1
|
Ogbechi J, Huang YS, Clanchy FIL, Pantazi E, Topping LM, Darlington LG, Williams RO, Stone TW. Modulation of immune cell function, IDO expression and kynurenine production by the quorum sensor 2-heptyl-3-hydroxy-4-quinolone (PQS). Front Immunol 2022; 13:1001956. [PMID: 36389710 PMCID: PMC9650388 DOI: 10.3389/fimmu.2022.1001956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2023] Open
Abstract
Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1μM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Louise M. Topping
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | | | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculo-skeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials. BIOSENSORS 2022; 12:bios12080638. [PMID: 36005034 PMCID: PMC9406015 DOI: 10.3390/bios12080638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
The rapid diagnosis of Pseudomonas aeruginosa infection is very important because this bacterium is one of the main sources of healthcare-associated infections. Pseudomonas quinolone signal (PQS) is a specific molecule for quorum sensing (QS) in P. aeruginosa, a form of cell-to-cell bacterial communication and its levels can allow the determination of the bacterial population. In this study, the development of the first electrochemical detection of PQS using screen-printed electrodes modified with carbon nanotubes (CNT-SPE) is reported. The electrochemical fingerprint of PQS was determined using different electrode materials and screen-printed electrodes modified with different nanomaterials. The optimization of the method in terms of electrolyte, pH, and electrochemical technique was achieved. The quantification of PQS was performed using one of the anodic peaks in the electrochemical fingerprint of the PQS on the CNT-SPE. The sensor exhibited a linear range from 0.1 to 15 µM, with a limit of detection of 50 nM. The sensor allowed the selective detection of PQS, with low interference from other QS molecules. The sensor was successfully applied to analysis of real samples (spiked urine and human serum samples, spiked microbiological growth media, and microbiological cultures).
Collapse
|
3
|
Label-Free Electrochemical Aptasensor for the Detection of the 3-O-C12-HSL Quorum-Sensing Molecule in Pseudomonas aeruginosa. BIOSENSORS 2022; 12:bios12070440. [PMID: 35884243 PMCID: PMC9312901 DOI: 10.3390/bios12070440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, is one of the main sources of infections in healthcare environments, making its detection very important. N-3-oxo-dodecanoyl L-homoserine lactone (3-O-C12-HSL) is a characteristic molecule of quorum sensing—a form of cell-to-cell communication between bacteria—in P. aeruginosa. Its detection can allow the determination of the bacterial population. In this study, the development of the first electrochemical aptasensor for the detection of 3-O-C12-HSL is reported. A carbon-based screen-printed electrode modified with gold nanoparticles proved to be the best platform for the aptasensor. Each step in the fabrication of the aptasensor (i.e., gold nanoparticles’ deposition, aptamer immobilization, incubation with the analyte) was optimized and characterized using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Different redox probes in solution were evaluated, the best results being obtained in the presence of [Fe(CN)6]4−/[Fe(CN)6]3−. The binding affinity of 106.7 nM for the immobilized thiol-terminated aptamer was determined using surface plasmon resonance. The quantification of 3-O-C12-HSL was performed by using the electrochemical signal of the redox probe before and after incubation with the analyte. The aptasensor exhibited a logarithmic range from 0.5 to 30 µM, with a limit of detection of 145 ng mL−1 (0.5 µM). The aptasensor was successfully applied for the analysis of real samples (e.g., spiked urine samples, spiked microbiological growth media, and microbiological cultures).
Collapse
|
4
|
Schneider S, Ettenauer J, Pap IJ, Aspöck C, Walochnik J, Brandl M. Main Metabolites of Pseudomonas aeruginosa: A Study of Electrochemical Properties. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22134694. [PMID: 35808191 PMCID: PMC9269063 DOI: 10.3390/s22134694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa is a ubiquitously distributed soil and water bacterium and is considered an opportunistic pathogen in hospitals. In cystic fibrosis patients, for example, infections with P. aeruginosa can be severe and often lead to chronic or even fatal pneumonia. Therefore, rapid detection and further identification are of major importance in hospital hygiene and infection control. This work shows the electrochemical properties of five P. aeruginosa key metabolites considering their potential use as specific signaling agents in an electrochemical sensor system. The pure solutes of pyocyanin (PYO), Pseudomonas quinolone signal (PQS), pyochelin (PCH), 2-heptyl-4-hydroxyquinoline (HHQ), and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) were analyzed by different electrochemical techniques (cyclic and square wave voltammetry) and measured using a Gamry Reference 600+ potentiostat. Screen-printed electrodes (DropSens DRP110; carbon working and counter, silver reference electrode) were used to determine signal specificities, detection limits, as well as pH dependencies of the substances. All of the compounds were electrochemically inducible with well-separated oxidation and/or reduction peaks at specific peak potentials relative to the reference electrode. Additionally, all analytes exhibited linear concentration dependency in ranges classically reported in the literature. The demonstration of these properties is a promising step toward direct multiplexed detection of P. aeruginosa in environmental and clinical samples and thus, can make a significant contribution to public health and safety.
Collapse
Affiliation(s)
- Sylvia Schneider
- Department for Integrated Sensor Systems, University for Continuing Education Krems, 3500 Krems, Austria; (J.E.); (M.B.)
| | - Jörg Ettenauer
- Department for Integrated Sensor Systems, University for Continuing Education Krems, 3500 Krems, Austria; (J.E.); (M.B.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Ildiko-Julia Pap
- Clinical Institute for Hygiene and Microbiology, University Hospital St. Poelten, 3100 Sankt Poelten, Austria; (I.-J.P.); (C.A.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Christoph Aspöck
- Clinical Institute for Hygiene and Microbiology, University Hospital St. Poelten, 3100 Sankt Poelten, Austria; (I.-J.P.); (C.A.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Brandl
- Department for Integrated Sensor Systems, University for Continuing Education Krems, 3500 Krems, Austria; (J.E.); (M.B.)
| |
Collapse
|
5
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
6
|
Oziat J, Cohu T, Elsen S, Gougis M, Malliaras GG, Mailley P. Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 1: Electrochemical signatures of different strains. Bioelectrochemistry 2021; 140:107747. [PMID: 33618190 DOI: 10.1016/j.bioelechem.2021.107747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.
Collapse
Affiliation(s)
- Julie Oziat
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France; Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Bioserenity, Institut du Cerveau et de la Moelle Epinière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Thibaut Cohu
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - Sylvie Elsen
- UMR 1036, INSERM-CEA-UJF, CNRS ERL5261, BIG, CEA-Grenoble, F-38054 Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Pascal Mailley
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France.
| |
Collapse
|
7
|
McEachern F, Harvey E, Merle G. Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnol J 2020; 15:e2000140. [PMID: 32388907 DOI: 10.1002/biot.202000140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Infections are a huge economic liability to the health care system, although real-time detection can allow early treatment protocols to avoid some of this cost and patient morbidity and mortality. Pseudomonas aeruginosa (PA) is a drug-resistant gram-negative bacterium found ubiquitously in clinical settings, accounting for up to 27% of hospital acquired infections. PA secretes a vast array of molecules, ranging from secondary metabolites to quorum sensing molecules, of which many can be exploited to monitor bacterial presence. In addition to electrochemical immunoassays to sense bacteria via antigen-antibody interactions, PA pertains a distinct redox-active virulence factor called pyocyanin (PYO), allowing a direct electrochemical detection of the bacteria. There has been a surge of publications relating to the electrochemical tracing of PA via a myriad of novel biosensing techniques, materials, and methodologies. In addition to indirect methods, research approaches where PYO has been sensitively detected using surface modified electrodes are reviewed and compared with conventional PA-sensing methodologies. This review aims at presenting indirect and direct electrochemical methods currently developed using various surface modified electrodes, materials, and electrochemical configurations on their electrocatalytic effects on sensing of PA and in particular PYO.
Collapse
Affiliation(s)
- Francis McEachern
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | - Edward Harvey
- Department of Surgery, Faculty of medicine, McGill University, Montreal, H3A 0C5, Canada
| | - Geraldine Merle
- Department of Chemical Engineering, Polytechnique Montreal, Polytechnique Montreal C.P. 6079, succ. Centre-ville, Montreal, H3C 3A7, Canada
| |
Collapse
|
8
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
9
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
10
|
Jarošová R, Mcclure SE, Gajda M, Jović M, Girault HH, Lesch A, Maiden M, Waters C, Swain GM. Inkjet-Printed Carbon Nanotube Electrodes for Measuring Pyocyanin and Uric Acid in a Wound Fluid Simulant and Culture Media. Anal Chem 2019; 91:8835-8844. [DOI: 10.1021/acs.analchem.8b05591] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Romana Jarošová
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, University Research Centre UNCE “Supramolecular Electrochemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Sandra E. Mcclure
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Margaret Gajda
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Milica Jović
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Michael Maiden
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Christopher Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Simultaneous chemosensing of tryptophan and the bacterial signal molecule indole by boron doped diamond electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens Bioelectron 2017; 98:189-194. [DOI: 10.1016/j.bios.2017.06.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 01/16/2023]
|
13
|
Hasanzadeh M, Mokhtari F, Shadjou N, Eftekhari A, Mokhtarzadeh A, Jouyban-Gharamaleki V, Mahboob S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:247-258. [DOI: 10.1016/j.msec.2017.02.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
|
14
|
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci 2017; 11:183. [PMID: 28446863 PMCID: PMC5388746 DOI: 10.3389/fnins.2017.00183] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Severine De Craemer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ GroeningeKortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
15
|
Oziat J, Gougis M, Malliaras GG, Mailley P. Electrochemical Characterizations of four Main Redox-metabolites ofPseudomonas Aeruginosa. ELECTROANAL 2017. [DOI: 10.1002/elan.201600799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julie Oziat
- CEA, Leti, MINATEC Campus; Univ. Grenoble-Alpes; F-38000 Grenoble France
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines de Saint-Etienne; F-13541 Gardanne France
| | - Maxime Gougis
- CEA, Leti, MINATEC Campus; Univ. Grenoble-Alpes; F-38000 Grenoble France
| | - George G. Malliaras
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines de Saint-Etienne; F-13541 Gardanne France
| | - Pascal Mailley
- CEA, Leti, MINATEC Campus; Univ. Grenoble-Alpes; F-38000 Grenoble France
| |
Collapse
|
16
|
Buzid A, Reen FJ, Langsi VK, Muimhneacháin EÓ, O'Gara F, McGlacken GP, Luong JHT, Glennon JD. Direct and Rapid Electrochemical Detection ofPseudomonas aeruginosaQuorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption. ChemElectroChem 2017. [DOI: 10.1002/celc.201600590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology; University College Cork; College Road Cork T12 YN60 Ireland
| | - Victor K. Langsi
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Eoin Ó Muimhneacháin
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology; University College Cork; College Road Cork T12 YN60 Ireland
- School of Biomedical Sciences; Curtin Health Innovation Research Curtin University; Perth WA 6845 Australia
| | - Gerard P. McGlacken
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| |
Collapse
|
17
|
Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, karimzadeh A, Shadjou N, Mahboob S. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:343-57. [DOI: 10.1016/j.msec.2016.06.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
18
|
Oziat J, Elsen S, Owens RM, Malliaras GG, Mailley P. Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7522-5. [PMID: 26738032 DOI: 10.1109/embc.2015.7320132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pseudomonas aeruginosa is one of the most common bacteria responsible for nosocomial infections. To imagine new therapies, understanding virulence mechanisms and the associated communication system of the bacterium (its quorum sensing) is a target of the first importance. Electrochemistry is a promising tool for real-time in situ monitoring of electroactive species issued from P. aeruginosa communication system. This contribution deals with the electrochemical characterization of the main bacteria electroactive metabolites: Pseudomonas Quinolone Signal, pyocyanin and 2'-aminoacetophenone. These metabolites were electrochemically characterized and further detected in supernatant of P. aeruginosa PA01 strain grown in LB medium.
Collapse
|
19
|
Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal Bioanal Chem 2016; 408:6361-7. [DOI: 10.1007/s00216-016-9749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023]
|
20
|
Buzid A, Shang F, Reen FJ, Muimhneacháin EÓ, Clarke SL, Zhou L, Luong JHT, O'Gara F, McGlacken GP, Glennon JD. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode. Sci Rep 2016; 6:30001. [PMID: 27427496 PMCID: PMC4948026 DOI: 10.1038/srep30001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.
Collapse
Affiliation(s)
- Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fengjun Shang
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Eoin Ó Muimhneacháin
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Lin Zhou
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Jeremy D Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| |
Collapse
|
21
|
McLister A, McHugh J, Cundell J, Davis J. New Developments in Smart Bandage Technologies for Wound Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5732-7. [PMID: 26821765 DOI: 10.1002/adma.201504829] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Indexed: 05/22/2023]
Abstract
The pH of wound fluid has long been recognized as an important diagnostic for assessing wound condition, but as yet there are few technological options available to the clinician. The availability of sensors that can measure wound pH, either in the clinic or at home could significantly improve clinical outcome - particularly in the early identification of complications such as infection. New material designs and electrochemical research strategies that are being targeted at wound diagnostics are identified and a critical overview of emerging research that could be pivotal in setting the direction for future devices is provided.
Collapse
Affiliation(s)
- Anna McLister
- School of Engineering, University of Ulster, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Jolene McHugh
- School of Engineering, University of Ulster, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Jill Cundell
- School of Health Sciences, University of Ulster, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - James Davis
- School of Engineering, University of Ulster, Jordanstown, Northern Ireland, BT37 0QB, UK
| |
Collapse
|
22
|
Monzó J, Insua I, Fernandez-Trillo F, Rodriguez P. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst 2016; 140:7116-28. [PMID: 26339688 DOI: 10.1039/c5an01330e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.
Collapse
Affiliation(s)
- Javier Monzó
- School of Chemistry, University of Birmingham, B15 2TT, UK.
| | | | | | | |
Collapse
|
23
|
Seviour T, Doyle LE, Lauw SJL, Hinks J, Rice SA, Nesatyy VJ, Webster RD, Kjelleberg S, Marsili E. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun (Camb) 2015; 51:3789-92. [DOI: 10.1039/c4cc08590f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Voltammetric analysis ofPseudomonas aeruginosagrowth cultures unveils the interplay between PQS and phenazines under a potential bias.
Collapse
Affiliation(s)
- T. Seviour
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
| | - L. E. Doyle
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
- Interdisciplinary Graduate School
- Nanyang Technological University
| | - S. J. L. Lauw
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - J. Hinks
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
| | - S. A. Rice
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
| | - V. J. Nesatyy
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- National University of Singapore
- Singapore
- Singapore
| | - R. D. Webster
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - S. Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation
- The University of New South Wales
| | - E. Marsili
- Singapore Centre on Environmental Life Sciences Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
24
|
Shang F, Muimhneacháin EÓ, Jerry Reen F, Buzid A, O’Gara F, Luong JH, Glennon JD, McGlacken GP. One step preparation and electrochemical analysis of IQS, a cell–cell communication signal in the nosocomial pathogen Pseudomonas aeruginosa. Bioorg Med Chem Lett 2014; 24:4703-4707. [DOI: 10.1016/j.bmcl.2014.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 11/27/2022]
|
25
|
McLister A, Phair J, Cundell J, Davis J. Electrochemical approaches to the development of smart bandages: A mini-review. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Praneenararat T, Palmer AG, Blackwell HE. Chemical methods to interrogate bacterial quorum sensing pathways. Org Biomol Chem 2012; 10:8189-99. [PMID: 22948815 PMCID: PMC3480174 DOI: 10.1039/c2ob26353j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria frequently manifest distinct phenotypes as a function of cell density in a phenomenon known as quorum sensing (QS). This intercellular signalling process is mediated by "chemical languages" comprised of low-molecular weight signals, known as autoinducers, and their cognate receptor proteins. As many of the phenotypes regulated by QS can have a significant impact on the success of pathogenic or mutualistic prokaryotic-eukaryotic interactions, there is considerable interest in methods to probe and modulate QS pathways with temporal and spatial control. Such methods would be valuable for both basic research in bacterial ecology and in practical medicinal, agricultural, and industrial applications. Toward this goal, considerable recent research has been focused on the development of chemical approaches to study bacterial QS pathways. In this Perspective, we provide an overview of the use of chemical probes and techniques in QS research. Specifically, we focus on: (1) combinatorial approaches for the discovery of small molecule QS modulators, (2) affinity chromatography for the isolation of QS receptors, (3) reactive and fluorescent probes for QS receptors, (4) antibodies as quorum "quenchers," (5) abiotic polymeric "sinks" and "pools" for QS signals, and (6) the electrochemical sensing of QS signals. The application of such chemical methods can offer unique advantages for both elucidating and manipulating QS pathways in culture and under native conditions.
Collapse
Affiliation(s)
| | | | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA. Fax: +1 (608) 265-4534; Tel: +1 (608) 262-1503
| |
Collapse
|
27
|
Zhou L, Reen FJ, O’Gara F, McSweeney CM, Clarke SL, Glennon JD, Luong JH, McGlacken GP. Analysis of pseudomonas quinolone signal and other bacterial signalling molecules using capillaries coated with highly charged polyelectrolyte monolayers and boron doped diamond electrode. J Chromatogr A 2012; 1251:169-175. [DOI: 10.1016/j.chroma.2012.06.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/30/2023]
|
28
|
Reen FJ, Clarke SL, Legendre C, McSweeney CM, Eccles KS, Lawrence SE, O'Gara F, McGlacken GP. Structure–function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS. Org Biomol Chem 2012; 10:8903-10. [DOI: 10.1039/c2ob26823j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|