1
|
Morgan TEF, Grant EK, Shaw RC, Waddell LJN, Henry MC, McErlain H, Alcaide-Corral CJ, Pimlott SL, Tavares AAS, Sutherland A. Synthesis and evaluation of 6-arylaminobenzamides as positron emission tomography imaging ligands for the sphingosine-1-phosphate-5 receptor. RSC Med Chem 2025; 16:1235-1249. [PMID: 39816495 PMCID: PMC11729640 DOI: 10.1039/d4md00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
The sphingosine-1-phosphate-5 (S1P5) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P5 receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P5 modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS). Herein, we report the synthesis and preliminary evaluation of a series of fluorinated 6-arylaminobenzamides as positron emission tomography (PET) ligands of S1P5. Pharmacokinetic screening and binding evaluation using a [35S]GTPγS assay led to the discovery of TEFM78, a selective and high affinity agonist of S1P5. Radiosynthesis of [18F]TEFM78 allowed pilot PET imaging studies in an animal model, which showed that [18F]TEFM78 can cross the blood brain barrier with good uptake in rat brain and spinal cord.
Collapse
Affiliation(s)
- Timaeus E F Morgan
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
- Edinburgh Imaging, University of Edinburgh 47 Little France Crescent Edinburgh EH16 4TJ UK
| | - Emma K Grant
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - Robert C Shaw
- Edinburgh Imaging, University of Edinburgh 47 Little France Crescent Edinburgh EH16 4TJ UK
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh 47 Little France Crescent Edinburgh EH16 4TJ UK
| | - Lachlan J N Waddell
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - Martyn C Henry
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - Holly McErlain
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust Glasgow G12 OYN UK
| | - Adriana A S Tavares
- Edinburgh Imaging, University of Edinburgh 47 Little France Crescent Edinburgh EH16 4TJ UK
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh 47 Little France Crescent Edinburgh EH16 4TJ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
2
|
Postovalova AS, Akhmetova DR, Rogova A, Sivak KV, Gavrilova NV, Zabrodskaya YA, Rusakova VA, Tishchenko YA, Shipilovskikh SA, Timin AS. Drug carrier-assisted combined chemo- and radionuclide therapy for tumors of diverse origins: effects of therapeutic schemes on tumor responses. Biomater Sci 2025; 13:836-847. [PMID: 39801272 DOI: 10.1039/d4bm01228c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Despite the promising results in cancer treatment, standard monotherapy remains insufficient for a wide range of oncological diseases. Combined therapy can significantly improve therapeutic outcomes compared to single-agent treatments. However, identifying the optimal treatment regimen for combined therapy can be a challenging task. In this work, we developed a therapeutic strategy for the treatment of three types of tumors - CT26 colorectal cancer, B16-F10 melanoma and 4T1 breast cancer using combined chemo- and radionuclide therapy. This was achieved by loading nanoparticles with radium-223 (223Ra-labeled NPs) and the chemotherapeutic drug doxorubicin (DOX). Each tumor model (CT26, B16-F10, 4T1) was treated using different therapeutic strategies: (i) intravenous or (ii) intratumoral administration of 223Ra-labeled NPs for single radionuclide therapy; (iii) intravenous injection of DOX for chemotherapy; and (iv) intratumoral injection of 223Ra-labeled NPs combined with intravenous administration of DOX for combined therapy. Our results demonstrated that each tumor model exhibited a distinct response to single and combined therapies. Notably, the combined chemo- and radionuclide therapy (DOX = 10 mg kg-1 and 223Ra-labeled NPs = 2.7 KBq kg-1) demonstrated a significantly higher therapeutic outcome than single therapies (DOX = 10 mg kg-1 or 223Ra-labeled NPs = 2.7 KBq kg-1). In particular, the average therapeutic response was >35% for monotherapy and >60%-80% for combined therapy. Importantly, the therapeutic effect across the three tumor types followed the order B16-F10 >4T1 >CT26. Thus, this work systematically investigated the response of three tumor types to the applicability of single chemo- or radionuclide therapy and their combination.
Collapse
Affiliation(s)
- Alisa S Postovalova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
| | - Darya R Akhmetova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
- International and educational center for physics of nanostructures, ITMO University, St. Petersburg, 197101, Russia
| | - Anna Rogova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
| | - Konstantin V Sivak
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St Petersburg 197376, Russia
| | - Nina V Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
- Department of molecular biology of viruses, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St Petersburg 197376, Russia
| | - Yana A Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
- Department of molecular biology of viruses, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St Petersburg 197376, Russia
| | - Vladislava A Rusakova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
| | - Yulia A Tishchenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
| | - Sergei A Shipilovskikh
- International and educational center for physics of nanostructures, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander S Timin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, St Petersburg, 194064, Russia.
| |
Collapse
|
3
|
Guarrochena X, Anderla M, Salomon P, Feiner IVJ, Nock BA, Maina T, Mindt TL. Combination of the amide-to-triazole substitution strategy with alternative structural modifications for the metabolic stabilization of tumor-targeting, radiolabeled peptides. J Pept Sci 2025; 31:e3654. [PMID: 39262129 PMCID: PMC11602245 DOI: 10.1002/psc.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Radiolabeled peptides play a key role in nuclear medicine to selectively deliver radionuclides to malignancies for diagnosis (imaging) and therapy. Yet, their efficiency is often compromised by low metabolic stability. The use of 1,4-disubstituted 1,2,3-triazoles (1,4-Tzs) as stable amide bond bioisosteres can increase the half-life of peptides in vivo while maintaining their biological properties. Previously, the amide-to-triazole substitution strategy was used for the stabilization of the pansomatostatin radioligand [111In]In-AT2S, resulting in the mono-triazolo-peptidomimetic [111In]In-XG1, a radiotracer with moderately enhanced stability in vivo and retained ability to bind multiple somatostatin receptor (SSTR) subtypes. However, inclusion of additional 1,4-Tz led to a loss of affinity towards SST2R, the receptor overexpressed by most SSTR-positive cancers. To enhance further the stability of [111In]In-XG1, alternative modifications at the enzymatically labile position Thr10-Phe11 were employed. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide conjugates were synthesized with a 1,4-Tz (Asn5-Ψ[Tz]-Phe6) and either a β-amino acid (β-Phe11), reduced amide bond (Thr10-Ψ[NH]-Phe11), or N-methylated amino acid (N-Me-Phe11). Two of the new peptidomimetics were more stable in blood plasma in vitro than [111In]In-XG1. Yet none of them retained high affinity towards SST2R. We demonstrate for the first time the combination of the amide-to-triazole substitution strategy with alternative stabilization methods to improve the metabolic stability of tumor-targeting peptides.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Maximilian Anderla
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| | - Philipp Salomon
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| | - Irene V. J. Feiner
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”AthensGreece
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”AthensGreece
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| |
Collapse
|
4
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
5
|
Wang W, Song S, Jiao N. Late-Stage Halogenation of Complex Substrates with Readily Available Halogenating Reagents. Acc Chem Res 2024; 57:3161-3181. [PMID: 39303309 DOI: 10.1021/acs.accounts.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
ConspectusLate-stage halogenation, targeting specific positions in complex substrates, has gained significant attention due to its potential for diversifying and functionalizing complex molecules such as natural products and pharmaceutical intermediates. Utilizing readily available halogenating reagents, such as hydrogen halides (HX), N-halosuccinimides (NXS), and dichloroethane (DCE) reagents for late-stage halogenation shows great promise for expanding the toolbox of synthetic chemists. However, the reactivity of haleniums (X+, X = Cl, Br, I) can be significantly hindered by the presence of various functional groups such as hydroxyl, amine, amide, or carboxylic acid groups. The developed methods of late-stage halogenation often rely on specialized activating reagents and conditions. Recently, our group (among others) has put great efforts into addressing these challenges and unlocking the potential of these readily available HX, NXS, and DCE reagents in complex molecule halogenation. Developing new methodologies, catalyst systems, and reaction conditions further enhanced their utility, enabling the efficient and selective halogenation of intricate substrates.With the long-term goal of achieving selective halogenation of complex molecules, we summarize herein three complementary research topics in our group: (1) Efficient oxidative halogenations: Taking inspiration from naturally occurring enzyme-catalyzed oxidative halogenation reactions, we focused on developing cost-effective oxidative halogenation reactions. We found the combination of dimethyl sulfoxide (DMSO) and HX (X = Cl, Br, I) efficient for the oxidative halogenation of aromatic compounds and alkenes. Additionally, we developed electrochemical oxidative halogenation using DCE as a practical chlorinating reagent for chlorination of (hetero)arenes. (2) Halenium reagent activation: Direct electrophilic halogenation using halenium reagents is a reliable method for obtaining organohalides. However, compared to highly reactive reagents, the common and readily available NXS and dihalodimethylhydantoin (DXDMH) demonstrate relatively lower reactivity. Therefore, we focused on developing oxygen-centered Lewis base catalysts such as DMSO, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and nitromethane to activate NXS or DXDMH, enabling selective halogenation of bioactive substrates. (3) Halogenation of inert substrates: Some substrates, such as electron-poor arenes and pyridines, are inert toward electrophilic functionalization reactions. We devised several strategies to enhance the reactivity of these molecules. These strategies, characterized by mild reaction conditions, the ready availability and stability of catalysts and reagents, and excellent tolerance for various functional groups, have emerged as versatile protocols for the late-stage aromatic halogenation of drugs, natural products, and peptides. By harnessing the versatility and selectivity of these catalysts and methodologies, synthetic chemists can unlock new possibilities in the synthesis of halogenated compounds, paving the way for the development of novel functional materials and biologically active molecules.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences. Shanghai 200032, China
| |
Collapse
|
6
|
Keir G, Petrover D, Caravella C, Goenka A, Rini JN, Franceschi AM. Hybrid Somatostatin Receptor PET/MRI of the Head and Neck. Radiographics 2024; 44:e240020. [PMID: 39325659 DOI: 10.1148/rg.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Hybrid PET/MRI has the potential to transform neuro-oncologic imaging, particularly in diagnosis and treatment planning of somatostatin receptor-expressing tumors of the head and neck. Hybrid PET/MRI combines high-resolution MRI with functional information from PET, providing precise anatomic information and overcoming difficulties in localization inherent to PET alone. There is a range of tumors in the head and neck that overexpress somatostatin receptors and are therefore amenable to evaluation with somatostatin receptor PET/MRI. These include meningiomas, paragangliomas, olfactory neuroblastomas, pituitary neuroendocrine tumors, middle ear neuroendocrine tumors, and medullary thyroid carcinomas. The combination of PET and MRI is superior to either modality alone and can address several unique diagnostic challenges associated with these lesions. The authors discuss the superior capabilities of somatostatin receptor PET/MRI, including improved lesion localization, more sensitive demonstration of disease extent, enhanced surveillance, optimized radiation therapy planning, and accurate prediction of response to somatostatin analog therapy. Although there are only a few dedicated PET/MRI units available in clinical practice, commercial software is now available that can automatically fuse PET/CT data with recently acquired MRI data, increasing the availability of this approach. Radiologists should be aware of the advantages of somatostatin receptor PET/MRI in evaluation of head and neck tumors as well as the potential pitfalls of this approach so that they can accurately advise clinicians and better interpret these studies. ©RSNA, 2024 See the invited commentary by Shatzkes and Strauss in this issue.
Collapse
Affiliation(s)
- Graham Keir
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - David Petrover
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Christopher Caravella
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Anuj Goenka
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Josephine N Rini
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Ana M Franceschi
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| |
Collapse
|
7
|
Mondal H. Halogen and Chalcogen Activation by Nucleophilic Catalysis. Chemistry 2024; 30:e202402261. [PMID: 39039960 DOI: 10.1002/chem.202402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Kachore A, Aggarwal V, Bala E, Singh H, Guleria S, Sharma S, Pathan S, Saima, Selvaraj M, Assiri MA, Kumar Verma P. Recent Advances in Direct Regioselective C-H Chlorination at Aromatic and Aliphatic. Chem Asian J 2024; 19:e202400391. [PMID: 38825568 DOI: 10.1002/asia.202400391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Direct installation of key functionalities in a molecule through C-H bond activation is one of the thrust areas as well as challenging task in organic synthesis. Particularly, introduction of chlorine in a molecule imparts additional benefits for further functionalizations as well as improves the electronic behaviour such as lipophilicity and polarity towards drug development process. The chlorinated molecules have also been established as efficient biologically relevant scaffolds. Current manuscript has been focused on the direct installation of the chlorine atom at various aromatic and aliphatic positions to produce functional molecules. The key highlight of the manuscript belongs to the site selectivity (regioselectivity) for the installation of chlorine functionality. Manuscript describes the advanced methods developed for the direct C-H chlorination reactions and further simplified for the chlorination reactions at various positions including aromatic (o-, m-, and p-), benzylic, heteroaromatic, and aliphatic positions. Directing groups (DGs) and the coordination with the catalyst is the key for the enhancement of regioselectivities during direct C-H chlorination reactions.
Collapse
Affiliation(s)
- Ankit Kachore
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Varun Aggarwal
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Ekta Bala
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Hemant Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Saksham Guleria
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Sakshi Sharma
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Sameer Pathan
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Saima
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, 173229, Solan, H.P., India
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, 600077, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Ramdhani D, Watabe H, Hardianto A, Janitra RS. Complexation of 3p- C-NETA with radiometal ions: A density functional theory study for targeted radioimmunotherapy. Heliyon 2024; 10:e34875. [PMID: 39144950 PMCID: PMC11320446 DOI: 10.1016/j.heliyon.2024.e34875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Bifunctional chelators (BFCs) are vital in the design of effective radiopharmaceuticals, as they are able to bind to both a radiometal ion and a targeting vector. The 3p-C-NETA or 4-[2-(bis-carboxy-methylamino)-5-(4-nitrophenyl)-entyl])-7-carboxymethyl-[1,4,7]tri-azonan-1-yl acetic acid is a novel and promising BFC, developed for diagnostic and therapeutic purposes. The binding affinity between the BFC and radiometal ion significantly impacts their effectiveness. Predicting the equilibrium constants for the formation of 1:1 radiometals/chelator complexes (log K1 values) is crucial for designing BFCs with improved affinity and selectivity for radiometals. The purpose of this study is to evaluate the complexation of Ga3+, Tb3+, Bi3+, and Ac3+ radiometal ions with 3p-C-NETA using density functional theory (B3LYP and M06-HF functional) and 6-311G(d)/SDD basis sets, where the 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetracetic acid (DOTA) was employed as a benchmark. Formation of the [Ac3+(3p-C-NETA)(H2O)]- complexes is predicted to be markedly less stable compared to the other complexes, exhibiting the lowest chemical hardness and the highest chemical softness. Additionally, the chelation stability of the complexes is mainly determined by ligand-ion and ion-water interactions, which depend on the atomic charge and atomic radius of the metal ion.
Collapse
Affiliation(s)
- Danni Ramdhani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Regaputra S. Janitra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
10
|
Fernandes EFA, Palner M, Raval NR, Jeppesen TE, Danková D, Bærentzen SL, Werner C, Eilts J, Maric HM, Doose S, Aripaka SS, Kaalund SS, Aznar S, Kjaer A, Schlosser A, Haugaard-Kedström LM, Knudsen GM, Herth MM, Stro Mgaard K. Development of Peptide-Based Probes for Molecular Imaging of the Postsynaptic Density in the Brain. J Med Chem 2024; 67:11975-11988. [PMID: 38981131 DOI: 10.1021/acs.jmedchem.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.
Collapse
Affiliation(s)
- Eduardo F A Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Troels E Jeppesen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Daniela Danková
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Simone L Bærentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Hans M Maric
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Sanjay Sagar Aripaka
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Sanne Simone Kaalund
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
- Center for Translational Research, Bispebjerg University Hospital, Nielsine Nielsens Vej 4B, Copenhagen DK-2400, Denmark
| | - Andreas Kjaer
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Andreas Schlosser
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Linda M Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Matthias M Herth
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Kristian Stro Mgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
11
|
Simms ME, Li Z, Sibley MM, Ivanov AS, Lara CM, Johnstone TC, Kertesz V, Fears A, White FD, Thorek DLJ, Thiele NA. PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine. Chem Sci 2024; 15:11279-11286. [PMID: 39055008 PMCID: PMC11268510 DOI: 10.1039/d3sc06854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhiyao Li
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame Notre Dame IN 46556 USA
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amanda Fears
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Daniel L J Thorek
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis St. Louis MO 63110 USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
12
|
Wu F, Tang C, Li X, Li N, Liu M, Li D, Dai R, Shen X, Zhai H. Metal-free iodination of arylaldehydes for total synthesis of aristogins A-F and hernandial. Org Biomol Chem 2024; 22:4667-4671. [PMID: 38804830 DOI: 10.1039/d4ob00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Iodine is one of the most effective sources for iodination of aromatic compounds; however, its electrophilicity is insufficient for direct iodination. The selection of appropriate environmentally friendly and cost-effective oxidants in combination with iodine for the iodination of aromatic rings, along with its application in the synthesis of natural products, holds significant importance. A highly efficient method utilizing I(III) as the initiator has been successfully developed for monoiodination of arylaldehydes. The method demonstrates good compatibility with a wide range of (hetero)aromatic aldehydes, resulting in moderate to excellent yields, without the need for any toxic, volatile or explosive reagents. The synthesis of seven natural products, namely aristogins A-F and hernandial, was achieved through this iodination followed by Ullmann-type coupling.
Collapse
Affiliation(s)
- Fufang Wu
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Chunmei Tang
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Xuejian Li
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Nan Li
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Miao Liu
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Danqin Li
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Rongrong Dai
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Xiaobao Shen
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
13
|
Maqbool M, Jakobsson JE, Alluri SR, Kramer V, Riss PJ. A protocol for controlled reactivity shift in the 2,2-difluorovinyl motif used for selective S- 18F and C- 18F bond formation. Commun Chem 2024; 7:97. [PMID: 38684771 PMCID: PMC11058245 DOI: 10.1038/s42004-024-01132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Positron emission tomography (PET) is a powerful imaging technique for biomedical research, drug development and medical diagnosis. The power of PET lies in biochemically selective radiotracers, labelled with positron emitters like fluorine-18 image chemical processes in vivo. A rapid and remarkably efficient, unprecedented protocol to select between S-F and C-F bond formation based on activation of 1,1-difluoroethylene groups followed by selective oxidation or reduction is described. While transition metal mediated conditions can be employed, the reaction proceeds in high yield using unobjectionable chemical reagents amenable to routine radiotracer production. The latter bodes well for facile clinical translation of the method. The new technique affords radiotracers and the labelling reagent 2,2-difluoro-2-(fluoro-18F)ethyl 4-methylbenzenesulfonate ([18F]1b) in excellent yield. Following oxygenation of the reaction mixture with medical oxygen or air, sulfonyl fluorides are obtained as the primary product. The new protocol was employed in a proof of principle to develop a radiometric assay for quantitation of sulfonylation yield with sulfonyl fluoride reagents. With operational ease and mild conditions, the method bodes a high potential for radiolabelling of biomolecules, known enzyme inhibitors and other temperature-sensitive compounds.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | | | - Vasko Kramer
- Positronpharma SA, Rancangua, Santiago de Chile, Santiago, Chile
| | - Patrick Johannes Riss
- Department of Clinical Neurocience, OUS-Ullevål, Oslo, Norway.
- Department of Chemistry, University of Oslo, Oslo, Norway.
- Department of Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Abumalloh RA, Nilashi M, Samad S, Ahmadi H, Alghamdi A, Alrizq M, Alyami S. Parkinson's disease diagnosis using deep learning: A bibliometric analysis and literature review. Ageing Res Rev 2024; 96:102285. [PMID: 38554785 DOI: 10.1016/j.arr.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Deep Learning (DL) has gained substantial attention in PD diagnosis research, with an increase in the number of published papers in this discipline. PD detection using DL has presented more promising outcomes as compared with common machine learning approaches. This article aims to conduct a bibliometric analysis and a literature review focusing on the prominent developments taking place in this area. To achieve the target of the study, we retrieved and analyzed the available research papers in the Scopus database. Following that, we conducted a bibliometric analysis to inspect the structure of keywords, authors, and countries in the surveyed studies by providing visual representations of the bibliometric data using VOSviewer software. The study also provides an in-depth review of the literature focusing on different indicators of PD, deployed approaches, and performance metrics. The outcomes indicate the firm development of PD diagnosis using DL approaches over time and a large diversity of studies worldwide. Additionally, the literature review presented a research gap in DL approaches related to incremental learning, particularly in relation to big data analysis.
Collapse
Affiliation(s)
- Rabab Ali Abumalloh
- Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar
| | - Mehrbakhsh Nilashi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Computer Science, Duy Tan University, Da Nang, Vietnam; UCSI Graduate Business School, UCSI University, No. 1 Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; Centre for Global Sustainability Studies (CGSS), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Sarminah Samad
- Faculty of Business, UNITAR International University, Tierra Crest, Jalan SS6/3, Petaling Jaya, Selangor 47301, Malaysia
| | - Hossein Ahmadi
- Centre for Health Technology, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Abdullah Alghamdi
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia; AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Mesfer Alrizq
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia; AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Sultan Alyami
- AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia; Computer Science Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
15
|
McErlain H, Andrews MJ, Watson AJB, Pimlott SL, Sutherland A. Ligand-Enabled Copper-Mediated Radioiodination of Arenes. Org Lett 2024; 26:1528-1532. [PMID: 38335124 PMCID: PMC10897930 DOI: 10.1021/acs.orglett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The discovery of a copper precatalyst that facilitates the key mechanistic steps of arene halodeboronation has allowed a step change in the synthesis of radioiodine-containing arenes. The active precatalyst [Cu(OAc)(phen)2]OAc was shown to perform room temperature radio-iododeboronation of aryl boronic acids with 1-2 mol % loadings and 10 min reaction times. These mild conditions enable particularly clean reactions, as demonstrated with the efficient preparation of the radiopharmaceutical and SPECT tracer, meta-iodobenzylguanidine (MIBG).
Collapse
Affiliation(s)
- Holly McErlain
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Matthew J Andrews
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, G12 OYN, U.K
| | | |
Collapse
|
16
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
17
|
Ghosh S, Lee SJ, Hsu JC, Chakraborty S, Chakravarty R, Cai W. Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:4-26. [PMID: 38274040 PMCID: PMC10806911 DOI: 10.1021/cbmi.3c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes in vivo. In vivo imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sophia J. Lee
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jessica C. Hsu
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sudipta Chakraborty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Weibo Cai
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Kondo Y, Kimura H, Chisaka R, Hattori Y, Kawashima H, Yasui H. One-pot two-step radioiodination based on copper-mediated iododeboronation and azide-alkyne cycloaddition reaction. Chem Commun (Camb) 2024; 60:714-717. [PMID: 38108251 DOI: 10.1039/d3cc04787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This methodology demonstrates the ability to sequentially regulate copper-mediated radioiododeboronation and an azide-alkyne cycloaddition reaction, which facilitates the continuous incorporation of reagents into the reaction system and mediates the integration of the purification steps into the final process. Additionally, this reaction is suited to be conducted under mild conditions and yields target compounds through potent radiochemical conversions.
Collapse
Affiliation(s)
- Yuto Kondo
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hiroyuki Kimura
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Ryota Chisaka
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroyuki Yasui
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
19
|
Ahmed H, Wallimann R, Gisler L, Elghazawy NH, Gruber S, Keller C, Liang SH, Sippl W, Haider A, Ametamey SM. Characterization of ( R)- and ( S)-[ 18F]OF-NB1 in Rodents as Positron Emission Tomography Probes for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors. ACS Chem Neurosci 2023; 14:4323-4334. [PMID: 38060344 DOI: 10.1021/acschemneuro.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [18F]OF-NB1 in rodents. Particularly, the (R)- and (S)- enantiomers were evaluated using in silico docking, in vitro autoradiography, in vivo PET imaging, and ex vivo biodistribution studies. A select panel of GluN1/2B antagonists (CP-101,606, CERC-301, and eliprodil) and the off-target sigma-1 receptor ligands (fluspidine and SA4503) were used to determine the specificity and selectivity of the tested enantiomers. Additionally, a nonmetal-mediated radiofluorination strategy was devised that harnesses the potential of diaryliodoniums in the nucleophilic radiofluorination of nonactivated aromatic compounds. Both enantiomers exhibited known GluN1/2B binding patterns; however, the R-enantiomer showed higher GluN1/2B-specific accumulation in rodent autoradiography and higher brain uptake in PET imaging experiments compared to the S-enantiomer. Molecular simulation studies provided further insights with respect to the difference in binding, whereby a reduced ligand-receptor interaction was observed for the S-enantiomer. Nonetheless, both enantiomers showed dose dependency when two different doses (1 and 5 mg/kg) of the GluN1/2B antagonist, CP-101,606, were used in the PET imaging study. Taken together, (R)-[18F]OF-NB1 appears to exhibit the characteristics of a suitable PET probe for imaging of GluN2B-containing NMDARs in clinical studies.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Schmidt TJ, Liang SH, Ametamey SM, Wünsch B, Haider A. Synthesis and Biological Evaluation of Enantiomerically Pure ( R) - and ( S) -[18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA Receptors. J Med Chem 2023; 66:16018-16031. [PMID: 37979148 DOI: 10.1021/acs.jmedchem.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A novel synthetic approach was successfully developed, which allows for the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 and the translation of the probe to the clinic. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in the rodent brain by small animal PET studies.
Collapse
Affiliation(s)
- Marvin Korff
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
21
|
Yang S, Song Y, Dong H, Hu Y, Jiang J, Chang S, Shao J, Yang D. Stimuli-Actuated Turn-On Theranostic Nanoplatforms for Imaging-Guided Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304127. [PMID: 37649207 DOI: 10.1002/smll.202304127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Antibacterial theranostic nanoplatforms, which integrate diagnostic and therapeutic properties, exhibit gigantic application prospects in precision medicine. However, traditional theranostic nanoplatforms usually present an always-on signal output, which leads to poor specificity or selectivity in the treatment of bacterial infections. To address this challenge, stimuli-actuated turn-on nanoplatforms are developed for simultaneous activation of diagnostic signals (e.g., fluorescent, photoacoustic, magnetic signals) and initiation of antibacterial treatment. Specifically, by combining the infection microenvironment-responsive activation of visual signals and antibacterial activity, these theranostic nanoplatforms exert both higher accurate diagnosis rates and more effective treatment effects. In this review, the imaging and treatment strategies that are commonly used in the clinic are first briefly introduced. Next, the recent progress of stimuli-actuated turn-on theranostic nanoplatforms for treating bacterial infectious diseases is summarized in detail. Finally, current bottlenecks and future opportunities of antibacterial theranostic nanoplatforms are also outlined and discussed.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Siyuan Chang
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
22
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
23
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
24
|
Bloux H, Khouya AA, Sopkova-de Oliveira Santos J, Fabis F, Dubost E, Cailly T. Gold(I)-Mediated Radioiododecarboxylation of Arenes. Org Lett 2023; 25:8100-8104. [PMID: 37933839 DOI: 10.1021/acs.orglett.3c03191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A novel radioiodination method is developed using carboxylic acids as radiolabeling precursors. This method involves decarboxylation and organogold(I) intermediate formation, enabling efficient radioiodination of (hetero)arenes and cinnamic and phenylpropiolic acids. Additionally, we demonstrated the prolonged stability of crude gold(I) organometallic compounds, showcasing their enduring radiolabeling capabilities.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Ahmed Ait Khouya
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | | | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Emmanuelle Dubost
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- Normandie Univ, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen 14000, France
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- IMOGERE, Normandie Université, Caen 14000, France
- Department of Nuclear Medicine, CHU Cote de Nacre, Caen 14000, France
| |
Collapse
|
25
|
Zhou H, Yao J, Zhao Z, Lu J. Synthesis and preliminary evaluation of benzylaminoimidazoline derivatives as novel norepinephrine transporter ligands. Chem Biol Drug Des 2023; 102:738-748. [PMID: 37328929 DOI: 10.1111/cbdd.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
A series of benzylaminoimidazoline derivatives was synthesized and evaluated for norepinephrine transporter (NET) targeting. Among them, N-(3-iodobenzyl)-4,5-dihydro-1H-imidazol-2-amine (Compound 9) displayed the highest affinity for NET (IC50 = 5.65 ± 0.97 μM). The corresponding radiotracer [125 I]9 was further prepared by copper-mediated radioiodination and evaluated both in vitro and in vivo. The cellular uptake results suggested that [125 I]9 was specifically taken up by the NET-expressing SK-N-SH cell line. Biodistribution studies showed that [125 I]9 accumulated in the heart (5.54 ± 1.24 %ID/g at 5 min p.i. and 0.79 ± 0.08 %ID/g at 2 h p.i.) and adrenal gland (14.83 ± 3.47 %ID/g at 5 min p.i. and 3.87 ± 0.24 %ID/g at 2 h p.i.). The uptake in the heart and adrenal gland could be significantly inhibited by preinjection of desipramine (DMI). These results indicated that the benzylaminoimidazoline derivatives retained affinity for NET, which could provide structure-activity relationship data for further studies.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jingjing Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Gil-Rivas A, de Pascual-Teresa B, Ortín I, Ramos A. New Advances in the Exploration of Esterases with PET and Fluorescent Probes. Molecules 2023; 28:6265. [PMID: 37687094 PMCID: PMC10488407 DOI: 10.3390/molecules28176265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.
Collapse
Affiliation(s)
- Alba Gil-Rivas
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
27
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Wang X, Chen C, Yan J, Xu Y, Pan D, Wang L, Yang M. Druggability of Targets for Diagnostic Radiopharmaceuticals. ACS Pharmacol Transl Sci 2023; 6:1107-1119. [PMID: 37588760 PMCID: PMC10425999 DOI: 10.1021/acsptsci.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/18/2023]
Abstract
Targets play an indispensable and pivotal role in the development of radiopharmaceuticals. However, the initial stages of drug discovery projects are often plagued by frequent failures due to inadequate information on druggability and suboptimal target selection. In this context, we aim to present a comprehensive review of the factors that influence target druggability for diagnostic radiopharmaceuticals. Specifically, we explore the crucial determinants of target specificity, abundance, localization, and positivity rate and their respective implications. Through a detailed analysis of existing protein targets, we elucidate the significance of each factor. By carefully considering and balancing these factors during the selection of targets, more efficacious and targeted radiopharmaceuticals are expected to be designed for the diagnosis of a wide range of diseases in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Chongyang Chen
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Junjie Yan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Yuping Xu
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Donghui Pan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Lizhen Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
29
|
Rini JN, Keir G, Caravella C, Goenka A, Franceschi AM. Somatostatin Receptor-PET/CT/MRI of Head and Neck Neuroendocrine Tumors. AJNR Am J Neuroradiol 2023; 44:959-966. [PMID: 37442593 PMCID: PMC10411831 DOI: 10.3174/ajnr.a7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND AND PURPOSE Due to its high sensitivity, somatostatin receptor-PET may detect smaller lesions and more extensive disease than contrast-enhanced MR imaging, while the superior spatial resolution of MR imaging enables lesions to be accurately localized. We compared results of somatostatin receptor-PET/MRI with those of MR imaging alone and assessed the added value of vertex-to-thigh imaging for head and neck neuroendocrine tumors. MATERIALS AND METHODS Somatostatin receptor-PET/CT was acquired as limited brain or head and neck imaging, with optional vertex-to-thigh imaging, following administration of 64CU/68GA DOTATATE. Somatostatin receptor-PET was fused with separately acquired contrast-enhanced MR imaging. DOTATATE activity was classified as comparable, more extensive, and/or showing additional lesions compared with MR imaging. Vertex-to-thigh findings were classified as positive or negative for metastatic disease or incidental. RESULTS Thirty patients (with 13 meningiomas, 11 paragangliomas, 1 metastatic papillary thyroid carcinoma, 1 middle ear neuroendocrine adenoma, 1 external auditory canal mass, 1 pituitary carcinoma, 1 olfactory neuroblastoma, 1 orbital mass) were imaged. Five had no evidence of somatostatin receptor-positive lesions and were excluded. In 11/25, somatostatin receptor-PET/MRI and MR imaging were comparable. In 7/25, somatostatin receptor-PET/MRI showed more extensive disease, while in 9/25, somatostatin receptor-PET/MRI identified additional lesions. On vertex-to-thigh imaging, 1 of 17 patients was positive for metastatic disease, 8 of 17 were negative, and 8 of 17 demonstrated incidental findings. CONCLUSIONS Somatostatin receptor-PET detected additional lesions and more extensive disease than contrast-enhanced MR imaging alone, while vertex-to-thigh imaging showed a low incidence of metastatic disease. Somatostatin receptor-PET/MRI enabled superior anatomic delineation of tumor burden, while any discrepancies were readily addressed. Somatostatin receptor-PET/MRI has the potential to play an important role in presurgical and radiation therapy planning of head and neck neuroendocrine tumors.
Collapse
Affiliation(s)
- J N Rini
- From the Nuclear Medicine Division (J.N.R., G.K., C.C.), Department of Radiology
| | - G Keir
- From the Nuclear Medicine Division (J.N.R., G.K., C.C.), Department of Radiology
| | - C Caravella
- From the Nuclear Medicine Division (J.N.R., G.K., C.C.), Department of Radiology
| | - A Goenka
- Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| |
Collapse
|
30
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
31
|
Lankoff A, Czerwińska M, Kruszewski M. Nanoparticle-Based Radioconjugates for Targeted Imaging and Therapy of Prostate Cancer. Molecules 2023; 28:molecules28104122. [PMID: 37241862 DOI: 10.3390/molecules28104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide and the fifth leading cause of death by cancer. Although most patients initially benefit from therapy, many of them will progress to metastatic castration-resistant prostate cancer, which still remains incurable. The significant mortality and morbidity rate associated with the progression of the disease results mainly from a lack of specific and sensitive prostate cancer screening systems, identification of the disease at mature stages, and failure of anticancer therapy. To overcome the limitations of conventional imaging and therapeutic strategies for prostate cancer, various types of nanoparticles have been designed and synthesized to selectively target prostate cancer cells without causing toxic side effects to healthy organs. The purpose of this review is to briefly discuss the selection criteria of suitable nanoparticles, ligands, radionuclides, and radiolabelling strategies for the development of nanoparticle-based radioconjugates for targeted imaging and therapy of prostate cancer and to evaluate progress in the field, focusing attention on their design, specificity, and potential for detection and/or therapy.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
32
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
33
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
34
|
[ 99mTc]Tc-HYNIC-RM2: A potential SPECT probe targeting GRPR expression in prostate cancers. Nucl Med Biol 2023; 118-119:108331. [PMID: 36933456 DOI: 10.1016/j.nucmedbio.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Elevated density of gastrin releasing peptide receptors (GRPR) in prostate cancer has led to exploration of several radiolabeled peptides for imaging and staging of the disease. The GRPR antagonist peptide RM2 has been successfully conjugated with several chelators and radiolabeled with gallium-68. The goal of this study was to synthesize a 99mTc-labeled probe and investigate its potential for SPECT imaging of prostate cancer. Towards this HYNIC-RM2 peptide conjugate was synthesized, radiolabeled with 99mTc and evaluated in GRPR-positive PC3 tumor xenografts. METHODS HYNIC-RM2 was manually synthesized by standard Fmoc solid phase strategy and radiolabeled with 99mTc. In vitro cell studies were performed in GRPR-positive human prostate carcinoma (PC3) cells. Metabolic stability studies of [99mTc]Tc-HYNIC-RM2 were performed in normal mice in the presence as well as absence of neutral endopeptidase (NEP) inhibitor, phosphoramidon (PA). Biodistribution and imaging studies of [99mTc]Tc-HYNIC-RM2 were performed in SCID mice bearing PC3-xenograft. RESULTS [99mTc]Tc-HYNIC-RM2 exhibited high binding affinity in low nanomolar range (Kd = 1.83 ± 0.31 nM). Metabolic stability studies in mice indicated that in the absence of PA, radiolabeled peptide was about 65 % intact in the blood at 15 min p.i., whereas proportion of intact radiolabeled peptide was enhanced to 90 % on co-administration of PA. Biodistribution studies in PC3 tumor bearing mice demonstrated high tumor uptake (8.02 ± 0.9%ID/g and 6.13 ± 0.44%ID/g at 1 h and 3 h p.i.). Co-administration of PA with the radiolabeled peptide resulted in further enhancement of tumor uptake (14.24 ± 0.76 % ID/g and 11.71 ± 0.59%ID/g at 1 h and 3 h p.i.). SPECT/CT images of [99mTc]Tc-HYNIC-RM2 could clearly visualize the tumor. Significant (p < 0.001) reduction in the tumor uptake with a co-injected blocking dose of unlabeled peptide ascertained the GRPR specificity of [99mTc]Tc-HYNIC-RM2. CONCLUSION Encouraging results obtained in biodistribution and imaging studies indicate the potential of [99mTc]Tc-HYNIC-RM2 for further exploration as GRPR targeting agent.
Collapse
|
35
|
Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Liang SH, Ametamey SM, Wünsch B, Haider A. Synthesis and Biological Evaluation of Enantiomerically Pure ( R)- and ( S)-[ 18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA receptors. RESEARCH SQUARE 2023:rs.3.rs-2516002. [PMID: 36747738 PMCID: PMC9901044 DOI: 10.21203/rs.3.rs-2516002/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. As part of our PET ligand development program, we have recently reported on the preclinical evaluation of [18F]OF-NB1 - a GluN2B PET ligand with promising attributes for potential clinical translation. However, the further development of [18F]OF-NB1 is currently precluded by major limitations in the radiolabeling procedure. These limitations include the use of highly corrosive reactants and racemization during the radiosynthesis. As such, the aim of this study was to develop a synthetic approach that allows an enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A two-step radiosynthesis involving radiofluorination of the boronic acid pinacol ester, followed by coupling to the 3-benzazepine core structure via reductive amination was employed. The new synthetic approach yielded enantiomerically pure (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1, while concurrently circumventing the use of corrosive reactants. In vitro autoradiograms with mouse and rat brain sections revealed a higher selectivity of (R)-[18F]OF-NB1 over (S)-[18F]OFNB1 for GluN2B-rich brain regions. In concert with these observations, blockade studies with commercially available GluN2B antagonist, CP101606, showed a significant signal reduction, which was more pronounced for (R)-[18F]OF-NB1 than for (S)-[18F]OF-NB1. Conversely, blockade experiments with sigma2 ligand, FA10, did not result in a significant reduction of tracer binding for both enantiomers. PET imaging experiments with CD1 mice revealed a higher brain uptake and retention for (R)-[18F]OF-NB1, as assessed by visual inspection and volumes of distribution from Logan graphical analyses. In vivo blocking experiments with sigma2 ligand, FA10, did not result in a significant reduction of the brain signal for both enantiomers, thus corroborating the selectivity over sigma2 receptors. In conclusion, we have developed a novel synthetic approach that is suitable for upscale to human use and allows the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in small animal PET studies.
Collapse
Affiliation(s)
- Marvin Korff
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
36
|
Zhang K, Xu H, Li K. Molecular Imaging for Early-Stage Disease Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:39-58. [PMID: 37460726 DOI: 10.1007/978-981-32-9902-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the development of cellular biology, molecular biology, and other subjects, targeted molecular probe was combined with medical imaging technologies to launch a new scientific discipline of molecular imaging that is a research discipline to visualize, characterize, and analyze biological process at the cellular and molecular levels for real-time tracking and precision therapy, also termed as the medical imaging in the twenty-first century. An array of imaging techniques has been developed to image specific targets of living cells or tissues by molecular probes, including optical molecular imaging (OI), magnetic resonance molecular imaging, ultrasound (US) molecular imaging, nuclear medicine molecular imaging, X-ray molecular imaging, and multi-mode molecular imaging. These imaging techniques make the early diagnosis of various diseases possible by means of visualization of gene expression, interactions between proteins, signal transduction, cell metabolism, cell traces, and other physiological or pathological processes in the living system, which bridge the gap between molecular biology and clinical medicine. This chapter will lay the emphasis on the early-stage diagnosis of fatal diseases, such as malignant tumors, cardio- or cerebrovascular diseases, digestive system disease, central nervous system disease, and other diseases employing molecular imaging in a real-time visualized manner.
Collapse
Affiliation(s)
- Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Haiyan Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Kai Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
37
|
Kamya E, Lu Z, Cao Y, Pei R. Effective design of organic luminogens for near-infrared-II fluorescence imaging and photo-mediated therapy. J Mater Chem B 2022; 10:9770-9788. [PMID: 36448479 DOI: 10.1039/d2tb01903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Due to their electron coupling capability, organic luminescent materials exhibit powerful optoelectronic features that are responsible for their light-harvesting and light-amplification properties. The extensive modification of conjugated systems has shown significant improvement in their photonic properties thus broadening their applicability in photo-mediated imaging and photo-based treatment. Organic luminogens with emission in the near-infrared second region are found attractive not only for their deeper penetrating power but also for accurate visual imaging superiority with higher temporal resolution and spatial resolution suitable for tumor precision treatment. In this review, we underscore the latest development in organic luminogens (conjugated polymers and small molecules), focusing on chemical design, molecular engineering, and their applications in the scope of bioimaging followed by photo-assisted treatment, including photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy ablation. Organic luminogens integrated with an aggregation-induced emission feature significantly optimize their physicochemical properties to act as quintessential nanoplatforms for controllable image-guided therapy. In conclusion, we clarify the limitations and challenges and provide insights into how to design organic dyes with improved safety for potential clinical applications.
Collapse
Affiliation(s)
- Edward Kamya
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| |
Collapse
|
38
|
Petrov SA, Yusubov MS, Beloglazkina EK, Nenajdenko VG. Synthesis of Radioiodinated Compounds. Classical Approaches and Achievements of Recent Years. Int J Mol Sci 2022; 23:13789. [PMID: 36430267 PMCID: PMC9698107 DOI: 10.3390/ijms232213789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This review demonstrates the progress in the synthesis of radioiodinated compounds over the past decade. The possibilities and limitations of radiopharmaceuticals with different iodine isotopes, as well as the synthesis of low and high molecular weight compounds containing radioiodine, are discussed. An analysis of synthesis strategies, substrate frameworks, isolation methods, and metabolic stability, and the possibility of industrial production of radioiodinated organic derivatives which can find applications in the synthesis of drugs and diagnostics are presented.
Collapse
Affiliation(s)
- Stanislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Elena K. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| |
Collapse
|
39
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
40
|
Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
42
|
|
43
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
44
|
Liu D, Xia Q, Ding D, Tan W. Radiolabeling of functional oligonucleotides for molecular imaging. Front Bioeng Biotechnol 2022; 10:986412. [PMID: 36091456 PMCID: PMC9449898 DOI: 10.3389/fbioe.2022.986412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular imaging has greatly advanced basic biology and translational medicine through visualization and quantification of molecular events in a cellular context and living organisms. Nuclear medicine, including positron emission tomography (PET) and single-photon emission tomography (SPECT), is one of the most representative molecular imaging modalities which is widely used in clinical theranostics. Recently, numerous molecular imaging agents have been developed to improve the quality and expand the applicable diseases of molecular imaging. Based on the choice of specific imaging agents, molecular imaging is capable of studying tumor biological activities, detecting tumor metastasis, and imaging Alzheimer’s disease-related amyloid proteins. Among these imaging agents, functional oligonucleotides-based imaging probes are becoming increasingly important due to their unique features. Antisense oligonucleotides, small interfering RNA, and aptamers are privileged molecular tools in precision medicine for cancer diagnosis and treatment. These chemically synthesized oligonucleotides without batch-to-batch variations are flexible to incorporate with other molecules without affecting their functionalities. Therefore, through the combination of oligonucleotides with radioisotopes, a series of molecular imaging agents were developed in the past decades to achieve highly sensitive and accurate biomedical imaging modalities for clinical theranostic. Due to the nature of oligonucleotides, the strategies of oligonucleotide radiolabeling are different from conventional small molecular tracers, and the radiolabeling strategy with rational design is highly correlated to the imaging quality. In this review, we summarize recent advancements in functional oligonucleotide radiolabeling strategies and respective molecular imaging applications. Meanwhile, challenges and future development insights of functional oligonucleotide-based radiopharmaceuticals are discussed in the end.
Collapse
Affiliation(s)
- Dunfang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Xia
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ding Ding, ; Qian Xia,
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ding Ding, ; Qian Xia,
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
45
|
Nawar MF, Türler A. New strategies for a sustainable 99mTc supply to meet increasing medical demands: Promising solutions for current problems. Front Chem 2022; 10:926258. [PMID: 35936080 PMCID: PMC9355089 DOI: 10.3389/fchem.2022.926258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The continuing rapid expansion of 99mTc diagnostic agents always calls for scaling up 99mTc production to cover increasing clinical demand. Nevertheless, 99mTc availability depends mainly on the fission-produced 99Mo supply. This supply is seriously influenced during renewed emergency periods, such as the past 99Mo production crisis or the current COVID-19 pandemic. Consequently, these interruptions have promoted the need for 99mTc production through alternative strategies capable of providing clinical-grade 99mTc with high purity. In the light of this context, this review illustrates diverse production routes that either have commercially been used or new strategies that offer potential solutions to promote a rapid production growth of 99mTc. These techniques have been selected, highlighted, and evaluated to imply their impact on developing 99mTc production. Furthermore, their advantages and limitations, current situation, and long-term perspective were also discussed. It appears that, on the one hand, careful attention needs to be devoted to enhancing the 99Mo economy. It can be achieved by utilizing 98Mo neutron activation in commercial nuclear power reactors and using accelerator-based 99Mo production, especially the photonuclear transmutation strategy. On the other hand, more research efforts should be devoted to widening the utility of 99Mo/99mTc generators, which incorporate nanomaterial-based sorbents and promote their development, validation, and full automization in the near future. These strategies are expected to play a vital role in providing sufficient clinical-grade 99mTc, resulting in a reasonable cost per patient dose.
Collapse
|
46
|
Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022; 348:1066-1088. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Metal complexes are of increasing interest as pharmaceutical agents in cancer diagnostics and therapeutics, while some of them suffer from issues such as limited water solubility and severe systemic toxicity. These drawbacks severely hampered their efficacy and clinical applications. Liposomes hold promise as delivery vehicles for constructing metal complex-based liposomes to maximize the therapeutic efficacy and minimize the side effects of metal complexes. This review provides an overview on the latest advances of metal complex-based liposomal delivery systems. First, the development of metal complex-mediated liposomal encapsulation is briefly introduced. Next, applications of metal complex-based liposomes in a variety of fields are overviewed, where drug delivery, cancer imaging (single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI)), and cancer therapy (chemotherapy, phototherapy, and radiotherapy) were involved. Moreover, the potential toxicity, action of toxic mechanisms, immunological effects of metal complexes as well as the advantages of metal complex-liposomes in this content are also discussed. In the end, the future expectations and challenges of metal complex-based liposomes in clinical cancer therapy are tentatively proposed.
Collapse
Affiliation(s)
- Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan 250000, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
47
|
Wang W, Yang X, Dai R, Yan Z, Wei J, Dou X, Qiu X, Zhang H, Wang C, Liu Y, Song S, Jiao N. Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. J Am Chem Soc 2022; 144:13415-13425. [PMID: 35839515 DOI: 10.1021/jacs.2c06440] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The electrophilic halogenation of arenes is perhaps the simplest method to prepare aryl halides, which are important structural motifs in agrochemicals, materials, and pharmaceuticals. However, the nucleophilicity of arenes is weakened by the electron-withdrawing substituents, whose electrophilic halogenation reactions usually require harsh conditions and lead to limited substrate scopes and applications. Therefore, the halogenation of arenes containing electron-withdrawing groups (EWGs) and complex bioactive compounds under mild conditions has been a long-standing challenge. Herein, we describe Brønsted acid-catalyzed halogenation of arenes with electron-withdrawing substituents under mild conditions, providing an efficient protocol for aryl halides. The hydrogen bonding of Brønsted acid with the protic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) enables this transformation and thus solves this long-standing problem.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Zixi Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Hongliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Zhang T, Guo S, Li F, Lan X, Jia Y, Zhang J, Huang Y, Liang XJ. Image-guided/improved diseases management: From immune-strategies and beyond. Adv Drug Deliv Rev 2022; 188:114446. [PMID: 35820600 DOI: 10.1016/j.addr.2022.114446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate assessment and diagnosis are extremely important and beneficial for all diseases, especially for some of the major human disease, such as cancers, cardiovascular diseases, infectious diseases, and neurodegenerative diseases. Limited by the variable disease microenvironment, early imperceptible symptoms, complex immune system interactions, and delayed clinical phenotypes, disease diagnosis and treatment are difficult in most cases. Molecular imaging (MI) techniques can track therapeutic drugs and disease sites in vivo and in vitro in a non-invasive, real-time and visible strategies. Comprehensive visual imaging and quantitative analysis based on different levels can help to clarify the disease process, pathogenesis, drug pharmacokinetics, and further evaluate the therapeutic effects. This review summarizes the application of different MI techniques in the diagnosis and treatment of these major human diseases. It is hoped to shed a light on the development of related technologies and fields.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yaru Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yuanyu Huang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China; University of Chinese Academy of Sciences. Beijing 100049, China.
| |
Collapse
|
49
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
50
|
The Role of [ 68Ga]Ga-DOTA-SSTR PET Radiotracers in Brain Tumors: A Systematic Review of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14122925. [PMID: 35740591 PMCID: PMC9221214 DOI: 10.3390/cancers14122925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary [68Ga]Ga-DOTA-SSTR PET imaging has recently been introduced in the management of patients with brain tumors, mostly meningiomas and pituitary adenomas or carcinomas. The current literature demonstrated the superior diagnostic accuracy of this imaging modality, especially for lesions difficult to be detected or characterized on conventional imaging protocols, such as skull base or transosseous meningiomas. [68Ga]Ga-DOTA-SSTR PET tracers also seem to provide superior volume contouring for radiotherapy planning and may also be used to evaluate the tumor’s overexpression of somatostatin receptors for devising patient-tailored peptide receptor radionuclide therapy. In this review, we comprehensively analyzed the current literature discussing the implementation of [68Ga]Ga-DOTA-SSTR PET imaging in brain tumors, further presenting ongoing clinical trials and suggesting potential future applications. Abstract Background: The development of [68Ga]Ga-DOTA-SSTR PET tracers has garnered interest in neuro-oncology, to increase accuracy in diagnostic, radiation planning, and neurotheranostics protocols. We systematically reviewed the literature on the current uses of [68Ga]Ga-DOTA-SSTR PET in brain tumors. Methods: PubMed, Scopus, Web of Science, and Cochrane were searched in accordance with the PRISMA guidelines to include published studies and ongoing trials utilizing [68Ga]Ga-DOTA-SSTR PET in patients with brain tumors. Results: We included 63 published studies comprising 1030 patients with 1277 lesions, and 4 ongoing trials. [68Ga]Ga-DOTA-SSTR PET was mostly used for diagnostic purposes (62.5%), followed by treatment planning (32.7%), and neurotheranostics (4.8%). Most lesions were meningiomas (93.6%), followed by pituitary adenomas (2.8%), and the DOTATOC tracer (53.2%) was used more frequently than DOTATATE (39.1%) and DOTANOC (5.7%), except for diagnostic purposes (DOTATATE 51.1%). [68Ga]Ga-DOTA-SSTR PET studies were mostly required to confirm the diagnosis of meningiomas (owing to their high SSTR2 expression and tracer uptake) or evaluate their extent of bone invasion, and improve volume contouring for better radiotherapy planning. Some studies reported the uncommon occurrence of SSTR2-positive brain pathology challenging the diagnostic accuracy of [68Ga]Ga-DOTA-SSTR PET for meningiomas. Pre-treatment assessment of tracer uptake rates has been used to confirm patient eligibility (high somatostatin receptor-2 expression) for peptide receptor radionuclide therapy (PRRT) (i.e., neurotheranostics) for recurrent meningiomas and pituitary carcinomas. Conclusion: [68Ga]Ga-DOTA-SSTR PET studies may revolutionize the routine neuro-oncology practice, especially in meningiomas, by improving diagnostic accuracy, delineation of radiotherapy targets, and patient eligibility for radionuclide therapies.
Collapse
|