1
|
Stautz J, Griwatz D, Kaltwasser S, Mehdipour AR, Ketter S, Thiel C, Wunnicke D, Schrecker M, Mills DJ, Hummer G, Vonck J, Hänelt I. A short intrinsically disordered region at KtrB's N-terminus facilitates allosteric regulation of K + channel KtrAB. Nat Commun 2025; 16:4252. [PMID: 40335548 PMCID: PMC12059179 DOI: 10.1038/s41467-025-59546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
K+ homeostasis is crucial for bacterial survival. The bacterial K+ channel KtrAB is regulated by the binding of ADP and ATP to the cytosolic RCK subunits KtrA. While the ligand-induced conformational changes in KtrA are well described, the transmission to the gating regions within KtrB is not understood. Here, we present a cryo-EM structure of the ADP-bound, inactive KtrAB complex from Vibrio alginolyticus, which resolves part of KtrB's N termini. They are short intrinsically disordered regions (IDRs) located at the interface of KtrA and KtrB. We reveal that these IDRs play a decisive role in ATP-mediated channel opening, while the closed ADP-bound state does not depend on the N-termini. We propose an allosteric mechanism, in which ATP-induced conformational changes within KtrA trigger an interaction of KtrB's N-terminal IDRs with the membrane, stabilizing the active and conductive state of KtrAB.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David Griwatz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad Reza Mehdipour
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Belgium
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Sophie Ketter
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Celina Thiel
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina Schrecker
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Bizet M, Balázsi Á, Biaso F, Byrne D, Etienne E, Guigliarelli B, Urban P, Dorlet P, Truan G, Gerbaud G, Kálai T, Martinho M. Expanding the Diversity of Nitroxide-Based Paramagnetic Probes Conjugated to Non-Canonical Amino Acids for Sdsl-Epr Applications. Chembiochem 2025; 26:e202500064. [PMID: 40011209 PMCID: PMC12002101 DOI: 10.1002/cbic.202500064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Understanding protein structure requires studying its dynamics, which is critical to elucidating its functional role. Biophysical techniques have revolutionized this field over time, providing remarkable insights into structure-function relationships. Among these, Site-Directed Spin Labelling (SDSL) combined with Electron Paramagnetic Resonance (EPR) is a powerful method delivering structural data at the residue level, irrespective of protein size or environment. Traditional nitroxide labels targeting cysteine residues face limitations when these residues are essential for protein structure or function. To address this, alternatives have been proposed as the use of non-canonical amino acids (ncaa) coupled with specific nitroxide labels. This study introduces 14N-HO-5223, a novel nitroxide label specific to the pAzPhe ncaa, along with its 15N-derivative. These labels were grafted at two sites of the model protein, the diflavin cytochrome P450 reductase. For comparative purpose, two already reported labels were also used. Continuous wave (cw) EPR spectroscopy confirmed the HO-5223 label as an effective reporter of protein dynamics. Additionally, Double Electron-Electron Resonance (DEER) measurements provided distance distributions between the semi-quinone FMNH⋅ state of the CPR and all nitroxide labels. These results expand the toolkit of the ncaa-nitroxide pairs, enabling EPR-based structural studies of proteins where cysteine modification is impractical, further advancing our ability to decode protein dynamics and function.
Collapse
Affiliation(s)
| | - Áron Balázsi
- Institute of Organic and Medicinal ChemistryFaculty of PharmacyUniversity of PécsHonvéd st. 1.H-7624PécsHungary
| | | | - Deborah Byrne
- Protein Expression FacilityAix Marseille UnivCNRSIMM13402MarseilleFrance
| | | | | | - Philippe Urban
- TBIUniversité de ToulouseCNRSINRAEINSAToulouseFrance31077
| | | | - Gilles Truan
- TBIUniversité de ToulouseCNRSINRAEINSAToulouseFrance31077
| | | | - Tamás Kálai
- Institute of Organic and Medicinal ChemistryFaculty of PharmacyUniversity of PécsHonvéd st. 1.H-7624PécsHungary
- Szentágothai Research CentreIfjúság st. 20H-7624PécsHungary
| | | |
Collapse
|
3
|
Pérez Carrillo V, Whittaker JJ, Wiedemann C, Harder JM, Lohr T, Jamithireddy AK, Dajka M, Goretzki B, Joseph B, Guskov A, Harmer NJ, Holzgrabe U, Hellmich UA. Structure and Dynamics of Macrophage Infectivity Potentiator Proteins from Pathogenic Bacteria and Protozoans Bound to Fluorinated Pipecolic Acid Inhibitors. J Med Chem 2025; 68:5926-5941. [PMID: 39976355 PMCID: PMC11912469 DOI: 10.1021/acs.jmedchem.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Macrophage infectivity potentiator (MIP) proteins, found in pro- and eukaryotic pathogens, influence microbial virulence, host cell infection, pathogen replication, and dissemination. MIPs share an FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain, making them attractive targets for inhibitor development. We determined high-resolution crystal structures of Burkholderia pseudomallei and Trypanosoma cruzi MIPs in complex with fluorinated pipecolic acid inhibitors. The inhibitor binding profiles in solution were compared across B. pseudomallei, T. cruzi, and Legionella pneumophila MIPs using 1H, 15N, and 19F NMR spectroscopy. Demonstrating the versatility of fluorinated ligands for characterizing inhibitor complexes, 19F NMR spectroscopy identified differences in ligand binding dynamics across MIPs. EPR spectroscopy and SAXS further revealed inhibitor-induced global structural changes in homodimeric L. pneumophila MIP. This study demonstrates the importance of integrating diverse methods to probe protein dynamics and provides a foundation for optimizing MIP-targeted inhibitors in this structurally conserved yet dynamically variable protein family.
Collapse
Affiliation(s)
- Victor
Hugo Pérez Carrillo
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Christoph Wiedemann
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jean-Martin Harder
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Theresa Lohr
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Anil K. Jamithireddy
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Marina Dajka
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Benedikt Goretzki
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
| | - Benesh Joseph
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Nicholas J. Harmer
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Ute A. Hellmich
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
- Cluster
of Excellence “Balance of the Microverse”, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Kehl A, Sielaff L, Remmel L, Rämisch ML, Bennati M, Meyer A. Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions. Phys Chem Chem Phys 2025; 27:1415-1425. [PMID: 39696963 PMCID: PMC11656155 DOI: 10.1039/d4cp04443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in 19F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood. Here, we employ a combined approach of rational molecular design, frequency and time domain ENDOR methods as well as quantum mechanical spin dynamics simulations to analyze these mechanisms. We present the first application of Fourier transform ENDOR to remove power broadening and measure T2n of the 19F nucleus. We identify nuclear dipolar couplings between the fluorine and protons up to 14 kHz as a major source of spectral broadening. When removing these interactions by H/D exchange, an unprecedented spectral width of 9 kHz was observed suggesting that, generally, the accessible distance range can be extended. In a spin labeled RNA duplex we were able to predict the spectral ENDOR line width, which in turn enabled us to extract a distance distribution. This study represents a first step towards a quantitative determination of distance distributions in biomolecules from 19F ENDOR.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Lucca Sielaff
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Laura Remmel
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Maya L Rämisch
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Marina Bennati
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Andreas Meyer
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| |
Collapse
|
6
|
Ng’ang’a PN, Folz J, Kucher S, Roderer D, Xu Y, Sitsel O, Belyy A, Prumbaum D, Kühnemuth R, Assafa TE, Dong M, Seidel CAM, Bordignon E, Raunser S. Multistate kinetics of the syringe-like injection mechanism of Tc toxins. SCIENCE ADVANCES 2025; 11:eadr2019. [PMID: 39752508 PMCID: PMC11698121 DOI: 10.1126/sciadv.adr2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/12/2024] [Indexed: 01/06/2025]
Abstract
Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive. We used an integrated biophysical approach to monitor prepore-to-pore transition and found a reaction time of ~30 hours for a complete transition. We show two asynchronous general steps of the process, shell opening and channel ejection, with the overall reaction pathway being a slow multistep process involving three intermediates. Liposomes, an increasingly high pH, or receptors facilitate shell opening, which is directly correlated with an increased rate of the prepore-to-pore transition. Channel ejection is a near-instantaneous process which occurs with a transition time of <60 milliseconds. Understanding the mechanism of action of Tc toxins and unveiling modulators of the kinetics are key steps toward their application as biomedical devices or biopesticides.
Collapse
Affiliation(s)
- Peter Njenga Ng’ang’a
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Julian Folz
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Svetlana Kucher
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ying Xu
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ralf Kühnemuth
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tufa E. Assafa
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Claus A. M. Seidel
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Joseph B. Protein-Protein Interaction and Conformational Change in the Alpha-Helical Membrane Transporter BtuCD-F in the Native Cellular Envelope. Chembiochem 2025; 26:e202400858. [PMID: 39551706 DOI: 10.1002/cbic.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Alpha-helical membrane proteins perform numerous critical functions essential for the survival of living organisms. Traditionally, these proteins are extracted from membranes using detergent solubilization and reconstitution into liposomes or nanodiscs. However, these processes often obscure the effects of nanoconfinement and the native environment on the structure and conformational heterogeneity of the target protein. We demonstrate that pulsed dipolar electron spin resonance spectroscopy, combined with the Gd3+-nitroxide spin pair, enables the selective observation of the vitamin B12 importer BtuCD-F in its native cellular envelope. Despite the high levels of non-specific labeling in the envelope, this orthogonal approach combined with the long phase-memory time for the Gd3+ spin enables the observation of the target protein complex at a few micromolar concentrations with high resolution. In the native envelope, vitamin B12 induces a distinct conformational shift at the BtuCD-BtuF interface, which is not observed in the micelles. This approach offers a general strategy for investigating protein-protein and protein-ligand/drug interactions and conformational changes of the alpha-helical membrane proteins in their native envelope context.
Collapse
Affiliation(s)
- Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
8
|
Soubias O, Foley SL, Jian X, Jackson RA, Zhang Y, Rosenberg EM, Li J, Heinrich F, Johnson ME, Sodt AJ, Randazzo PA, Byrd RA. The PH domain in the ArfGAP ASAP1 drives catalytic activation through an unprecedented allosteric mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629688. [PMID: 39763923 PMCID: PMC11702723 DOI: 10.1101/2024.12.20.629688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface. Our results support a new conceptual model in which the PH domain contributes to efficient catalysis not only by membrane recruitment but by acting as a critical component of the catalytic interface, binding Arf·GTP and allosterically driving it towards the catalytic transition state. We discuss the biological implications of these results and how they may apply more broadly to poorly understood membrane-dependent regulatory mechanisms controlling catalysis of the ArfGAP superfamily as well as other peripheral membrane enzymes.
Collapse
Affiliation(s)
- Olivier Soubias
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Samuel L. Foley
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebekah A. Jackson
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eric M. Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Frank Heinrich
- Department of Physics Carnegie Mellon University, Pittsburgh, PA, USA. NIST Center for Neutron Research, Gaithersburg, MD, USA
- Department of Physics Carnegie Mellon University, Pittsburgh, PA, USA. NIST Center for Neutron Research, Gaithersburg, MD, USA
| | | | - Alexander J. Sodt
- Unit of Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paul A. Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
9
|
Kyriukha Y, Watkins MB, Redington JM, Chintalapati N, Ganti A, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. iScience 2024; 27:111259. [PMID: 39584160 PMCID: PMC11582789 DOI: 10.1016/j.isci.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The partner and localizer of BRCA2 (PALB2) is a scaffold protein linking BRCA1 with BRCA2 and RAD51 during homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR in cells, while the PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange in vitro. We determined that PALB2-DBD is intrinsically disordered beyond a single N-terminal α-helix. Coiled-coil mediated dimerization is stabilized by interaction between intrinsically disordered regions (IDRs) leading to a 2-fold structural compaction. Single-stranded (ss)DNA binding promotes additional structural compaction and protein tetramerization. Using confocal single-molecule FRET, we observed bimodal and oligomerization-dependent compaction of ssDNA bound to PALB2-DBD, suggesting a novel strand exchange mechanism. Bioinformatics analysis and preliminary observations indicate that PALB2 forms protein-nucleic acids condensates. Intrinsically disordered DBDs are prevalent in the human proteome. PALB2-DBD and similar IDRs may use a chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Maxwell B. Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Jennifer M. Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Nithya Chintalapati
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abhishek Ganti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Remmel L, Meyer A, Ackermann K, Hagelueken G, Bennati M, Bode BE. Pulsed EPR Methods in the Angstrom to Nanometre Scale Shed Light on the Conformational Flexibility of a Fluoride Riboswitch. Angew Chem Int Ed Engl 2024; 63:e202411241. [PMID: 39225197 PMCID: PMC11586693 DOI: 10.1002/anie.202411241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches control gene regulation upon external stimuli such as environmental factors or ligand binding. The fluoride sensing riboswitch from Thermotoga petrophila is a complex regulatory RNA proposed to be involved in resistance to F- cytotoxicity. The details of structure and dynamics underpinning the regulatory mechanism are currently debated. Here we demonstrate that a combination of pulsed electron paramagnetic resonance (ESR/EPR) spectroscopies, detecting distances in the angstrom to nanometre range, can probe distinct regions of conformational flexibility in this riboswitch. PELDOR (pulsed electron-electron double resonance) revealed a similar preorganisation of the sensing domain in three forms, i.e. the free aptamer, the Mg2+-bound apo, and the F--bound holo form. 19F ENDOR (electron-nuclear double resonance) was used to investigate the active site structure of the F--bound holo form. Distance distributions without a priori structural information were compared with in silico modelling of spin label conformations based on the crystal structure. While PELDOR, probing the periphery of the RNA fold, revealed conformational flexibility of the RNA backbone, ENDOR indicated low structural heterogeneity at the ligand binding site. Overall, the combination of PELDOR and ENDOR with sub-angstrom precision gave insight into structural organisation and flexibility of a riboswitch, not easily attainable by other biophysical techniques.
Collapse
Affiliation(s)
- Laura Remmel
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Gregor Hagelueken
- Institute of Structural BiologyUniversity of BonnVenusberg-Campus 153127BonnGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| |
Collapse
|
11
|
Ledwitch K, Künze G, Okwei E, Sala D, Meiler J. Non-canonical amino acids for site-directed spin labeling of membrane proteins. Curr Opin Struct Biol 2024; 89:102936. [PMID: 39454307 DOI: 10.1016/j.sbi.2024.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024]
Abstract
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme. Here, we highlight current strategies to spin-label membrane proteins through ncAAs for nuclear and electron paramagnetic resonance applications. Such advances are critical for developing bioorthogonal spin labeling schemes to achieve in-cell labeling and in-cell measurements of membrane protein conformational dynamics.
Collapse
Affiliation(s)
- Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Georg Künze
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Elleansar Okwei
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Davide Sala
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA; Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Bogdanov A, Gao L, Dalaloyan A, Zhu W, Seal M, Su XC, Frydman V, Liu Y, Gronenborn AM, Goldfarb D. Spin labels for 19F ENDOR distance determination: resolution, sensitivity and distance predictability. Phys Chem Chem Phys 2024; 26:26921-26932. [PMID: 39417349 DOI: 10.1039/d4cp02996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) has emerged as an attractive method for determining distance distributions in biomolecules in the range of 0.7-2 nm, which is not easily accessible by pulsed electron dipolar spectroscopy. The 19F ENDOR approach relies on spin labeling, and in this work, we compare various labels' performance. Four protein variants of GB1 and ubiquitin bearing fluorinated residues were labeled at the same site with nitroxide and trityl radicals and a Gd(III) chelate. Additionally, a double-histidine variant of GB1 was labeled with a Cu(II) nitrilotriacetic acid chelate. ENDOR measurements were carried out at W-band (95 GHz) where 19F signals are well separated from 1H signals. Differences in sensitivity were observed, with Gd(III) chelates providing the highest signal-to-noise ratio. The new trityl label, OXMA, devoid of methyl groups, exhibited a sufficiently long phase memory time to provide an acceptable sensitivity. However, the longer tether of this label effectively reduces the maximum accessible distance between the 19F and the Cα of the spin-labeling site. The nitroxide and Cu(II) labels provide valuable additional geometric insights via orientation selection. Prediction of electron-nuclear distances based on the known structures of the proteins were the closest to the experimental values for Gd(III) labels, and distances obtained for Cu(II) labeled GB1 are in good agreement with previously published NMR results. Overall, our results offer valuable guidance for selecting optimal spin labels for 19F ENDOR distance measurement in proteins.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Longfei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Arina Dalaloyan
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Wenkai Zhu
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Manas Seal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Veronica Frydman
- Department of Chemical Research Support, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
13
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
14
|
Sanders G, Borbat PP, Georgieva ER. Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins. Biophys J 2024; 123:2584-2593. [PMID: 38932458 PMCID: PMC11365223 DOI: 10.1016/j.bpj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
15
|
Thomasen FE, Skaalum T, Kumar A, Srinivasan S, Vanni S, Lindorff-Larsen K. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat Commun 2024; 15:6645. [PMID: 39103332 DOI: 10.1038/s41467-024-50647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Multidomain proteins with flexible linkers and disordered regions play important roles in many cellular processes, but characterizing their conformational ensembles is difficult. We have previously shown that the coarse-grained model, Martini 3, produces too compact ensembles in solution, that may in part be remedied by strengthening protein-water interactions. Here, we show that decreasing the strength of protein-protein interactions leads to improved agreement with experimental data on a wide set of systems. We show that the 'symmetry' between rescaling protein-water and protein-protein interactions breaks down when studying interactions with or within membranes; rescaling protein-protein interactions better preserves the binding specificity of proteins with lipid membranes, whereas rescaling protein-water interactions preserves oligomerization of transmembrane helices. We conclude that decreasing the strength of protein-protein interactions improves the accuracy of Martini 3 for IDPs and multidomain proteins, both in solution and in the presence of a lipid membrane.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Tórur Skaalum
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Ashutosh Kumar
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
16
|
Bizet M, Byrne D, Biaso F, Gerbaud G, Etienne E, Briola G, Guigliarelli B, Urban P, Dorlet P, Kalai T, Truan G, Martinho M. Structural insights into the semiquinone form of human Cytochrome P450 reductase by DEER distance measurements between a native flavin and a spin labelled non-canonical amino acid. Chemistry 2024; 30:e202304307. [PMID: 38277424 DOI: 10.1002/chem.202304307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.
Collapse
Affiliation(s)
- Maxime Bizet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Aix Marseille Univ, CNRS, IMM, 13402, Marseille, France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Giuseppina Briola
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Tamas Kalai
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, PO Box 99 Szigeti st. 12, H-7602 7624, Pécs, Hungary
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Marlène Martinho
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| |
Collapse
|
17
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries. Commun Biol 2024; 7:298. [PMID: 38461354 PMCID: PMC10925062 DOI: 10.1038/s42003-024-05910-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024] Open
Abstract
Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parma, 43125, Italy
- Istituto Nanoscienze - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - João M Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
18
|
Esteban-Hofer L, Emmanouilidis L, Yulikov M, Allain FHT, Jeschke G. Ensemble structure of the N-terminal domain (1-267) of FUS in a biomolecular condensate. Biophys J 2024; 123:538-554. [PMID: 38279531 PMCID: PMC10938082 DOI: 10.1016/j.bpj.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Solutions of some proteins phase separate into a condensed state of high protein concentration and a dispersed state of low concentration. Such behavior is observed in living cells for a number of RNA-binding proteins that feature intrinsically disordered domains. It is relevant for cell function via the formation of membraneless organelles and transcriptional condensates. On a basic level, the process can be studied in vitro on protein domains that are necessary and sufficient for liquid-liquid phase separation (LLPS). We have performed distance distribution measurements by electron paramagnetic resonance for 13 sections in an N-terminal domain (NTD) construct of the protein fused in sarcoma (FUS), consisting of the QGSY-rich domain and the RGG1 domain, in the denatured, dispersed, and condensed state. Using 10 distance distribution restraints for ensemble modeling and three such restraints for model validation, we have found that FUS NTD behaves as a random-coil polymer under good-solvent conditions in both the dispersed and condensed state. Conformation distribution in the biomolecular condensate is virtually indistinguishable from the one in an unrestrained ensemble, with the latter one being based on only residue-specific Ramachandran angle distributions. Over its whole length, FUS NTD is slightly more compact in the condensed than in the dispersed state, which is in line with the theory for random coils in good solvent proposed by de Gennes, Daoud, and Jannink. The estimated concentration in the condensate exceeds the overlap concentration resulting from this theory. The QGSY-rich domain is slightly more extended, slightly more hydrated, and has slightly higher propensity for LLPS than the RGG1 domain. Our results support previous suggestions that LLPS of FUS is driven by multiple transient nonspecific hydrogen bonding and π-sp2 interactions.
Collapse
Affiliation(s)
- Laura Esteban-Hofer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland.
| |
Collapse
|
19
|
Cina NP, Klug CS. Conformational investigation of the asymmetric periplasmic domains of E. coli LptB 2FGC using SDSL CW EPR spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:141-158. [PMID: 38645307 PMCID: PMC11025719 DOI: 10.1007/s00723-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 04/23/2024]
Abstract
The majority of pathogenic Gram-negative bacteria benefit from intrinsic antibiotic resistance, attributed primarily to the lipopolysaccharide (LPS) coating of the bacterial envelope. To effectively coat the bacterial cell envelope, LPS is transported from the inner membrane by the LPS transport (Lpt) system, which comprises seven distinct Lpt proteins, LptA-G, that form a stable protein bridge spanning the periplasm to connect the inner and outer membranes. The driving force of this process, LptB2FG, is an asymmetric ATP binding cassette (ABC) transporter with a novel architecture and function that ejects LPS from the inner membrane and facilitates transfer to the periplasmic bridge. Here, we utilize site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy to probe conformational differences between the periplasmic domains of LptF and LptG. We show that LptC solely interacts with the edge β-strand of LptF and does not directly interact with LptG. We also quantify the interaction of periplasmic LptC with LptF. Additionally, we show that LPS cannot enter the protein complex externally, supporting the unidirectional LPS transport model. Furthermore, we present our findings that the presence of LPS within the LptB2FGC binding cavity and the membrane reconstitution environment affect the structural orientation of the periplasmic domains of LptF and LptG, but overall are relatively fixed with respect to one another. This study will provide insight into the structural asymmetry associated with the newly defined type VI ABC transporter class.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
20
|
Jeschke G. Protein ensemble modeling and analysis with MMMx. Protein Sci 2024; 33:e4906. [PMID: 38358120 PMCID: PMC10868441 DOI: 10.1002/pro.4906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Proteins, especially of eukaryotes, often have disordered domains and may contain multiple folded domains whose relative spatial arrangement is distributed. The MMMx ensemble modeling and analysis toolbox (https://github.com/gjeschke/MMMx) can support the design of experiments to characterize the distributed structure of such proteins, starting from AlphaFold2 predictions or folded domain structures. Weak order can be analyzed with reference to a random coil model or to peptide chains that match the residue-specific Ramachandran angle distribution of the loop regions and are otherwise unrestrained. The deviation of the mean square end-to-end distance of chain sections from their average over sections of the same sequence length reveals localized compaction or expansion of the chain. The shape sampled by disordered chains is visualized by superposition in the principal axes frame of their inertia tensor. Ensembles of different sizes and with weighted conformers can be compared based on a similarity parameter that abstracts from the ensemble width.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Department of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| |
Collapse
|
21
|
Sanders G, Borbat PP, Georgieva ER. A comparative study of influenza A M2 protein conformations in DOPC/DOPS liposomes and in native E. coli membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574681. [PMID: 38260371 PMCID: PMC10802500 DOI: 10.1101/2024.01.08.574681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca NY 14853
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
22
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Kazemi S, Lopata A, Kniss A, Pluska L, Güntert P, Sommer T, Prisner TF, Collauto A, Dötsch V. Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data. JOURNAL OF BIOMOLECULAR NMR 2023; 77:261-269. [PMID: 37966668 PMCID: PMC10687113 DOI: 10.1007/s10858-023-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023]
Abstract
Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.
Collapse
Affiliation(s)
- Sina Kazemi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Signals GmbH & Co. KG, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Anna Lopata
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lukas Pluska
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
- Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| | - Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Wiedemann C, Whittaker JJ, Pérez Carrillo VH, Goretzki B, Dajka M, Tebbe F, Harder JM, Krajczy PR, Joseph B, Hausch F, Guskov A, Hellmich UA. Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding. Int J Biol Macromol 2023; 252:126366. [PMID: 37633566 DOI: 10.1016/j.ijbiomac.2023.126366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.
Collapse
Affiliation(s)
- C Wiedemann
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - J J Whittaker
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, the Netherlands
| | - V H Pérez Carrillo
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - B Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany; Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany
| | - M Dajka
- Department of Physics, Freie Universität Berlin, Germany
| | - F Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - J-M Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - P R Krajczy
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt, Germany
| | - B Joseph
- Department of Physics, Freie Universität Berlin, Germany
| | - F Hausch
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| | - A Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, the Netherlands
| | - U A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany; Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
25
|
Syryamina VN, Wu X, Boulos S, Nyström L, Yulikov M. Pulse EPR spectroscopy and molecular modeling reveal the origins of the local heterogeneity of dietary fibers. Carbohydr Polym 2023; 319:121167. [PMID: 37567691 DOI: 10.1016/j.carbpol.2023.121167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023]
Abstract
Optimizing human diet by including dietary fibers would be more efficient when the fibers' chain interactions with other molecules are understood in depth. Thereby, it is important to develop methods for characterizing the fiber chain to be able to monitor its structural alterations upon intermolecular interactions. Here, we demonstrate the utility of the electron paramagnetic resonance (EPR) spectroscopy, complemented by simulations in probing the atomistic details of the chain conformations for spin-labeled fibers. Barley β-glucan, a native polysaccharide with linear chain, was utilized as a test fiber system to demonstrate the technique's capabilities. Pulse dipolar EPR data show good agreement with results of the fiber chain modeling, revealing sinuous chain conformations and providing polymer shape descriptors: the gyration tensor, spin-spin distance distribution function, and information about proton density near the spin probe. Results from EPR measurements point to the fiber aggregation in aqueous solution, which agrees with the results of the dynamic light scattering. We propose that the combination of pulse EPR measurements with modeling can be a perfect experimental tool for in-depth structural investigation of dietary fibers and their interaction under such conditions, and that the presented methodology can be extended to other weakly ordered or disordered macromolecules.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation.
| | - Xiaowen Wu
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Samy Boulos
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Laura Nyström
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 2, 8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Kao TY, Chiang YW. DEERefiner-assisted structural refinement using pulsed dipolar spectroscopy: a study on multidrug transporter LmrP. Phys Chem Chem Phys 2023; 25:24508-24517. [PMID: 37656008 DOI: 10.1039/d3cp02569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pulsed dipolar spectroscopy, such as double electron-electron resonance (DEER), has been underutilized in protein structure determination, despite its ability to provide valuable spatial information. In this study, we present DEERefiner, a user-friendly MATLAB-based GUI program that enables the modeling of protein structures by combining an initial structure and DEER distance restraints. We illustrate the effectiveness of DEERefiner by successfully modeling the ligand-dependent conformational changes of the proton-drug antiporter LmrP to an extracellular-open-like conformation with an impressive precision of 0.76 Å. Additionally, DEERefiner was able to uncover a previously hypothesized but experimentally unresolved proton-dependent conformation of LmrP, characterized as an extracellular-closed/partially intracellular-open conformation, with a precision of 1.16 Å. Our work not only highlights the ability of DEER spectroscopy to model protein structures but also reveals the potential of DEERefiner to advance the field by providing an accessible and applicable tool for precise protein structure modeling, thereby paving the way for deeper insights into protein function.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
27
|
Wang XW, Zhang X, Cui CY, Li B, Goldfarb D, Yang Y, Su XC. Stabilizing Nitroxide Spin Labels for Structural and Conformational Studies of Biomolecules by Maleimide Treatment. Chemistry 2023; 29:e202301350. [PMID: 37354082 DOI: 10.1002/chem.202301350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Nitroxide (NO) spin radicals are effective in characterizing structures, interactions and dynamics of biomolecules. The EPR applications in cell lysates or intracellular milieu require stable spin labels, but NO radicals are unstable in such conditions. We showed that the destabilization of NO radicals in cell lysates or even in cells is caused by NADPH/NADH related enzymes, but not by the commonly believed reducing reagents such as GSH. Maleimide stabilizes the NO radicals in the cell lysates by consumption of the NADPH/NADH that are essential for the enzymes involved in destabilizing NO radicals, instead of serving as the solo thiol scavenger. The maleimide treatment retains the crowding properties of the intracellular components and allows to perform long-time EPR measurements of NO labeled biomolecules close to the intracellular conditions. The strategy of maleimide treatment on cell lysates for the EPR applications has been demonstrated on double electron-electron resonance (DEER) measurements on a number of NO labeled protein samples. The method opens a broad application range for the NO labeled biomolecules by EPR in conditions that resemble the intracellular milieu.
Collapse
Affiliation(s)
- Xi-Wei Wang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Praetorius F, Leung PJY, Tessmer MH, Broerman A, Demakis C, Dishman AF, Pillai A, Idris A, Juergens D, Dauparas J, Li X, Levine PM, Lamb M, Ballard RK, Gerben SR, Nguyen H, Kang A, Sankaran B, Bera AK, Volkman BF, Nivala J, Stoll S, Baker D. Design of stimulus-responsive two-state hinge proteins. Science 2023; 381:754-760. [PMID: 37590357 PMCID: PMC10697137 DOI: 10.1126/science.adg7731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023]
Abstract
In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of "hinge" proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.
Collapse
Affiliation(s)
- Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J. Y. Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington, USA
| | - Acacia F. Dishman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul M. Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryanne K. Ballard
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R. Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA,USA
| |
Collapse
|
29
|
Wimalasiri VW, Jurczak KA, Wieliniec MK, Nilaweera TD, Nakamoto RK, Cafiso DS. A disulfide chaperone knockout facilitates spin labeling and pulse EPR spectroscopy of outer membrane transporters. Protein Sci 2023; 32:e4704. [PMID: 37312651 PMCID: PMC10288552 DOI: 10.1002/pro.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Pulse EPR measurements provide information on distances and distance distributions in proteins but require the incorporation of pairs of spin labels that are usually attached to engineered cysteine residues. In previous work, we demonstrated that efficient in vivo labeling of the Escherichia coli outer membrane vitamin B12 transporter, BtuB, could only be achieved using strains defective in the periplasmic disulfide bond formation (Dsb) system. Here, we extend these in vivo measurements to FecA, the E. coli ferric citrate transporter. As seen for BtuB, pairs of cysteines cannot be labeled when the protein is present in a standard expression strain. However, incorporating plasmids that permit an arabinose induced expression of FecA into a strain defective in the thiol disulfide oxidoreductase, DsbA, enables efficient spin-labeling and pulse EPR of FecA in cells. A comparison of the measurements made on FecA in cells with measurements made in reconstituted phospholipid bilayers suggests that the cellular environment alters the behavior of the extracellular loops of FecA. In addition to these in situ EPR measurements, the use of a DsbA minus strain for the expression of BtuB improves the EPR signals and pulse EPR data obtained in vitro from BtuB that is labeled, purified, and reconstituted into phospholipid bilayers. The in vitro data also indicate the presence of intermolecular BtuB-BtuB interactions, which had not previously been observed in a reconstituted bilayer system. This result suggests that in vitro EPR measurements on other outer membrane proteins would benefit from protein expression in a DsbA minus strain.
Collapse
Affiliation(s)
- Viranga W. Wimalasiri
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kinga A. Jurczak
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Monika K. Wieliniec
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Thushani D. Nilaweera
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Present address:
Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMarylandUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David S. Cafiso
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
30
|
Tessmer MH, Stoll S. A novel approach to modeling side chain ensembles of the bifunctional spin label RX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542139. [PMID: 37292623 PMCID: PMC10245940 DOI: 10.1101/2023.05.24.542139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a novel approach to modeling side chain ensembles of bifunctional spin labels. This approach utilizes rotamer libraries to generate side chain conformational ensembles. Because the bifunctional label is constrained by two attachment sites, the label is split into two monofunctional rotamers which are first attached to their respective sites, then rejoined by a local optimization in dihedral space. We validate this method against a set of previously published experimental data using the bifunctional spin label, RX. This method is relatively fast and can readily be used for both experimental analysis and protein modeling, providing significant advantages over modeling bifunctional labels with molecular dynamics simulations. Use of bifunctional labels for site directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy dramatically reduces label mobility, which can significantly improve resolution of small changes in protein backbone structure and dynamics. Coupling the use of bifunctional labels with side chain modeling methods allows for improved quantitative application of experimental SDSL EPR data to protein modeling.
Collapse
Affiliation(s)
- Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States
| |
Collapse
|
31
|
Frkic RL, Pederick JL, Horsfall AJ, Jovcevski B, Crame EE, Kowalczyk W, Pukala TL, Chang MR, Zheng J, Blayo AL, Abell AD, Kamenecka TM, Harbort JS, Harmer JR, Griffin PR, Bruning JB. PPARγ Corepression Involves Alternate Ligand Conformation and Inflation of H12 Ensembles. ACS Chem Biol 2023; 18:1115-1123. [PMID: 37146157 DOI: 10.1021/acschembio.2c00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Inverse agonists of peroxisome proliferator activated receptor γ (PPARγ) have emerged as safer alternatives to full agonists for their reduced side effects while still maintaining impressive insulin-sensitizing properties. To shed light on their molecular mechanism, we characterized the interaction of the PPARγ ligand binding domain with SR10221. X-ray crystallography revealed a novel binding mode of SR10221 in the presence of a transcriptionally repressing corepressor peptide, resulting in much greater destabilization of the activation helix, H12, than without corepressor peptide. Electron paramagnetic resonance provided in-solution complementary protein dynamic data, which revealed that for SR10221-bound PPARγ, H12 adopts a plethora of conformations in the presence of corepressor peptide. Together, this provides the first direct evidence for corepressor-driven ligand conformation for PPARγ and will allow the development of safer and more effective insulin sensitizers suitable for clinical use.
Collapse
Affiliation(s)
- Rebecca L Frkic
- The Institute for Photonics and Advanced Sensing and School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- The Institute for Photonics and Advanced Sensing and School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale Biophotonics, The Institute for Photonics and Advanced Sensing, and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elise E Crame
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mi Ra Chang
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, UF Scripps Biomolecular Research, University of Florida, Jupiter, Florida 33458, United States
| | - Jie Zheng
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, UF Scripps Biomolecular Research, University of Florida, Jupiter, Florida 33458, United States
| | - Anne-Laure Blayo
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, UF Scripps Biomolecular Research, University of Florida, Jupiter, Florida 33458, United States
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale Biophotonics, The Institute for Photonics and Advanced Sensing, and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, UF Scripps Biomolecular Research, University of Florida, Jupiter, Florida 33458, United States
| | - Joshua S Harbort
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, UF Scripps Biomolecular Research, University of Florida, Jupiter, Florida 33458, United States
| | - John B Bruning
- The Institute for Photonics and Advanced Sensing and School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
32
|
Role of membrane mimetics on biophysical EPR studies of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184138. [PMID: 36764474 DOI: 10.1016/j.bbamem.2023.184138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Biological membranes are essential in providing the stability of membrane proteins in a functional state. Functionally stable homogeneous sample is required for biophysical electron paramagnetic resonance (EPR) studies of membrane proteins for obtaining pertinent structural dynamics of the protein. Significant progresses have been made for the optimization of the suitable membrane environments required for biophysical EPR measurements. However, no universal membrane mimetic system is available that can solubilize all membrane proteins suitable for biophysical EPR studies while maintaining the functional integrity. Great efforts are needed to optimize the sample condition to obtain better EPR data quality of membrane proteins that can provide meaningful information on structural dynamics. In this mini-review, we will discuss important aspects of membrane mimetics for biophysical EPR measurements and current progress with some of the recent examples.
Collapse
|
33
|
Tessmer MH, Stoll S. chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling. PLoS Comput Biol 2023; 19:e1010834. [PMID: 37000838 PMCID: PMC10096462 DOI: 10.1371/journal.pcbi.1010834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Here we introduce chiLife, a Python package for site-directed spin label (SDSL) modeling for electron paramagnetic resonance (EPR) spectroscopy, in particular double electron-electron resonance (DEER). It is based on in silico attachment of rotamer ensemble representations of spin labels to protein structures. chiLife enables the development of custom protein analysis and modeling pipelines using SDSL EPR experimental data. It allows the user to add custom spin labels, scoring functions and spin label modeling methods. chiLife is designed with integration into third-party software in mind, to take advantage of the diverse and rapidly expanding set of molecular modeling tools available with a Python interface. This article describes the main design principles of chiLife and presents a series of examples.
Collapse
Affiliation(s)
- Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| |
Collapse
|
34
|
Mittal S, Dutta S, Shukla D. Reconciling membrane protein simulations with experimental DEER spectroscopy data. Phys Chem Chem Phys 2023; 25:6253-6262. [PMID: 36757376 DOI: 10.1039/d2cp02890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spectroscopy experiments are crucial to study membrane proteins for which traditional structure determination methods still prove challenging. Double electron-electron resonance (DEER) spectroscopy experiments provide protein residue-pair distance distributions that are indicative of their conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool that have been proven to be vital to study the structural dynamics of membrane proteins such as to identify inward-open, occluded, and outward-open conformations of transporter membrane proteins, among other partially open or closed states of the protein. Yet, studies have reported that there is no direct consensus between the distributional data from DEER experiments and MD simulations, which has challenged validation of structures obtained from long-timescale simulations and using simulations to design experiments. Current coping strategies for comparisons rely on heuristics, such as mapping the nearest matching peaks between two ensembles or biased simulations. Here we examine the differences in residue-pair distance distributions arising due to the choice of membranes around the protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments. Through comparing MD simulations of two proteins, PepTSo and LeuT-both of which have been characterized using DEER experiments previously-we show that the proteins' dynamics are similar despite the choice of the detergent micelle as a membrane mimetic in DEER experiments. On the other hand, covalently modified residues show slight local differences in their dynamics and a huge divergence when the oxygen atom pair distances between spin labeled residues are measured rather than protein backbone distances. Given the computational expense associated with pairwise MTSSL labeled MD simulations, we examine the use of biased simulations to explore the conformational dynamics of the spin labels only to reveal that such simulations alter the underlying protein dynamics. Our study identifies the main cause for the mismatch between DEER experiments and MD simulations and will accelerate the development of potential mitigation strategies to improve the match.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
35
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525885. [PMID: 36789411 PMCID: PMC9928041 DOI: 10.1101/2023.01.27.525885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 41125 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - João M. Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Micha B. A. Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Galazzo L, Meier G, Januliene D, Parey K, De Vecchis D, Striednig B, Hilbi H, Schäfer LV, Kuprov I, Moeller A, Bordignon E, Seeger MA. The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells. SCIENCE ADVANCES 2022; 8:eabn6845. [PMID: 36223470 PMCID: PMC9555771 DOI: 10.1126/sciadv.abn6845] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/24/2022] [Indexed: 05/28/2023]
Abstract
Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Dovile Januliene
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Kristian Parey
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Arne Moeller
- Department of Structural Biology, Osnabrück University, 49076 Osnabrück, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
37
|
Protein delivery to living cells by thermal stimulation for biophysical investigation. Sci Rep 2022; 12:17190. [PMID: 36229511 PMCID: PMC9561116 DOI: 10.1038/s41598-022-21103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Studying biomolecules in their native environment represents the ideal sample condition for structural biology investigations. Here we present a novel protocol which allows to delivery proteins into eukaryotic cells through a mild thermal stimulation. The data presented herein show the efficacy of this approach for delivering proteins in the intracellular environment of mammalian cells reaching a concentration range suitable for successfully applying biophysical methods, such as double electron electron resonance (DEER) measurements for characterising protein conformations.
Collapse
|
38
|
Guo X, Schmiege P, Assafa TE, Wang R, Xu Y, Donnelly L, Fine M, Ni X, Jiang J, Millhauser G, Feng L, Li X. Structure and mechanism of human cystine exporter cystinosin. Cell 2022; 185:3739-3752.e18. [PMID: 36113465 PMCID: PMC9530027 DOI: 10.1016/j.cell.2022.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Fine
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Tessmer MH, Canarie ER, Stoll S. Comparative evaluation of spin-label modeling methods for protein structural studies. Biophys J 2022; 121:3508-3519. [PMID: 35957530 PMCID: PMC9515001 DOI: 10.1016/j.bpj.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions. We present a spin-label modeling approach inspired by canonical side-chain modeling methods and compare modeling accuracy with the established methods.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
40
|
Dastvan R, Rasouli A, Dehghani-Ghahnaviyeh S, Gies S, Tajkhorshid E. Proton-driven alternating access in a spinster lipid transporter. Nat Commun 2022; 13:5161. [PMID: 36055994 PMCID: PMC9440201 DOI: 10.1038/s41467-022-32759-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Spinster (Spns) lipid transporters are critical for transporting sphingosine-1-phosphate (S1P) across cellular membranes. In humans, Spns2 functions as the main S1P transporter in endothelial cells, making it a potential drug target for modulating S1P signaling. Here, we employed an integrated approach in lipid membranes to identify unknown conformational states of a bacterial Spns from Hyphomonas neptunium (HnSpns) and to define its proton- and substrate-coupled conformational dynamics. Our systematic study reveals conserved residues critical for protonation steps and their regulation, and how sequential protonation of these proton switches coordinates the conformational transitions in the context of a noncanonical ligand-dependent alternating access. A conserved periplasmic salt bridge (Asp60TM2:Arg289TM7) keeps the transporter in a closed conformation, while proton-dependent conformational dynamics are significantly enhanced on the periplasmic side, providing a pathway for ligand exchange.
Collapse
Affiliation(s)
- Reza Dastvan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha Gies
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
41
|
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, Ernst OP. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Sci Rep 2022; 12:13955. [PMID: 35977989 PMCID: PMC9385722 DOI: 10.1038/s41598-022-17716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Reichenwallner
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paolo De Guzman
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Anling Kuo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
42
|
Ackermann K, Wort JL, Bode BE. Pulse dipolar EPR for determining nanomolar binding affinities. Chem Commun (Camb) 2022; 58:8790-8793. [PMID: 35837993 PMCID: PMC9350988 DOI: 10.1039/d2cc02360a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein interaction studies often require very low concentrations and highly sensitive biophysical methods. Here, we demonstrate that pulse dipolar electron paramagnetic resonance spectroscopy allows measuring dissociation constants in the nanomolar range. This approach is appealing for concentration-limited biomolecular systems and medium-to-high-affinity binding studies, demonstrated here at 50 nanomolar protein concentration. CuII-nitroxide RIDME measurements at 100 nM protein concentration allow reliable extraction of dissociation constants and distances, while measurements at 50 nM protein concentration allow reliable extraction of dissociation constants only.![]()
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| | - Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
| |
Collapse
|
43
|
Belcher Dufrisne M, Swope N, Kieber M, Yang JY, Han J, Li J, Moremen KW, Prestegard JH, Columbus L. Human CEACAM1 N-domain dimerization is independent from glycan modifications. Structure 2022; 30:658-670.e5. [PMID: 35219398 PMCID: PMC9081242 DOI: 10.1016/j.str.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022]
Abstract
Carcinoembryonic cellular adhesion molecules (CEACAMs) serve diverse roles in cell signaling, proliferation, and survival and are made up of one or several immunoglobulin (Ig)-like ectodomains glycosylated in vivo. The physiological oligomeric state and how it contributes to protein function are central to understanding CEACAMs. Two putative dimer conformations involving different CEACAM1 N-terminal Ig-like domain (CCM1) protein faces (ABED and GFCC'C″) were identified from crystal structures. GFCC'C″ was identified as the dominant CCM1 solution dimer, but ambiguity regarding the effect of glycosylation on dimer formation calls its physiological relevance into question. We present the first crystal structure of minimally glycosylated CCM1 in the GFCC'C″ dimer conformation and characterization in solution by continuous-wave and double electron-electron resonance electron paramagnetic resonance spectroscopy. Our results suggest the GFCC'C″ dimer is dominant in solution with different levels of glycosylation, and structural conservation and co-evolved residues support that the GFCC'C″ dimer is conserved across CEACAMs.
Collapse
Affiliation(s)
| | - Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marissa Kieber
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ji Han
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Jason Li
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
44
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
45
|
Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock. Methods Enzymol 2022; 666:59-78. [PMID: 35465929 DOI: 10.1016/bs.mie.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that provides structural and dynamic information on unpaired spins and their surrounding environments. Introduction of exogenous spin labels via site directed spin labeling (SDSL) enables characterization of systems of interests lacking intrinsic unpaired spins. This chapter describes the use of SDSL in quantifying KaiB-KaiC binding in the cyanobacterial circadian clock (Kai Clock), exploiting the changes in mobility of the local environment around the spin label on KaiB-KaiC interactions. While the Kai system serves as our model system to demonstrate SDSL-EPR utility in quantifying protein-protein interactions, this technique is readily amenable to other systems of interest whenever specific protein-protein interactions need to be isolated. We first present a protocol for spin labeling KaiB. Then, we detail the sample preparation and acquisition processes to maximize signal-to-noise for downstream analysis. We close this chapter by highlighting recent advances in SDSL technology to incorporate spin labels into proteins of interest and in EPR technology to improve detection sensitivity that may allow greater flexibilities to the types of experiments possible.
Collapse
|
46
|
Jeschke G, Esteban-Hofer L. Integrative ensemble modeling of proteins and their complexes with distance distribution restraints. Methods Enzymol 2022; 666:145-169. [PMID: 35465919 DOI: 10.1016/bs.mie.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many proteins and protein complexes exhibit regions that are intrinsically disordered. Whereas an arsenal of techniques exists to characterize structured proteins or protein regions, characterization of the vast conformational space occupied by intrinsically disordered regions remains a challenging task due the ensemble-averaging nature of many techniques that provide mean value restraints. More representative information can be gained in the form of distribution restraints, such as EPR-derived distance distributions. Previously we developed the ensemble modeling tool MMM, where we partition the macromolecule into structured and unstructured domains and utilize an integrative structural approach with a focus on EPR-derived distance restraints. Here we present the successor program of MMM: MMMx. All the modeling functionality was ported to MMMx and is now accessed by a uniform script format, allowing to combine the different modules at will to modeling pipelines. During the conception of MMMx many of the tools were improved or updated. We discuss the general functionality of MMMx and its modules, and illustrate some of the modeling tools by application examples.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland.
| | - Laura Esteban-Hofer
- ETH Zürich, Department of Chemistry and Applied Biosciences, Zürich, Switzerland
| |
Collapse
|
47
|
Thomasen FE, Pesce F, Roesgaard MA, Tesei G, Lindorff-Larsen K. Improving Martini 3 for Disordered and Multidomain Proteins. J Chem Theory Comput 2022; 18:2033-2041. [PMID: 35377637 DOI: 10.1021/acs.jctc.1c01042] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of proteins. Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of intrinsically disordered proteins (IDPs) and multidomain proteins when compared with small-angle X-ray scattering (SAXS) data and that increasing the strength of protein-water interactions favors more expanded conformations. We find that increasing the strength of interactions between protein and water by ca. 10% results in improved agreement with the SAXS data for IDPs and multidomain proteins. We also show that this correction results in a more accurate description of self-association of IDPs and folded proteins and better agreement with paramagnetic relaxation enhancement data for most IDPs. While simulations with this revised force field still show deviations to experiments for some systems, our results suggest that it is overall a substantial improvement for coarse-grained simulations of soluble proteins.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Francesco Pesce
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Mette Ahrensback Roesgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Giulio Tesei
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
48
|
Jash C, Feintuch A, Nudelman S, Manukovsky N, Abdelkader EH, Bhattacharya S, Jeschke G, Otting G, Goldfarb D. DEER experiments reveal fundamental differences between calmodulin complexes with IQ and MARCKS peptides in solution. Structure 2022; 30:813-827.e5. [PMID: 35397204 DOI: 10.1016/j.str.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Calmodulin (CaM) is a calcium-binding protein that regulates the function of many proteins by indirectly conferring Ca2+ sensitivity, and it undergoes a large conformational change on partners' binding. We compared the solution binding mode of the target peptides MARCKS and IQ by double electron-electron resonance (DEER) distance measurements and paramagnetic NMR. We combined nitroxide and Gd(III) spin labels, including specific substitution of one of the Ca2+ ions in the CaM mutant N60D by a Gd(III) ion. The binding of MARCKS to holo-CaM resulted neither in a closed conformation nor in a unique relative orientation between the two CaM domains, in contrast with the crystal structure. Binding of IQ to holo-CaM did generate a closed conformation. Using elastic network modeling and 12 distance restraints obtained from multiple holo-CaM/IQ DEER data, we derived a model of the solution structure, which is in reasonable agreement with the crystal structure.
Collapse
Affiliation(s)
- Chandrima Jash
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Nudelman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nurit Manukovsky
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sudeshna Bhattacharya
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
50
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202113448. [PMID: 34761852 PMCID: PMC9299766 DOI: 10.1002/anie.202113448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) consisting of the central β-barrel BamA and four other lipoproteins mediates the folding of the majority of the outer membrane proteins. BamA is placed in an asymmetric bilayer and its lateral gate is suggested to be the functional hotspot. Here we used in situ pulsed electron-electron double resonance spectroscopy to characterize BamA in the native outer membrane. In the detergent micelles, the data is consistent with mainly an inward-open conformation of BamA. The native membrane considerably enhanced the conformational heterogeneity. The lateral gate and the extracellular loop 3 exist in an equilibrium between different conformations. The outer membrane provides a favorable environment for occupying multiple conformational states independent of the lipoproteins. Our results reveal a highly dynamic behavior of the lateral gate and other key structural elements and provide direct evidence for the conformational modulation of a membrane protein in situ.
Collapse
Affiliation(s)
- Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|