N-(3, 5-difluorophenyl acetyl)-L-alanyl]-sphenylglycine butyl ester (DAPT), a γ-secretase inhibitor, by identifying the drug induced subcellular compositional and structural changes. Methods: Spectral information were acquired from cultured osteosarcoma cells treated with 0 (Untreated Group, UT), 10 (10 μM DAPT treated, 10T), 20 μM (20 μM DAPT treated, 20T) DAPT for 24 hours. A one-way ANOVA and Tukey's honest significant difference (HSD) post hoc multiple test were sequentially applied to address spectral features among three groups. Multivariate algorithms such as K-means clustering analysis (KCA) and Principal component analysis (PCA) were used to highlight the structural and compositional differences, while, univariate imaging was applied to illustrate the distribution pattern of certain cellular components after drug treatment. Results: Major biochemical changes in DAPT-induced apoptosis came from changes in the content and structure of proteins, lipids, and nucleic acids. By adopted multivariate algorithms, the drug induced cellular changes was identified by the morphology and spectral characteristics between untreated cells and treated cells, testified that DAPT mainly acted in the nuclear region. With the increase of the drug concentration, the content of main subcellular compositions, such nucleic acid, protein, and lipid decreased. In an addition, DAPT-induced nuclear fragmentation and apoptosis was depicted by the univariate Raman image of major cellular components (nucleic acids, proteins and lipids). Conclusions: The achieved Raman spectral and imaging results illustrated detailed DAPT-induced subcellular compositional and structural variations as a function of drug dose. Such observations can not only explain drug therapeutic mechanisms of OC DAPT treatment, and also provide new insights for accessing the medicine curative efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Jie Li
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Rui Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, BC, V5Z1L3, Canada
| | - Kaige Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qingli He
- Department of Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Difan Wang
- School of Life, Xidian University, Xi'an, Shaanxi 710071, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
11
|
Tang P, Cheng W, He X, Zhang Q, Zhong J, Lu X, Liu S, Zhong L. Raman spectrum spectral imaging revealing the molecular mechanism of Berberine-induced Jurkat cell apoptosis and the receptor-mediated Berberine delivery system. BIOMEDICAL OPTICS EXPRESS 2019; 10:1581-1600. [PMID: 31061758 PMCID: PMC6484975 DOI: 10.1364/boe.10.001581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Berberine (BBR), a traditional Chinese herb extract medicine, reveals some anticancer effects in leukemia, but it remains controversial about the molecular mechanism of BBR-induced leukemia cell apoptosis. In this study, combining Raman spectrum and spectral imaging, both the biochemical changes of BBR-induced Jurkat cell apoptosis and the precise distribution of BBR in single cell are presented. In contrast, we also show the corresponding results of Jatrorrhizine (JTZ) and Palmatine (PMT), two structural analogues of BBR. It is found that all three structural analogues can induce cell apoptosis by breaking DNA and the main action sites are located in phosphate backbone and base pair groups, but their action on cell cycle are different, in which BBR leads to the S phase arrest while JTZ and PMT are on the G2 phase arrest. Moreover, from the Raman spectra of DNA treated with different drugs, we find that the content of phosphate backbone and base pair groups in BBR-treated DNA are larger than those in JTZ or PMT. And this result reflects the strong capability of BBR breaking DNA backbone relative to JTZ or PMT, suggesting that the existence of methylene-dioxy on the 2, 3 units of A ring on the quinoline ring can greatly enhance the capability of BBR breaking DNA backbone, so the action effect of BBR-induced Jurkat cell apoptosis is better than those of PMT or JTZ. Further, by using Raman spectral imaging approach, we achieve the precise distribution of BBR in single cell, it is found that the receptor-mediated BBR targeting delivery based single-wall carbon nanotube and folic acid (SWNT/FA) reveals excellent performance in BBR targeting delivery relative to the conventional BBR diffusion approach. Importantly, these results demonstrate that Raman spectrum and spectral imaging should be a powerful tool to study the molecular mechanism of drug-induced cell apoptosis and evaluate the efficiency of drug delivery system.
Collapse
Affiliation(s)
- Ping Tang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xuanmeng He
- Brain academy of South China Normal University, Guangzhou 510631, China
| | - Qinnan Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jing Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Rzhevskii A. The Recent Advances in Raman Microscopy and Imaging Techniques for Biosensors. BIOSENSORS-BASEL 2019; 9:bios9010025. [PMID: 30759840 PMCID: PMC6468448 DOI: 10.3390/bios9010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023]
Abstract
Raman microspectroscopy is now well established as one of the most powerful analytical techniques for a diverse range of applications in physical (material) and biological sciences. Consequently, the technique provides exceptional analytical opportunities to the science and technology of biosensing due to its capability to analyze both parts of a biosensor system—biologically sensitive components, and a variety of materials and systems used in physicochemical transducers. Recent technological developments in Raman spectral imaging have brought additional possibilities in two- and three-dimensional (2D and 3D) characterization of the biosensor’s constituents and their changes on a submicrometer scale in a label-free, real-time nondestructive method of detection. In this report, the essential components and features of a modern confocal Raman microscope are reviewed using the instance of Thermo Scientific DXRxi Raman imaging microscope, and examples of the potential applications of Raman microscopy and imaging for constituents of biosensors are presented.
Collapse
|
13
|
Zhang Y, Jin L, Xu J, Yu Y, Shen L, Gao J, Ye A. Dynamic characterization of drug resistance and heterogeneity of the gastric cancer cell BGC823 using single-cell Raman spectroscopy. Analyst 2018; 143:164-174. [PMID: 29165440 DOI: 10.1039/c7an01287j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drug resistance and heterogeneous characteristics of human gastric carcinoma cells (BGC823) under the treatment of paclitaxel (PTX) were investigated using single-cell Raman spectroscopy (RS). RS of normal and drug-resistant BGC823 cells (DR-BGC823) were collected and analyzed using arithmetic, statistic and individual spectrum analysis. The dynamic effects of paclitaxel (PTX) in normal and DR-BGC823 cells were evaluated dynamically. The RS intensity changed with PTX over time and produced distinct different results for the two types of cells. The average RS intensities of the normal BGC823 cells initially decreased and then increased under PTX treatment after 24 hours. In contrast, upon exposure to PTX, the average intensity of the DR-BGC823 cells initially increased within 12 hours and then gradually decreased and approached a steady state. The temporal variation of the typical component in the cells was analyzed by comparing the ratios between Raman bands. More importantly, the heterogeneous characteristics of the BGC823 cells under PTX treatment were quantified and clustered using hierarchical trees combined with RS intensity changes. The 'outlier' cells related to drug resistance were discriminated. The heterogeneity of the normal BGC823 cells under drug treatment gradually appeared over time, and was evaluated with the eigenvalues of principal component analysis (PCA). Our study indicates that single-cell RS may be useful in systematically and dynamically characterizing the drug response of cancer cells at the single-cell level.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics Engineering and Computer Science, Peking University, No. 5 Yiheyuan Road, Beijing, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Xu J, Yu Y, Shang W, Ye A. Anti-Cancer Drug Sensitivity Assay with Quantitative Heterogeneity Testing Using Single-Cell Raman Spectroscopy. Molecules 2018; 23:molecules23112903. [PMID: 30405051 PMCID: PMC6278387 DOI: 10.3390/molecules23112903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
A novel anti-cancer drug sensitivity testing (DST) approach was developed based on in vitro single-cell Raman spectrum intensity (RSI). Generally, the intensity of Raman spectra (RS) for a single living cell treated with drugs positively relates to the sensitivity of the cells to the drugs. In this study, five cancer cell lines (BGC 823, SGC 7901, MGC 803, AGS, and NCI-N87) were exposed to three cytotoxic compounds or to combinations of these compounds, and then they were evaluated for their responses with RSI. The results of RSI were consistent with conventional DST methods. The parametric correlation coefficient for the RSI and Methylthiazolyl tetrazolium assay (MTT) was 0.8558 ± 0.0850, and the coefficient of determination was calculated as R² = 0.9529 ± 0.0355 for fitting the dose⁻response curve. Moreover, RSI data for NCI-N87 cells treated by trastuzumab, everolimus (cytostatic), and these drugs in combination demonstrated that the RSI method was suitable for testing the sensitivity of cytostatic drugs. Furthermore, a heterogeneity coefficient H was introduced for quantitative characterization of the heterogeneity of cancer cells treated by drugs. The largest possible variance between RSs of cancer cells were quantitatively obtained using eigenvalues of principal component analysis (PCA). The ratio of H between resistant cells and sensitive cells was greater than 1.5, which suggested the H-value was effective to describe the heterogeneity of cancer cells. Briefly, the RSI method might be a powerful tool for simple and rapid detection of the sensitivity of tumor cells to anti-cancer drugs and the heterogeneity of their responses to these drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics Engineering and Computer Science, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
- Beijing Institute of Biomedicine, No.15 Xinjiangongmen Road, Beijing 100091, China.
| | - Jingjing Xu
- Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
| | - Yuezhou Yu
- Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
| | - Wenhao Shang
- Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics Engineering and Computer Science, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
15
|
Jung GB, Huh JE, Lee HJ, Kim D, Lee GJ, Park HK, Lee JD. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5703-5718. [PMID: 30460157 PMCID: PMC6238932 DOI: 10.1364/boe.9.005703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated the apoptotic effect of bee venom (BV) on human MDA-MB-231 breast cancer cells using Raman spectroscopy and principal component analysis (PCA). Biochemical changes in cancer cells were monitored following BV treatment; the results for different concentrations and treatment durations differed markedly. Significantly decreased Raman vibrations for DNA and proteins were observed for cells treated with 3.0 µg/mL BV for 48 h compared with those of control cells. These results suggest denaturation and degradation of proteins and DNA fragmentation (all cell death-related processes). The Raman spectroscopy results agreed with those of atomic force microscopy and conventional biological tests such as viability, TUNEL, and western blot assays. Therefore, Raman spectroscopy, with PCA, provides a noninvasive, label-free tool for assessment of cellular changes on the anti-cancer effect of BV.
Collapse
Affiliation(s)
- Gyeong Bok Jung
- Department of Physics Education, Chosun University, Gwangju, 61452, South Korea
- These authors contributed equally to this work
| | - Jeong-Eun Huh
- East-west Bone & Joint Research Institute, Kyung Hee University, 149, Sangil-dong, Gangdong-gu, Seoul, South Korea
- These authors contributed equally to this work
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Dohyun Kim
- Department of Industrial and Management Engineering, Myongji University, Gyeonggi-do 17058, South Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Dong Lee
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
16
|
Simon I, Hedesiu M, Virag P, Salmon B, Tarmure V, Baciut M, Bran S, Jacobs R, Falamas A. Raman Micro-Spectroscopy of Dental Pulp Stem Cells: An Approach to Monitor the Effects of Cone Beam Computed Tomography Low-Dose Ionizing Radiation. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1516771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ioana Simon
- Department of Orthodontics and Dentofacial Orthopedics, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Oral Radiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Piroska Virag
- Laboratory of Radiotherapy, Radiobiology and Tumor Biology, The Oncology Institute “Prof. Dr. Ion Chiricuta'', Cluj-Napoca, Romania
| | - Benjamin Salmon
- EA2496, Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cité, France
| | - Viorica Tarmure
- Department of Orthodontics, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reinhilde Jacobs
- Department of Imaging and Pathology, Faculty of Medicine, OMFS IMPATH Research Group, KU Leuven, Leuven, Belgium
- Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
17
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
18
|
Bruno C, Patin F, Bocca C, Nadal-Desbarats L, Bonnier F, Reynier P, Emond P, Vourc'h P, Joseph-Delafont K, Corcia P, Andres CR, Blasco H. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument? J Pharm Biomed Anal 2017; 148:273-279. [PMID: 29059617 DOI: 10.1016/j.jpba.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. DESIGN AND METHODS We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. RESULTS Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. CONCLUSION This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.
Collapse
Affiliation(s)
- C Bruno
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - F Patin
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - C Bocca
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | | | - F Bonnier
- Université François-Rabelais de Tours, Faculté de Pharmacie, EA 6295 Nanomédicaments et Nanosondes, Tours, France
| | - P Reynier
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P Emond
- UMR INSERM U930, Université François Rabelais de Tours, France
| | - P Vourc'h
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - K Joseph-Delafont
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - P Corcia
- UMR INSERM U930, Université François Rabelais de Tours, France; Centre de Ressources et de Compétences SLA, CHU Tours, France; Fédération des Centres de Ressources et de Compétences de Tours et Limoges, Litorals, France
| | - C R Andres
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - H Blasco
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France.
| |
Collapse
|
19
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
20
|
Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev 2015; 89:57-70. [PMID: 26144996 DOI: 10.1016/j.addr.2015.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Raman micro-spectroscopy provides a convenient non-destructive and location-specific means of probing cellular physiology and tissue physiology at sub-micron length scales. By probing the vibrational signature of molecules and molecular groups, the distribution and metabolic products of small molecules that cannot be labeled with fluorescent dyes can be analyzed. This method works well for molecular concentrations in the micro-molar range and has been demonstrated as a valuable tool for monitoring drug-cell interactions. If the small molecule of interest does not contain groups that would allow for a discrimination against cytoplasmic background signals, "labeling" of the molecule by isotope substitution or by incorporating other unique small groups, e.g. alkynes provides a stable signal even for time-lapse imaging such compounds in living cells. In this review we highlight recent progress in assessing the physiology of cells and tissue by Raman spectroscopy and imaging.
Collapse
|
21
|
Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 2015; 15:773-87. [PMID: 25872466 DOI: 10.1586/14737159.2015.1036744] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last decade, Raman spectroscopy has gained more and more interest in research as well as in clinical laboratories. As a vibrational spectroscopy technique, it is complementary to the also well-established infrared spectroscopy. Through specific spectral patterns, substances can be identified and molecular changes can be observed with high specificity. Because of a high spatial resolution due to an excitation wavelength in the visible and near-infrared range, Raman spectroscopy combined with microscopy is very powerful for imaging biological samples. Individual cells can be imaged on the subcellular level. In vivo tissue examinations are becoming increasingly important for clinical applications. In this review, we present currently ongoing research in different fields of medical diagnostics involving linear Raman spectroscopy and imaging. We give a wide overview over applications for the detection of atherosclerosis, cancer, inflammatory diseases and pharmacology, with a focus on developments over the past 5 years. Conclusions drawn from Raman spectroscopy are often validated by standard methods, for example, histopathology or PCR. The future potential of Raman spectroscopy and its limitations are discussed in consideration of other non-linear Raman techniques.
Collapse
Affiliation(s)
- Katharina Eberhardt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
22
|
Zhang D, Feng Y, Zhang Q, Su X, Lu X, Liu S, Zhong L. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 141:216-222. [PMID: 25681805 DOI: 10.1016/j.saa.2015.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.
Collapse
Affiliation(s)
- Daosen Zhang
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Yanyan Feng
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Qinnan Zhang
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Xin Su
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Xiaoxu Lu
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Shengde Liu
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Liyun Zhong
- Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
23
|
Sensing biophysical alterations of human lung epithelial cells (A549) in the context of toxicity effects of diesel exhaust particles. Cell Biochem Biophys 2014; 67:1147-56. [PMID: 23712864 DOI: 10.1007/s12013-013-9618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diesel exhaust particles (DEP) in urban air are associated with numerous respiratory diseases. The role of underlying biomechanics in cytotoxicity of individual lung cells relating to DEP exposure is unclear. In this study, atomic force microscopy (AFM), confocal Raman microspectroscopy (RM), and fluorescence (FL) microscopy were used to monitor alterations of single A549 cells exposed to DEP. Results revealed a significant decrease in membrane surface adhesion force and a significant change in cell elasticity as a function of DEP-cell interaction time, and the dynamic changes in cellular biocomponents which were reflected by changes of characteristic Raman bands: 726 cm(-1) (adenine), 782 cm(-1) (uracil, cytosine, thymine), 788 cm(-1) (O-P-O), 1006 cm(-1) (phenylalanine), and 1320 cm(-1) (guanine) after DEP exposure. These findings suggest that the combination of multi-instruments (e.g., AFM/FL) may offer an exciting platform for investigating the roles of biophysical and biochemical responses to particulate matter-induced cell toxicity.
Collapse
|
24
|
Ichimura T, Chiu LD, Fujita K, Kawata S, Watanabe TM, Yanagida T, Fujita H. Visualizing cell state transition using Raman spectroscopy. PLoS One 2014; 9:e84478. [PMID: 24409302 PMCID: PMC3883674 DOI: 10.1371/journal.pone.0084478] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022] Open
Abstract
System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.
Collapse
Affiliation(s)
- Taro Ichimura
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
| | - Liang-da Chiu
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Satoshi Kawata
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
- Nanophotonics Laboratory, Riken, Wako, Saitama, Japan
| | | | - Toshio Yanagida
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujita
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
25
|
Hardelauf H, Waide S, Sisnaiske J, Jacob P, Hausherr V, Schöbel N, Janasek D, van Thriel C, West J. Micropatterning neuronal networks. Analyst 2014; 139:3256-64. [DOI: 10.1039/c4an00608a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and effective method for patterning primary neuronal networks and circuits.
Collapse
Affiliation(s)
- Heike Hardelauf
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Sarah Waide
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Julia Sisnaiske
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Peter Jacob
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Vanessa Hausherr
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Nicole Schöbel
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors – IfADo
- 44139 Dortmund, Germany
| | - Jonathan West
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V
- 44139 Dortmund, Germany
- Institute for Life Sciences
- University of Southampton
- , UK
| |
Collapse
|
26
|
Schie IW, Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. APPLIED SPECTROSCOPY 2013; 67:813-28. [PMID: 23876720 DOI: 10.1366/12-06971] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Raman spectroscopy is a powerful biochemical analysis technique that allows for the dynamic characterization and imaging of living biological cells in the absence of fluorescent stains. In this review, we summarize some of the most recent developments in the noninvasive biochemical characterization of single cells by spontaneous Raman scattering. Different instrumentation strategies utilizing confocal detection optics, multispot, and line illumination have been developed to improve the speed and sensitivity of the analysis of single cells by Raman spectroscopy. To analyze and visualize the large data sets obtained during such experiments, sophisticated multivariate statistical analysis tools are necessary to reduce the data and extract components of interest. We highlight the most recent applications of single cell analysis by Raman spectroscopy and their biomedical implications that have enabled the noninvasive characterization of specific metabolic states of eukaryotic cells, the identification and characterization of stem cells, and the rapid identification of bacterial cells. We conclude the article with a brief look into the future of this rapidly evolving research area.
Collapse
Affiliation(s)
- Iwan W Schie
- Center For Biophotonics, Science, and Technology, University of California-Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
27
|
Hvastkovs EG, Schenkman JB, Rusling JF. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:79-105. [PMID: 22482786 PMCID: PMC3399491 DOI: 10.1146/annurev.anchem.111808.073659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858;
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
| | - James F. Rusling
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
28
|
A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy. Anal Bioanal Chem 2012; 403:745-53. [PMID: 22399121 PMCID: PMC3336052 DOI: 10.1007/s00216-012-5887-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/13/2022]
Abstract
Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models. Raman microspectroscopy in combination with powerful chemometric methods (e.g. artificial neural networks) indicates morphological (nucleus fragmentation) and spectral changes in Docetaxel treated breast cancer cells (MCF-7) in comparison to untreated cell samples ![]()
Collapse
|
29
|
Post-synapse model cell for synaptic glutamate receptor (GluR)-based biosensing: strategy and engineering to maximize ligand-gated ion-flux achieving high signal-to-noise ratio. SENSORS 2012; 12:1035-41. [PMID: 22368509 PMCID: PMC3279253 DOI: 10.3390/s120101035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/03/2022]
Abstract
Cell-based biosensing is a “smart” way to obtain efficacy-information on the effect of applied chemical on cellular biological cascade. We have proposed an engineered post-synapse model cell-based biosensors to investigate the effects of chemicals on ionotropic glutamate receptor (GluR), which is a focus of attention as a molecular target for clinical neural drug discovery. The engineered model cell has several advantages over native cells, including improved ease of handling and better reproducibility in the application of cell-based biosensors. However, in general, cell-based biosensors often have low signal-to-noise (S/N) ratios due to the low level of cellular responses. In order to obtain a higher S/N ratio in model cells, we have attempted to design a tactic model cell with elevated cellular response. We have revealed that the increase GluR expression level is not directly connected to the amplification of cellular responses because the saturation of surface expression of GluR, leading to a limit on the total ion influx. Furthermore, coexpression of GluR with a voltage-gated potassium channel increased Ca2+ ion influx beyond levels obtained with saturating amounts of GluR alone. The construction of model cells based on strategy of amplifying ion flux per individual receptors can be used to perform smart cell-based biosensing with an improved S/N ratio.
Collapse
|
30
|
Drescher D, Kneipp J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 2012; 41:5780-99. [DOI: 10.1039/c2cs35127g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Lin HH, Li YC, Chang CH, Liu C, Yu AL, Chen CH. Single Nuclei Raman Spectroscopy for Drug Evaluation. Anal Chem 2011; 84:113-20. [DOI: 10.1021/ac201900h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hsin-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Chang Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hao Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Chun Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alice L. Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
32
|
Liu R, Taylor DS, Matthews DL, Chan JW. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy. APPLIED SPECTROSCOPY 2010; 64:1308-1310. [PMID: 21073802 DOI: 10.1366/000370210793334972] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report on the development and characterization of a multifocal laser tweezers Raman spectroscopy (M-LTRS) technique for parallel Raman spectral acquisition of individual biological cells. Using a 785-nm diode laser and a time-sharing laser trapping scheme, multiple laser foci are generated to optically trap single polystyrene beads and suspension cells in a linear pattern. Raman signals from the trapped objects are simultaneously projected through the slit of a spectrometer and spatially resolved on a charge-coupled device (CCD) detector with minimal signal crosstalk between neighboring cells. By improving the rate of single-cell analysis, M-LTRS is expected to be a valuable method for studying single-cell dynamics of cell populations and for the development of high-throughput Raman based cytometers.
Collapse
Affiliation(s)
- Rui Liu
- NSF Center for Biophotonics Science and Technology, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
33
|
Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2010; 1:1138-1147. [PMID: 21258536 PMCID: PMC3018077 DOI: 10.1364/boe.1.001138] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 05/07/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing.
Collapse
Affiliation(s)
- Tobias J. Moritz
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Douglas S. Taylor
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Medical Center, 2516 Stockton Blvd, Sacramento, CA 95817, USA
| | - Denise M. Krol
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- Department of Applied Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - John Fritch
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| | - James W. Chan
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| |
Collapse
|
34
|
Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 2010; 398:2493-504. [DOI: 10.1007/s00216-010-3850-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/09/2010] [Accepted: 05/13/2010] [Indexed: 01/09/2023]
|