1
|
Müller-Renno C, Ziegler C. The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2100. [PMID: 38730904 PMCID: PMC11084532 DOI: 10.3390/ma17092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Scanning force microscopy (SFM) is one of the most widely used techniques in biomaterials research. In addition to imaging the materials of interest, SFM enables the mapping of mechanical properties and biological responses with sub-nanometer resolution and piconewton sensitivity. This review aims to give an overview of using the scanning force microscope (SFM) for investigations on dental materials. In particular, SFM-derived methods such as force-distance curves (scanning force spectroscopy), lateral force spectroscopy, and applications of the FluidFM® will be presented. In addition to the properties of dental materials, this paper reports the development of the pellicle by the interaction of biopolymers such as proteins and polysaccharides, as well as the interaction of bacteria with dental materials.
Collapse
Affiliation(s)
- Christine Müller-Renno
- Department of Physics and Research Center OPTIMAS, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany;
| | | |
Collapse
|
2
|
Rahat SA, Chaudhuri K, Pham JT. Capillary detachment of a microparticle from a liquid-liquid interface. SOFT MATTER 2023; 19:6247-6254. [PMID: 37555264 DOI: 10.1039/d3sm00470h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The attachment and detachment of microparticles at a liquid-liquid interface are common in many material systems, from Pickering emulsions and colloidal assemblies to capillary suspensions. Properties of these systems rely on how the particles interact with the liquid-liquid interface, including the detachment process. In this study, we simultaneously measure the capillary detachment force of a microparticle from a liquid-liquid interface and visualize the shape of the meniscus by combining colloidal probe microscopy and confocal microscopy. The capillary behavior is studied on both untreated (hydrophilic) and fluorinated (hydrophobic) glass microparticles. The measured force data show good agreement with theoretical calculations based on the extracted geometric parameters from confocal images of the capillary bridge. It is also evident that contact line pinning is an important aspect of detachment for both untreated and fluorinated particles.
Collapse
Affiliation(s)
- Sazzadul A Rahat
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jonathan T Pham
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
5
|
An Adjustable Dark-Field Acoustic-Resolution Photoacoustic Imaging System with Fiber Bundle-Based Illumination. BIOSENSORS-BASEL 2021; 11:bios11080262. [PMID: 34436064 PMCID: PMC8391745 DOI: 10.3390/bios11080262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Photoacoustic (PA) imaging has become one of the major imaging methods because of its ability to record structural information and its high spatial resolution in biological tissues. Current commercialized PA imaging instruments are limited to varying degrees by their bulky size (i.e., the laser or scanning stage) or their use of complex optical components for light delivery. Here, we present a robust acoustic-resolution PA imaging system that consists of four adjustable optical fibers placed 90° apart around a 50 MHz high-frequency ultrasound (US) transducer. In the compact design concept of the PA probe, the relative illumination parameters (i.e., angles and fiber size) can be adjusted to fit different imaging applications in a single setting. Moreover, this design concept involves a user interface built in MATLAB. We first assessed the performance of our imaging system using in vitro phantom experiments. We further demonstrated the in vivo performance of the developed system in imaging (1) rat ear vasculature, (2) real-time cortical hemodynamic changes in the superior sagittal sinus (SSS) during left-forepaw electrical stimulation, and (3) real-time cerebral indocyanine green (ICG) dynamics in rats. Collectively, this alignment-free design concept of a compact PA probe without bulky optical lens systems is intended to satisfy the diverse needs in preclinical PA imaging studies.
Collapse
|
6
|
Navikas V, Leitao SM, Grussmayer KS, Descloux A, Drake B, Yserentant K, Werther P, Herten DP, Wombacher R, Radenovic A, Fantner GE. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat Commun 2021; 12:4565. [PMID: 34315910 PMCID: PMC8316521 DOI: 10.1038/s41467-021-24901-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
High-resolution live-cell imaging is necessary to study complex biological phenomena. Modern fluorescence microscopy methods are increasingly combined with complementary, label-free techniques to put the fluorescence information into the cellular context. The most common high-resolution imaging approaches used in combination with fluorescence imaging are electron microscopy and atomic-force microscopy (AFM), originally developed for solid-state material characterization. AFM routinely resolves atomic steps, however on soft biological samples, the forces between the tip and the sample deform the fragile membrane, thereby distorting the otherwise high axial resolution of the technique. Here we present scanning ion-conductance microscopy (SICM) as an alternative approach for topographical imaging of soft biological samples, preserving high axial resolution on cells. SICM is complemented with live-cell compatible super-resolution optical fluctuation imaging (SOFI). To demonstrate the capabilities of our method we show correlative 3D cellular maps with SOFI implementation in both 2D and 3D with self-blinking dyes for two-color high-order SOFI imaging. Finally, we employ correlative SICM/SOFI microscopy for visualizing actin dynamics in live COS-7 cells with subdiffraction-resolution.
Collapse
Affiliation(s)
- Vytautas Navikas
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel M Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grussmayer
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Grussmayer Lab, Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Adrien Descloux
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Barney Drake
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Klaus Yserentant
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences, Medical School & School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal InstSIitute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Zbiral B, Weber A, Iturri J, Vivanco MDM, Toca-Herrera JL. Estrogen Modulates Epithelial Breast Cancer Cell Mechanics and Cell-to-Cell Contacts. MATERIALS 2021; 14:ma14112897. [PMID: 34071397 PMCID: PMC8198807 DOI: 10.3390/ma14112897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023]
Abstract
Excessive estrogen exposure is connected with increased risk of breast cancer and has been shown to promote epithelial-mesenchymal-transition. Malignant cancer cells accumulate changes in cell mechanical and biochemical properties, often leading to cell softening. In this work we have employed atomic force microscopy to probe the influence of estrogen on the viscoelastic properties of MCF-7 breast cancer cells cultured either in normal or hormone free-medium. Estrogen led to a significant softening of the cells in all studied cases, while growing cells in hormone free medium led to an increase in the studied elastic and viscoelastic moduli. In addition, fluorescence microscopy shows that E-cadherin distribution is changed in cells when culturing them under estrogenic conditions. Furthermore, cell-cell contacts seemed to be weakened. These results were supported by AFM imaging showing changes in surfaces roughness, cell-cell contacts and cell height as result of estrogen treatment. This study therefore provides further evidence for the role of estrogen signaling in breast cancer.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
| | - Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
- Correspondence: (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
| | - Maria d. M. Vivanco
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (J.I.)
- Correspondence: (A.W.); (J.L.T.-H.)
| |
Collapse
|
8
|
Abstract
Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity.
Collapse
|
9
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
10
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
11
|
Wang J, Wang Z, Xu Y, Wang X, Yang Z, Wang H, Tian Z. Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. NANOSCALE 2020; 12:17203-17212. [PMID: 32789405 DOI: 10.1039/d0nr04584e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a practical motivation for correlating different types of microscopy for revealing complementary information of ultrastructures with resolution beyond the diffraction limit. The correlative microscopy strategy based on the combination of super-resolution fluorescence imaging with atomic force microscopy (AFM) is expected to provide both the specificity and three-dimensional structural information of nanomaterials. Herein we synthesized a dual-alternating-color photoswitchable fluorescent probe based on a naphthalimide-spiropyran dyad (NI-SP) and explored the capability of such correlative microscopy for visualizing nanostructures with complex structural hierarchy. NI-SP underwent reversible photoswitching between green and red fluorescence based on a reversible photochemical reaction and such reaction-linked correlation between two distinct types of fluorescence signals intrinsically enabled mutual authentication in super-resolution fluorescence imaging. Additionally, such correlative microscopy also demonstrated mutual complementation between different pieces of structural information of the target acquired via fluorescence imaging and AFM, respectively, in which the former reveals spatial distribution of fluorescent dyes in the nanoscale polymer fibroid micelles while the latter maps the topographical structure of the target with complex structural hierarchy. The results obtained in this work proclaimed that the combination of such correlative microscopy with our NI-SP probe is an effective modality for ultrastructural analysis and has future applications in various complex systems such as tissue/organ imaging.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zicheng Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Yangyue Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zhiyong Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
12
|
Liu Y, Vancso GJ. Polymer single chain imaging, molecular forces, and nanoscale processes by Atomic Force Microscopy: The ultimate proof of the macromolecular hypothesis. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences. Sci Rep 2020; 10:1122. [PMID: 31980680 PMCID: PMC6981207 DOI: 10.1038/s41598-020-57885-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
Correlating data from different microscopy techniques holds the potential to discover new facets of signaling events in cellular biology. Here we report for the first time a hardware set-up capable of achieving simultaneous co-localized imaging of spatially correlated far-field super-resolution fluorescence microscopy and atomic force microscopy, a feat only obtained until now by fluorescence microscopy set-ups with spatial resolution restricted by the Abbe diffraction limit. We detail system integration and demonstrate system performance using sub-resolution fluorescent beads and applied to a test sample consisting of human bone osteosarcoma epithelial cells, with plasma membrane transporter 1 (MCT1) tagged with an enhanced green fluorescent protein (EGFP) at the N-terminal.
Collapse
|
14
|
Weber A, Iturri J, Benitez R, Zemljic-Jokhadar S, Toca-Herrera JL. Microtubule disruption changes endothelial cell mechanics and adhesion. Sci Rep 2019; 9:14903. [PMID: 31624281 PMCID: PMC6797797 DOI: 10.1038/s41598-019-51024-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
The interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 30 min of incubation the cells stiffened, their relaxation times increased (lower fluidity) and the adhesion between tip and cell decreased. This was accompanied by cytoskeletal rearrangements, a reduction in cell area and changes in cell shape. Over the whole experimental time, different behavior for the two used concentrations was found while for the control the values remained stable. This study underlines the role of microtubules in shaping endothelial cell mechanics.
Collapse
Affiliation(s)
- Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria
| | - Rafael Benitez
- Dpto. Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022, Valencia, Spain
| | - Spela Zemljic-Jokhadar
- Department of Biophysics, Medicine Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - José L Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| |
Collapse
|
15
|
Insight into diacetylene photopolymerization in Langmuir-Blodgett films using simultaneous AFM and fluorescence microscopy imaging. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Iturri J, Moreno-Cencerrado A, Toca-Herrera JL. Cation-chelation and pH induced controlled switching of the non-fouling properties of bacterial crystalline films. Colloids Surf B Biointerfaces 2017; 158:270-277. [PMID: 28704713 DOI: 10.1016/j.colsurfb.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 01/08/2023]
Abstract
We report the controlled loss of the anti-fouling activity of the S-layer protein SbpA from Lysinibacillus sphaericus (CCM2177). This protein forms crystal-like films with square lattice (p4) via self-assembly on almost any type of surfaces. Such engineered bioinspired nanometric membranes are known by their excellent preventive performance under biological conditions. However, their exposure to certain treatments can lead to gradual degradation of the S-protein layer. In this work, two distinctive approaches are studied for understanding either specific or non-specific degradation of the film, by treatment with a chelating agent (EDTA), which interacts with inner Ca2+ ions, or Citrate buffer (with pH<pI), respectively. Subsequently, the degraded protein films have been tested upon binding of polyelectrolytes of different charge and endothelial HUVEC cells, and their performance compared to that of intact S-layers. The SbpA protein layer degradation process as well as its impact on the loss of anti-fouling properties have been characterized, in terms of mass and structural changes, by means of real time quartz crystal microbalance with dissipation (QCM-D) monitoring, atomic force microscopy (AFM) experiments, and fluorescence microscopy. The results show that overall structure degradation (citrate buffer) has a higher impact on the loss of antifouling properties than selective removal of divalent cations. Thus, crystal structure integrity is a necessary condition for bacterial antifouling properties.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria.
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria
| | - José L Toca-Herrera
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeise l Haus), A-1190 Vienna, Austria.
| |
Collapse
|
17
|
Handschuh-Wang S, Wang T, Zhou X. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Adv 2017. [DOI: 10.1039/c7ra08515j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summaries the recent progress of the combination of optical and non-optical surface sensitive techniques with the atomic force microscopy.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Tao Wang
- Functional Thin Films Research Center
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
18
|
Chen Y. Data fusion for accurate microscopic rough surface metrology. Ultramicroscopy 2016; 165:15-25. [PMID: 27058888 DOI: 10.1016/j.ultramic.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/21/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, Anhui, PR China.
| |
Collapse
|
19
|
Tai T, Karácsony O, Bocharova V, Van Berkel GJ, Kertesz V. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform. Anal Chem 2016; 88:2864-70. [DOI: 10.1021/acs.analchem.5b04619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tamin Tai
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Orsolya Karácsony
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vera Bocharova
- Soft
Materials Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Gary J. Van Berkel
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
20
|
Zhong J, Yan J. Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Adv 2016. [DOI: 10.1039/c5ra22186b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atomic force microscopy can image nanomaterial properties such as the topography, elasticity, adhesion, friction, electrical properties, and magnetism.
Collapse
Affiliation(s)
- Jian Zhong
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| | - Juan Yan
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| |
Collapse
|
21
|
Miranda A, Martins M, De Beule PAA. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:093705. [PMID: 26429446 DOI: 10.1063/1.4931064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.
Collapse
Affiliation(s)
- Adelaide Miranda
- Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga, Portugal
| | - Marco Martins
- Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga, Portugal
| | - Pieter A A De Beule
- Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga, Portugal
| |
Collapse
|
22
|
Unsay JD, Cosentino K, García-Sáez AJ. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers. J Vis Exp 2015:e52867. [PMID: 26273958 PMCID: PMC4545161 DOI: 10.3791/52867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes.
Collapse
Affiliation(s)
- Joseph D Unsay
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems; German Cancer Research Center;
| | - Katia Cosentino
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems
| | - Ana J García-Sáez
- Interfaculty Institute for Biochemistry; Max Planck Institute for Intelligent Systems
| |
Collapse
|
23
|
Lilledahl MB, Stokke BT. Novel imaging technologies for characterization of microbial extracellular polysaccharides. Front Microbiol 2015; 6:525. [PMID: 26074906 PMCID: PMC4446548 DOI: 10.3389/fmicb.2015.00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.
Collapse
Affiliation(s)
| | - Bjørn T. Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
24
|
Ovchinnikova OS, Tai T, Bocharova V, Okatan MB, Belianinov A, Kertesz V, Jesse S, Van Berkel GJ. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. ACS NANO 2015; 9:4260-9. [PMID: 25783696 DOI: 10.1021/acsnano.5b00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating the co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas-phase species produced with subsequent mass analysis. The basic instrumental setup and operation are discussed, and the multimodal imaging capability and utility are demonstrated using a phase-separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showed that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm × 390 nm), band excitation (781 nm × 781 nm), and mass spectrometry (690 nm × 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 20 nm deep into the sample and the mass spectral image from 110 to 140 nm in depth. Because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the chemical image was estimated to be between 1.5 and 2.6 μm, based on the ability to distinguish surface features in that image that were also observed in the other images.
Collapse
Affiliation(s)
- Olga S Ovchinnikova
- †Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Tamin Tai
- †Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vera Bocharova
- ‡Soft Materials Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131-6210 , United States
| | - Mahmut Baris Okatan
- ∥Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6487, United States
| | - Alex Belianinov
- ∥Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6487, United States
| | - Vilmos Kertesz
- †Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Stephen Jesse
- ∥Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6487, United States
| | - Gary J Van Berkel
- †Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
25
|
Hentschel C, Jiang L, Ebeling D, Zhang JC, Chen XD, Chi LF. Conductance measurements of individual polypyrrole nanobelts. NANOSCALE 2015; 7:2301-2305. [PMID: 25594494 DOI: 10.1039/c4nr06785a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present here a study on the electrical conduction properties of individual polypyrrole nanobelts by using conductive atomic force microscopy and discuss a general effect while probing soft materials. A length-dependent analysis demonstrates that the tip could induce local defects into the polymer structure and, thus diminishes the electrical conduction.
Collapse
Affiliation(s)
- C Hentschel
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou Jiangsu 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Kuyukina MS, Ivshina IB, Korshunova IO, Rubtsova EV. Assessment of bacterial resistance to organic solvents using a combined confocal laser scanning and atomic force microscopy (CLSM/AFM). J Microbiol Methods 2014; 107:23-9. [DOI: 10.1016/j.mimet.2014.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/27/2022]
|
27
|
Sousa FDBD, Scuracchio CH. The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers. POLIMEROS 2014. [DOI: 10.1590/0104-1428.1648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Ultrastable atomic force microscopy: improved force and positional stability. FEBS Lett 2014; 588:3621-30. [PMID: 24801176 DOI: 10.1016/j.febslet.2014.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.
Collapse
|
29
|
Abstract
Atomic force microscopy can be readily combined with complementary instrumental techniques ranging from optical to mass-sensitive methods. This Feature highlights recent advances on hyphenated AFM technology, which enables localized studies and mapping of complementary information at surfaces and interfaces.
Collapse
Affiliation(s)
- Alexander Eifert
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
30
|
Timmel T, Schuelke M, Spuler S. Identifying dynamic membrane structures with atomic-force microscopy and confocal imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:514-520. [PMID: 24524258 DOI: 10.1017/s1431927613014098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Combining the biological specificity of fluorescence microscopy with topographical features revealed by atomic force microscopy (AFM) provides new insights into cell biology. However, the lack of systematic alignment capabilities especially in scanning-tip AFM has limited the combined application approach as AFM drift leads to increasing image mismatch over time. We present an alignment correction method using the cantilever tip as a reference landmark. Since the precise tip position is known in both the fluorescence and AFM images, exact re-alignment becomes possible. We used beads to demonstrate the validity of the method in a complex artificial sample. We then extended this method to biological samples to depict membrane structures in fixed and living human fibroblasts. We were able to map nanoscale membrane structures, such as clathrin-coated pits, to their respective fluorescent spots. Reliable alignment between fluorescence signals and topographic structures opens possibilities to assess key biological processes at the cell surface such as endocytosis and exocytosis.
Collapse
Affiliation(s)
- Tobias Timmel
- 1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Markus Schuelke
- 2 Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Simone Spuler
- 1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| |
Collapse
|
31
|
Keplinger T, Konnerth J, Aguié-Béghin V, Rüggeberg M, Gierlinger N, Burgert I. A zoom into the nanoscale texture of secondary cell walls. PLANT METHODS 2014; 10:1. [PMID: 24410854 PMCID: PMC3900262 DOI: 10.1186/1746-4811-10-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/30/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Besides classical utilization of wood and paper, lignocellulosic biomass has become increasingly important with regard to biorefinery, biofuel production and novel biomaterials. For these new applications the macromolecular assembly of cell walls is of utmost importance and therefore further insights into the arrangement of the molecules on the nanolevel have to be gained. Cell wall recalcitrance against enzymatic degradation is one of the key issues, since an efficient degradation of lignocellulosic plant material is probably the most crucial step in plant conversion to energy. A limiting factor for in-depth analysis is that high resolution characterization techniques provide structural but hardly chemical information (e.g. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)), while chemical characterization leads to a disassembly of the cell wall components or does not reach the required nanoscale resolution (Fourier Tranform Infrared Spectroscopy (FT-IR), Raman Spectroscopy). RESULTS Here we use for the first time Scanning Near-Field Optical Microscopy (SNOM in reflection mode) on secondary plant cell walls and reveal a segmented circumferential nanostructure. This pattern in the 100 nm range was found in the secondary cell walls of a softwood (spruce), a hardwood (beech) and a grass (bamboo) and is thus concluded to be consistent among various plant species. As the nanostructural pattern is not visible in classical AFM height and phase images it is proven that the contrast is not due to changes in surfaces topography, but due to differences in the molecular structure. CONCLUSIONS Comparative analysis of model substances of casted cellulose nanocrystals and spin coated lignin indicate, that the SNOM signal is clearly influenced by changes in lignin distribution or composition. Therefore and based on the known interaction of lignin and visible light (e.g. fluorescence and resonance effects), we assume the elucidated nanoscale structure to reflect variations in lignification within the secondary cell wall.
Collapse
Affiliation(s)
- Tobias Keplinger
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
- Applied Wood Research Laboratory, Empa - Swiss Federal Laboratories for Material Testing and Research, Duebendorf, Switzerland
| | - Johannes Konnerth
- Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science, Konrad Lorenz Strasse 24, A-3430, Tulln, Vienna, Austria
| | - Véronique Aguié-Béghin
- INRA-UMR-614 Fractionnement des Agro-Ressources et Environnement (FARE), F-51686, Reims, France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des Agro-Ressources et Environnement (FARE), F-51686, Reims, France
| | - Markus Rüggeberg
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
- Applied Wood Research Laboratory, Empa - Swiss Federal Laboratories for Material Testing and Research, Duebendorf, Switzerland
| | - Notburga Gierlinger
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
- Applied Wood Research Laboratory, Empa - Swiss Federal Laboratories for Material Testing and Research, Duebendorf, Switzerland
| | - Ingo Burgert
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
- Applied Wood Research Laboratory, Empa - Swiss Federal Laboratories for Material Testing and Research, Duebendorf, Switzerland
| |
Collapse
|
32
|
Abstract
A judicious choice of a polyinsertion catalyst and monomer feed composition allows the one-pot synthesis of ethylene–styrene copolymers with an unprecedented structure, containing an isotactic polystyrene (iPS) block joined to an isotactic ethylene-alt-styrene sequence (iP(E-alt-S)).
Collapse
Affiliation(s)
- Nunzia Galdi
- Dipartimento di Chimica e Biologia
- Università degli Studi di Salerno
- Fisciano (SA)
- Italy
| | - Antonio Buonerba
- Dipartimento di Chimica e Biologia
- Università degli Studi di Salerno
- Fisciano (SA)
- Italy
| | - Patrizia Oliva
- Dipartimento di Chimica e Biologia
- Università degli Studi di Salerno
- Fisciano (SA)
- Italy
| | - Leone Oliva
- Dipartimento di Chimica e Biologia
- Università degli Studi di Salerno
- Fisciano (SA)
- Italy
| |
Collapse
|
33
|
Ovchinnikova OS, Kjoller K, Hurst GB, Pelletier DA, Van Berkel GJ. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging. Anal Chem 2013; 86:1083-90. [PMID: 24377265 DOI: 10.1021/ac4026576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.
Collapse
Affiliation(s)
- Olga S Ovchinnikova
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131
| | | | | | | | | |
Collapse
|
34
|
Kainz B, Oprzeska-Zingrebe EA, Herrera JL. Biomaterial and cellular properties as examined through atomic force microscopy, fluorescence optical microscopies and spectroscopic techniques. Biotechnol J 2013; 9:51-60. [DOI: 10.1002/biot.201300087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/23/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
|
35
|
Cumurcu A, Duvigneau J, Lindsay ID, Schön PM, Vancso GJ. Multimodal imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field ellipsometric microscopy. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Tessmer I, Kaur P, Lin J, Wang H. Investigating bioconjugation by atomic force microscopy. J Nanobiotechnology 2013; 11:25. [PMID: 23855448 PMCID: PMC3723498 DOI: 10.1186/1477-3155-11-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022] Open
Abstract
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str, 2, 97080, Würzburg, Germany.
| | | | | | | |
Collapse
|
37
|
|
38
|
Li JJ, Yip CM. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2272-82. [PMID: 23500349 DOI: 10.1016/j.bbamem.2013.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/25/2013] [Indexed: 01/16/2023]
Abstract
Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Jessica J Li
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada M5S 3E1
| | | |
Collapse
|
39
|
Wilusz RE, DeFrate LE, Guilak F. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. J R Soc Interface 2012; 9:2997-3007. [PMID: 22675162 DOI: 10.1098/rsif.2012.0314] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericellular matrix (PCM) is a narrow region that is rich in type VI collagen that surrounds each chondrocyte within the extracellular matrix (ECM) of articular cartilage. Previous studies have demonstrated that the chondrocyte micromechanical environment depends on the relative properties of the chondrocyte, its PCM and the ECM. The objective of this study was to measure the influence of type VI collagen on site-specific micromechanical properties of cartilage in situ by combining atomic force microscopy stiffness mapping with immunofluorescence imaging of PCM and ECM regions in cryo-sectioned tissue samples. This method was used to test the hypotheses that PCM biomechanical properties correlate with the presence of type VI collagen and are uniform with depth from the articular surface. Control experiments verified that immunolabelling did not affect the properties of the ECM or PCM. PCM biomechanical properties correlated with the presence of type VI collagen, and matrix regions lacking type VI collagen immediately adjacent to the PCM exhibited higher elastic moduli than regions positive for type VI collagen. PCM elastic moduli were similar in all three zones. Our findings provide further support for type VI collagen in defining the chondrocyte PCM and contributing to its biological and biomechanical properties.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
López-Elvira E, Escasaín E, Baró A, Colchero J, Palacios-Lidón E. Wavelength dependence of nanoscale photodegradation in poly(3-octylthiophene) thin films. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Kaplan-Ashiri I, Titus EJ, Willets KA. Subdiffraction-limited far-field Raman spectroscopy of single carbon nanotubes: an unenhanced approach. ACS NANO 2011; 5:1033-1041. [PMID: 21229967 DOI: 10.1021/nn102498h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a new approach for subdiffraction-limited far-field Raman spectroscopy of single carbon nanotubes using through-the-objective total internal reflection (TIR) excitation coupled to an atomic force microscope (AFM). By using this approach, we are able to detect spectroscopic signatures of structural changes along a single nanotube with nanometer resolution. A single multiwalled carbon nanotube is mounted on an AFM tip and imaged while tapping on the surface of a glass coverslip. As the angle of incidence of the excitation field is changed, we are able to tune the penetration depth of the evanescent field by steps as small as 2-10 nm. An increase in the ratio of the Raman D band (the disorder band) to G band (the in-plane graphitic band) of the carbon nanotube was demonstrated as the penetration depth decreased, indicating that most defects are concentrated at the end of the nanotube. We also observed frequency shifts of the G band as we changed the penetration depth. By changing the polarization of the incident beam, we are able detect the orientation and possible local curvature in the nanotubes. Coupling through-the-objective TIR with AFM is a powerful technique for studying structural and chemical properties of carbon nanotubes and can be easily extended to many other nanoscale/molecular systems.
Collapse
Affiliation(s)
- Ifat Kaplan-Ashiri
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, USA
| | | | | |
Collapse
|
42
|
Tranchida D, Diaz J, Schön P, Schönherr H, Vancso GJ. Scanning Near-Field Ellipsometry Microscopy: imaging nanomaterials with resolution below the diffraction limit. NANOSCALE 2011; 3:233-239. [PMID: 21042630 DOI: 10.1039/c0nr00530d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We introduce a simple Scanning Near-Field Ellipsometer Microscopy (SNEM) setup to address the rapidly increasing need for simple, routine optical imaging techniques with resolution well below the diffraction limit. Our setup is based on the combination of commercially available atomic force microscope (AFM) and ellipsometry equipment with gold-coated AFM tips to obtain near-field optical images with a demonstrated resolution below λ/10. AFM topographical data, obtained in contact mode, and near-field optical data were acquired simultaneously using a combined AFM-ellipsometer. The highly enhanced field due to lightning-rod effects and localized surface plasmons excited at the end of the gold-coated tip allowed us to resolve and identify metallic nanoparticles embedded in poly(methyl methacrylate) as well as microphases in microphase-separated block copolymer films.
Collapse
Affiliation(s)
- Davide Tranchida
- University of Twente, MESA+ Institute for Nanotechnology and Faculty of Science and Technology, Department of Materials Science and Technology of Polymers, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Zhong J. From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol (Camb) 2011; 3:632-44. [DOI: 10.1039/c0ib00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Delcea M, Schmidt S, Palankar R, Fernandes PAL, Fery A, Möhwald H, Skirtach AG. Mechanobiology: correlation between mechanical stability of microcapsules studied by AFM and impact of cell-induced stresses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2858-2862. [PMID: 21086520 DOI: 10.1002/smll.201001478] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Mihaela Delcea
- Max-Planck Institute of Colloids and Interfaces, Interfaces Department, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Atomic force microscopy (AFM) is a powerful tool for microbiological investigation. This versatile technique cannot only image cellular surfaces at high resolution, but also measure many forms of fundamental interactions over scales ranging from molecules to cells. In this work, we review the recent development of AFM applications in the microbial area. We discuss several approaches for using AFM scanning images to investigate morphological characteristics of microbes and the use of force-distance curves to investigate interaction of microbial samples at the nanometer and cellular levels. Complementary techniques used in combination with AFM for study of microbes are also discussed.
Collapse
Affiliation(s)
- Shaoyang Liu
- Biosystems Engineering Department, Auburn University, Auburn, Alabama 36849-5417, USA
| | | |
Collapse
|
46
|
Casero E, Vázquez L, Parra-Alfambra AM, Lorenzo E. AFM, SECM and QCM as useful analytical tools in the characterization of enzyme-based bioanalytical platforms. Analyst 2010; 135:1878-903. [DOI: 10.1039/c0an00120a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|