1
|
He H, Wang X, Tan H, Xiang S, Xu Y. The culture of A549 cells and its secreted cytokine IL-6 monitoring on the designed multifunctional microfluidic chip. Talanta 2025; 285:127395. [PMID: 39706033 DOI: 10.1016/j.talanta.2024.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
A multifunctional microfluidic chip integrated with perfusion cell culture and in situ SERS detection of cell secretion was designed and developed for the detection of IL-6 secretion from LPS-stimulation of A549 cells in this paper. Researching works were focused on A549 cell activity and secretion in the constructed LPS-stimulated A549 cells model. On the designed microchip, a bubble trap chamber was designed to remove the bubbles in the culture medium which could also be simultaneously preheated by a split hot plate. Then, a long-time perfusion culture process of 549 cells could be realized. Under the optimized conditions the A549 cells could be cultured and kept in good activity for more than 36 h. Subsequently, the model of interaction between LPS and A549 cells was established on the designed microchip. When LPS-stimulated A549 cells, the IL-6 which was one of the secretions formed in this process was detected quantitatively by SERS spectral technique. The silver-coated gold nano-stars were prepared and taken as a sensitive enhancing probe for the SERS detection of IL-6 secreted from LPS-stimulated A549 cells. The immunomagnetic beads, IL-6 antigen, and SERS probes were mixed and incubated in the microchip and form a sandwich structure which was captured by the permanent magnet in the detection zone for SERS detection. The reference material of IL-6 was used to establish the calibration curve, and the linear range and detection limit were 1-10000 pg/mL and 0.75 pg/mL, respectively. Then, the IL-6 secretion from LPS-stimulated A549 cells was detected hourly for 7 h by this established method. The process of LPS stimulation of A594 cells did not lead to a sustained increase in the SERS spectral signature of IL-6. Instead, IL6 secretion initially increased sharply, then decreased and eventually stabilized. It could be due to a potential mechanism that the cells self-regulated to mitigate the inflammatory effects in response to sustained stimulation. The proposed multifunctional microfluidic chip, characterized by high sensitivity and the ability to perform continuous hourly detection, exhibited significant application prospects in the study of external stimulation on cells.
Collapse
Affiliation(s)
- Hong He
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Xiaoli Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Haolan Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 401331, China
| | - Songtao Xiang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| |
Collapse
|
2
|
Xu F, Ma L, Fan Y. Air trap and removal on a pressure driven PDMS-based microfluidic device. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:055003. [PMID: 38739426 DOI: 10.1063/5.0190337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
With the development of microfluidic technology, microfluidic chips have played a positive role in applications such as cell culture, microfluidic PCR, and nanopore gene sequencing. However, the presence of bubbles interferes with fluid flow and has a significant impact on experimental results. There are many reasons for the generation of bubbles in microfluidic chips, such as pressure changes inside the chip, air vibration inside the chip, and the open chip guiding air into the chip when driving fluid. This study designed and prepared a microfluidic device based on polydimethylsiloxane. First, air was actively introduced into the microfluidic chip, and bubbles were captured through the microfluidic device to simulate the presence of bubbles inside the chip in biological experiments. To remove bubbles trapped in the microfluidic chip, distilled water, distilled water containing surfactants, and mineral oil were pumped into the microfluidic chip. We compared and discussed the bubble removal efficiency under different driving fluids, driving pressures, and open/closed channel configurations. This study helps to understand the mechanism of bubble formation and removal in microfluidic devices, optimize chip structure design and experimental reagent selection, prevent or eliminate bubbles, and reduce the impact of bubbles on experiments.
Collapse
Affiliation(s)
- Fan Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yiqiang Fan
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Seo S, Kim T. Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective. BIOMICROFLUIDICS 2023; 17:061301. [PMID: 38025658 PMCID: PMC10656118 DOI: 10.1063/5.0169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Author to whom correspondence should be addressed:. Tel.: +82-52-217-2313. Fax: +82-52-217-2409
| |
Collapse
|
4
|
Musgrove HB, Saleheen A, Zatorski JM, Arneja A, Luckey CJ, Pompano RR. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices. MICROMACHINES 2023; 14:435. [PMID: 36838135 PMCID: PMC9964747 DOI: 10.3390/mi14020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bubbles are a common cause of microfluidic malfunction, as they can perturb the fluid flow within the micro-sized features of a device. Since gas bubbles form easily within warm cell culture reagents, degassing is often necessary for biomicrofluidic systems. However, fabrication of a microscale degasser that can be used modularly with pre-existing chips may be cumbersome or challenging, especially for labs not equipped for traditional microfabrication, and current commercial options can be expensive. Here, we address the need for an affordable, accessible bubble trap that can be used in-line for continuous perfusion of organs-on-chip and other microfluidic cultures. We converted a previously described, manually fabricated PDMS degasser to allow scaled up, reproducible manufacturing by commercial machining or fused deposition modeling (FDM) 3D printing. After optimization, the machined and 3D printed degassers were found to be stable for >2 weeks under constant perfusion, without leaks. With a ~140 µL chamber volume, trapping capacity was extrapolated to allow for ~5-20 weeks of degassing depending on the rate of bubble formation. The degassers were biocompatible for use with cell culture, and they successfully prevented bubbles from reaching a downstream microfluidic device. Both degasser materials showed little to no leaching. The machined degasser did not absorb reagents, while the FDM printed degasser absorbed a small amount, and both maintained fluidic integrity from 1 µL/min to >1 mL/min of pressure-driven flow. Thus, these degassers can be fabricated in bulk and allow for long-term, efficient bubble removal in a simple microfluidic perfusion set-up.
Collapse
Affiliation(s)
- Hannah B. Musgrove
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Amirus Saleheen
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Abhinav Arneja
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
5
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
6
|
Li X, Wang J, Curtin K, Li P. Microfluidic Continuous Flow DNA Fragmentation based on a Vibrating Sharp-tip. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:104. [PMID: 38130602 PMCID: PMC10735211 DOI: 10.1007/s10404-022-02610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2023]
Abstract
Fragmentation of DNA into short fragments is of great importance for detecting and studying DNAs. Current microfluidic methods of DNA fragmentation are either inefficient for generating small fragments or rely on microbubbles. Here, we report a DNA fragmentation method in a 3D-printed microfluidic device, which allows efficient continuous flow fragmentation of genomic DNAs without the need for microbubbles. This method is enabled by localized acoustic streaming induced by a single vibrating sharp-tip. Genomic DNAs were fragmented into 700 to 3000 bp fragments with a low power consumption of ~140 mW. The system demonstrated successful fragmentation under a wide range of flow rates from 1 to 50 μL/min without the need for air bubbles. Finally, the utility of the continuous DNA fragmentation method was demonstrated to accelerate the DNA hybridization process for biosensing. Due to the small footprint, continuous flow and bubble-free operation, and high fragmentation efficiency, this method demonstrated great potential for coupling with other functional microfluidic units to achieve an integrated DNA analysis platform.
Collapse
Affiliation(s)
- Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Zhao X, Ma C, Park DS, Soper SA, Murphy MC. Air bubble removal: Wettability contrast enabled microfluidic interconnects. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 361:131687. [PMID: 35611132 PMCID: PMC9124586 DOI: 10.1016/j.snb.2022.131687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of air bubbles boosts the shear resistance and causes pressure fluctuation within fluid-perfused microchannels, resulting in possible cell damage and even malfunction of microfluidic devices. Eliminating air bubbles is especially challenging in microscale where the adhesive surface tension force is often dominant over other forces. Here, we present an air bubble removal strategy from a novel surface engineering perspective. A microfluidic port-to-port interconnect was fabricated by modifying the peripheral of the microfluidic ports superhydrophobic, while maintaining the inner polymer microchannels hydrophilic. Such a sharp wettability contrast enabled a preferential fluidic entrance into the easy-wetting microchannels over the non-wetting boundaries of the microfluidic ports, while simultaneously filtering out any incoming air bubbles owing to the existence of port-to-port gaps. This bubble-eliminating capability was consistently demonstrated at varying flow rates and liquid analytes. Compared to equipment-intensive techniques and porous membrane-venting strategies, our wettability contrast-governed strategy provides a simple yet effective route for eliminating air bubbles and simultaneously sealing microfluidic interconnects.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Chenbo Ma
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Daniel S. Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Steven A. Soper
- Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS 66045, United States
| | - Michael C. Murphy
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
8
|
Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. BIOMICROFLUIDICS 2022; 16:031503. [PMID: 35757146 PMCID: PMC9217167 DOI: 10.1063/5.0088551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 05/10/2023]
Abstract
Bubbles in microfluidics-even those that appear to be negligibly small-are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas-liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.
Collapse
Affiliation(s)
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | | | - Peiru Li
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenyu Zhang
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
9
|
Guo L, Liu Y, Ran P, Wang G, Shan J, Li X, Liu C, Li J. A bioinspired bubble removal method in microchannels based on angiosperm xylem embolism repair. MICROSYSTEMS & NANOENGINEERING 2022; 8:34. [PMID: 35402001 PMCID: PMC8940964 DOI: 10.1038/s41378-022-00367-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
It is difficult to remove and eliminate bubbles in microchannels in many devices used in various biomedical fields, such as those needed for microfluidic immunoassays, point-of-care testing, and cell biology evaluations. Accumulated bubbles are associated with a number of negative outcomes, including a decrease in device sensitivity, inaccuracy of analysis results, and even functional failure. Xylem conduits of angiosperm have the ability to remove bubbles in obstructed conduits. Inspired by such an embolism repair mechanism, this paper proposes a bioinspired bubble removal method, which exhibits a prominent ability to dissolve bubbles continuously within a large range of flow rates (2 µL/min-850 µL/min) while retaining the stability and continuity of the flow without auxiliary equipment. Such a method also shows significant bubble removal stability in dealing with Newtonian liquids and non-Newtonian fluids, especially with high viscosity (6.76 Pa s) and low velocity (152 nL/min). Such advantages associated with the proposed bioinspired method reveal promising application prospects in macro/microfluidic fields ranging from 3D printing, implantable devices, virus detection, and biomedical fluid processing to microscale reactor operation and beyond.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuanchang Liu
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Penghui Ran
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Gang Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jie Shan
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Xudong Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Mahmodi Arjmand E, Saadatmand M, Eghbal M, Bakhtiari MR, Mehraji S. A New Detection Chamber Design on Centrifugal Microfluidic Platform to Measure Hemoglobin of Whole Blood. SLAS Technol 2021; 26:392-398. [PMID: 33645315 DOI: 10.1177/2472630320985456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Undoubtedly, microfluidics has been a focal point of interdisciplinary science during the last two decades, resulting in many developments in this area. Centrifugal microfluidic platforms have good potential for use in point-of-care devices because they take advantage of some intrinsic forces, most notably centrifugal force, which obviates the need to any external driving forces. Herein, we introduce a newly designed detection chamber for use on microfluidic discs that can be employed as an absorbance readout step in cases where the final solution has a very low viscosity and surface tension. In such situations, our chamber easily eliminates the air bubbles from the final solution without any interruption. One microfluidic disc for measuring the hemoglobin concentration was designed and constructed to verify the correct functioning of this detection chamber. This disc measured the hemoglobin concentration of the blood samples via the HiCN method. Then, the hemoglobin concentration of 11 blood samples was quantified and compared with the clinic's data using the hemoglobin measurement disc, which included four hemoglobin measurement sets, and each set contained two inlets for the blood sample and the reagent, one two-part mixing chamber, and one bubble-free detection chamber. The measured values of the disc had good linearity and conformity compared with the clinic's data, and there were no air bubbles in the detection step. In this study, the standard deviation and the turnaround time were ± 0.51 g/dL and 68 s, respectively.
Collapse
Affiliation(s)
- Ehsan Mahmodi Arjmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Eghbal
- Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Mohammad Reza Bakhtiari
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sima Mehraji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Lee KK(P, Matsu-ura T, Rosselot AE, Broda TR, Wells JM, Hong CI. An integrated microfluidic bubble pocket for long-term perfused three-dimensional intestine-on-a-chip model. BIOMICROFLUIDICS 2021; 15:014110. [PMID: 33643512 PMCID: PMC7892199 DOI: 10.1063/5.0036527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 05/15/2023]
Abstract
Perfused three-dimensional (3D) cultures enable long-term in situ growth and monitoring of 3D organoids making them well-suited for investigating organoid development, growth, and function. One of the limitations of this long-term on-chip perfused 3D culture is unintended and disruptive air bubbles. To overcome this obstacle, we invented an imaging platform that integrates an innovative microfluidic bubble pocket for long-term perfused 3D culture of gastrointestinal (GI) organoids. We successfully applied 3D printing technology to create polymer molds that cast polydimethylsiloxane (PDMS) culture chambers in addition to bubble pockets. Our developed platform traps unintended, or induced, air bubbles in an integrated PDMS pocket chamber, where the bubbles diffuse out across the gas permeable PDMS or an outlet tube. We demonstrated that our robust platform integrated with the novel bubble pocket effectively circumvents the development of bubbles into human and mouse GI organoid cultures during long-term perfused time-course imaging. Our platform with the innovative integrated bubble pocket is ideally suited for studies requiring long-term perfusion monitoring of organ growth and morphogenesis as well as function.
Collapse
Affiliation(s)
| | - Toru Matsu-ura
- Computational and Molecular Biology Laboratory, Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Andrew E. Rosselot
- Computational and Molecular Biology Laboratory, Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
12
|
Huang C, Wippold JA, Stratis-Cullum D, Han A. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures. Biomed Microdevices 2020; 22:76. [PMID: 33090275 DOI: 10.1007/s10544-020-00529-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
In most microfluidic systems, formation and accumulation of air and other gas bubbles can be detrimental to their operation. Air bubbles in a microfluidic channel induce a pressure profile fluctuation and therefore disturb the stability of the system. Once an air bubble is generated, it is also extremely difficult to remove such bubbles from the microfluidic systems. In tissue and cell culture microfluidic systems, a single air bubble can completely shear off cells that are being cultured. Air bubbles can be especially problematic in microfluidic systems that have to operate for long periods of time, since completely eliminating the generation of air bubbles for prolonged periods of time, where a single air bubble can ruin an entire multi-day/multi-week experiment, is extremely challenging. Several in-line and off-chip bubble traps have been developed so far, but cannot completely eliminate air bubbles from the system or are relatively difficult to integrate into microfluidic systems. Recent advancements in two-photon polymerization (2PP)-based microfabrication method eliminates the restriction in Z-axis control in conventional two-dimensional microfabrication methods, and thus enables complex 3D structures to be fabricated at sub-micrometer resolution. In this work, by utilizing this 2PP technique, we developed a sloped microfluidic structure that is capable of both trapping and real-time removal of air bubbles from the system in a consistent and reliable manner. The novel structures and designs developed in this work present a unique opportunity to overcome many limitations of current methods, bring state-of-the-art solutions in air bubble removal, and enable a multifunctional microfluidic device to operate seamlessly free from air bubble disruption. The microfabricated system was tested in both droplet microfluidics and continuous-flow microfluidics applications, and demonstrated to be effective in preventing air bubble aggregation over time. This simple sloped microstructure can be easily integrated into broad ranges of microfluidic devices to minimize bubble introduction, which will contribute to creating a stable and bubble-free microfluidic platform amenable for long-term operation.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jose A Wippold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Faculty of Texas A&M Health Science Center, College Station, TX, USA.
- Faculty of Texas A&M Institute for Neuroscience, College Station, TX, USA.
| |
Collapse
|
13
|
3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging. SENSORS 2020; 20:s20205779. [PMID: 33053875 PMCID: PMC7650622 DOI: 10.3390/s20205779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.
Collapse
|
14
|
Kannan A, Hristov P, Li J, Zawala J, Gao P, Fuller GG. Surfactant-laden bubble dynamics under porous polymer films. J Colloid Interface Sci 2020; 575:298-305. [DOI: 10.1016/j.jcis.2020.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022]
|
15
|
Barbot A, Power M, Seichepine F, Yang GZ. Liquid seal for compact micropiston actuation at the capillary tip. SCIENCE ADVANCES 2020; 6:eaba5660. [PMID: 32518828 PMCID: PMC7253165 DOI: 10.1126/sciadv.aba5660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/01/2020] [Indexed: 05/12/2023]
Abstract
Actuators at the tip of a submillimetric catheter could facilitate in vivo interventional procedures at cellular scales by enabling tissue biopsy and manipulation or supporting active micro-optics. However, the dominance of frictional forces at this scale makes classical mechanism problematic. Here, we report the design of a microscale piston, with a maximum dimension of 150 μm, fabricated with two-photon lithography onto the tip of 140-μm-diameter capillaries. An oil drop method is used to create a seal between the piston and the cylinder that prevents any leakage below 185-mbar pressure difference while providing lubricated friction between moving parts. This piston generates forces that increase linearly with pressure up to 130 μN without breaking the liquid seal. The practical value of the design is demonstrated with its integration with a microgripper that can grasp, move, and release 50-μm microspheres. Such a mechanism opens the way to micrometer-size catheter actuation.
Collapse
Affiliation(s)
| | - Maura Power
- Hamlyn Centre, Imperial College London, London, UK
| | | | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Zhao S, Wu M, Yang S, Wu Y, Gu Y, Chen C, Ye J, Xie Z, Tian Z, Bachman H, Huang PH, Xia J, Zhang P, Zhang H, Huang TJ. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. LAB ON A CHIP 2020; 20:1298-1308. [PMID: 32195522 PMCID: PMC7199844 DOI: 10.1039/d0lc00106f] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Separation of nano/microparticles based on surface acoustic waves (SAWs) has shown great promise for biological, chemical, and medical applications ranging from sample purification to cancer diagnosis. However, the permanent bonding of a microchannel onto relatively expensive piezoelectric substrates and excitation transducers renders the SAW separation devices non-disposable. This limitation not only requires cumbersome cleaning and increased labor and material costs, but also leads to cross-contamination, preventing their implementation in many biological, chemical, and medical applications. Here, we demonstrate a high-performance, disposable acoustofluidic platform for nano/microparticle separation. Leveraging unidirectional interdigital transducers (IDTs), a hybrid channel design with hard/soft materials, and tilted-angle standing SAWs (taSSAWs), our disposable acoustofluidic devices achieve acoustic radiation forces comparable to those generated by existing permanently bonded, non-disposable devices. Our disposable devices can separate not only microparticles but also nanoparticles. Moreover, they can differentiate bacteria from human red blood cells (RBCs) with a purity of up to 96%. Altogether, we developed a unidirectional IDT-based, disposable acoustofluidic platform for micro/nanoparticle separation that can achieve high separation efficiency, versatility, and biocompatibility.
Collapse
Affiliation(s)
- Shuaiguo Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yip JK, Harrison M, Villafuerte J, Fernandez GE, Petersen AP, Lien CL, McCain ML. Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device. LAB ON A CHIP 2020; 20:274-284. [PMID: 31872200 PMCID: PMC8015799 DOI: 10.1039/c9lc01044k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Myocardial infarction and heart failure are leading causes of death worldwide, in large part because adult human myocardium has extremely limited regeneration capacity. Zebrafish are a powerful model for identifying new strategies for human cardiac repair because their hearts regenerate after relatively severe injuries. Zebrafish are also relatively scalable and compatible with many genetic tools. However, characterizing the regeneration process in live adult zebrafish hearts has proved challenging because adult fish are opaque, preventing live imaging in vivo. An alternative strategy is to explant and culture intact adult zebrafish hearts and investigate them ex vivo. However, explanted hearts maintained in conventional culture conditions experience rapid declines in morphology and physiology. To overcome these limitations, we designed and fabricated a fluidic device for culturing explanted adult zebrafish hearts with constant media perfusion that is also compatible with live imaging. We then compared the morphology and calcium activity of hearts cultured in the device, hearts cultured statically in dishes, and freshly explanted hearts. After one week of culture, hearts in the device experienced significantly less morphological degradation compared to hearts cultured in dishes. Hearts cultured in devices for one week also maintained capture rates similar to fresh hearts, unlike hearts cultured in dishes. We then cultured explanted injured hearts in the device and used live imaging techniques to continuously record the myocardial revascularization process over several days, demonstrating how our device is compatible with long-term live imaging and thereby enables unprecedented visual access to the multi-day process of adult zebrafish heart regeneration.
Collapse
Affiliation(s)
- Joycelyn K Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Michael Harrison
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jessi Villafuerte
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA and Department of Biology, California State University of San Bernardino, San Bernardino, CA 92407, USA
| | - G Esteban Fernandez
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ching-Ling Lien
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA and Department of Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA and Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA. and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Park J, Ryu J, Lee SJ. Penetration of a bubble through porous membranes with different wettabilities. SOFT MATTER 2019; 15:5819-5826. [PMID: 31184354 DOI: 10.1039/c9sm00754g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous structures with various surface wettabilities have been used to handle gas bubbles underwater for practical applications, such as separation, collection, detachment, and migration of the bubbles. Despite the increasing interest in porous structures, the effects of surface wettability on the behaviors of bubbles at porous surfaces have not been fully understood. Herein, we aim to examine the entire dynamics from collision to disappearance of a bubble through a porous membrane with different surface wettabilities. We divided the dynamics into three stages based on the characteristic behaviors such as bubble bouncing and contact line variation. Bubble dynamics is dominated by the existence of air layers covering the membrane surface. Bubbles on hydrophilic and hydrophobic membranes, which do not retain air layer, show the same removal pattern; they bounce on the surfaces, and then penetrate the membranes with pinned and moving contact line in sequence. In contrast, bubbles immediately penetrate the superhydrophobic membrane following the spread along the air layer. The characteristic time for bubble removal depends on the wettability, which affects the membrane permeability. The experimental characterization and theoretical analysis achieved in this work would improve the physical understanding of bubble dynamics on porous membranes and allow a proper design in bubble-related applications.
Collapse
Affiliation(s)
- JooYoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
19
|
Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. MICROMACHINES 2019; 10:mi10060360. [PMID: 31151206 PMCID: PMC6632054 DOI: 10.3390/mi10060360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Abstract
Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt)max = 1.5 mL min−1, at flow rates required to apply physiological wall shear stress (1–200 dyne cm−2) to mammalian cells cultured in microfluidic channels.
Collapse
Affiliation(s)
- Matthew J Williams
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicholas K Lee
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Joseph A Mylott
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicole Mazzola
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
20
|
|
21
|
|
22
|
Christoforidis T, Ng C, Eddington DT. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle. Biomed Microdevices 2018. [PMID: 28646280 DOI: 10.1007/s10544-017-0193-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bubbles are an intrinsic problem in microfluidic devices and they can appear during the initial filling of the device or during operation. This report presents a generalizable technique to extract bubbles from microfluidic networks using an adjacent microfluidic negative pressure network over the entire microfluidic channel network design. We implement this technique by superimposing a network of parallel microchannels with a vacuum microfluidic channel and characterize the bubble extraction rates as a function of negative pressure applied. In addition, we generate negative pressure via a converging-diverging (CD) nozzle, which only requires inlet gas pressure to operate. Air bubbles generated during the initial liquid filling of the microfluidic network are removed within seconds and their volume extraction rate is calculated. This miniaturized vacuum source can achieve a vacuum pressure of 7.23 psi which corresponds to a bubble extraction rate of 9.84 pL/s, in the microfluidic channels we characterized. Finally, as proof of concept it is shown that the bubble removal system enables bubble removal on difficult to fill microfluidic channels such as circular or triangular shaped channels. This method can be easily integrated into many microfluidic experimental protocols.
Collapse
Affiliation(s)
| | - Carlos Ng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
23
|
Chen X, Shen J. Review of membranes in microfluidics. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2017; 92:271-282. [DOI: 10.1002/jctb.5105] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2025]
Abstract
AbstractThis review reports the progress on the recent development of membranes in microfluidics. First of all, the definition and basic concepts of membranes are given. Second, the manufacturing methods of membranes in microfluidics are illustrated and discussed. And lastly, the applications of membranes in microfluidics that are the focus of this work are discussed including cells, proteins, microreactors, gas detection, drug screening, electrokinetical fluids, pump and valve and fluid transport control, chemical reagents detection and so on. A variety of microfluidic devices designed containing membranes are expounded and analyzed. This paper will provide a valuable reference to designers who research membranes and microfluidics for various applications. © 2016 Society of Chemical Industry
Collapse
Affiliation(s)
- Xueye Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou 121001 China
| | - Jienan Shen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou 121001 China
| |
Collapse
|
24
|
Abstract
Applications of membranes in microfluidics solved many thorny problems for analytical chemistry and bioscience, so that the use of membranes in microfluidics has been a topic of growing interest. Many different examples have been reported, demonstrating the versatile use of membranes. This work reviews a lot of applications of membranes in microfluidics. Membranes in microfluidics for applications including chemical reagents detection, gas detection, drug screening, cell, protein, microreactor, electrokinetical fluid, pump and valve and fluid transport control and so on, have been analyzed and discussed. In addition, the definition and basic concepts of membranes are summed up. And the methods of manufacturing membranes in microfluidics are discussed. This paper will provide a helpful reference to researchers who want to study applications of membranes in microfluidics.
Collapse
Affiliation(s)
- Xueye Chen
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China.
| | - Jienan Shen
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Zengliang Hu
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| | - Xuyao Huo
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, China
| |
Collapse
|
25
|
Cheng Y, Wang Y, Ma Z, Wang W, Ye X. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration. LAB ON A CHIP 2016; 16:4517-4526. [PMID: 27792227 DOI: 10.1039/c6lc01113f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microfiltration is a compelling method to separate particles based on their distinct size and deformability. However, this approach is prone to clogging after processing a certain number of particles and forming bubbles in the separation procedure, which often leads to malfunctioning of devices. In this work, we report a bubble-free and clogging-free microfluidic particle separation platform with high throughput. The platform features an integrated bidirectional micropump, a hydrophilic microporous filtration membrane and a hydrophobic porous degassing membrane. The bidirectional micropump enables the fluid to flow back and forth repeatedly, which flushes the filtration membrane and clears the filtration micropores for further filtration, and to flow forward to implement multi-filtration. The hydrophobic porous membrane on top of the separation channel removes air bubbles forming in the separation channel, improving the separation efficiency and operational reliability. The microbead mixture and undiluted whole blood were separated using the microfluidic chip. After 5 cycles of reverse flushing and forward re-filtration, a 2857-fold enrichment ratio and an 89.8% recovery rate of 10 μm microbeads were achieved for microbead separation with 99.9% removal efficiency of 2 μm microbeads. After 8 cycles, white blood cells were effectively separated from whole blood with a 396-fold enrichment ratio and a 70.6% recovery rate at a throughput of 39.1 μl min-1, demonstrating that the platform can potentially be used in biomedical applications.
Collapse
Affiliation(s)
- Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Yue Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Zengshuai Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Hou X. Smart Gating Multi-Scale Pore/Channel-Based Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7049-64. [PMID: 27296766 DOI: 10.1002/adma.201600797] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/03/2016] [Indexed: 05/03/2023]
Abstract
Smart gating membranes are important and promising in membrane science and technology. Rapid progress in developing smart membranes is transforming technology in many different fields, from energy and environmental to the life sciences. How a specific smart behavior for controllable gating of porous membranes can be obtained, especially for nano- and micrometer-sized multi-scale pore/channel-based membrane systems is addressed.
Collapse
Affiliation(s)
- Xu Hou
- College of Chemistry and Chemical Engineering, Xiamen University, P. R. China
- School of Physics and Mechanical & Electrical Engineering, Xiamen University, P. R. China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, P. R. China
| |
Collapse
|
27
|
Abstract
A new approach to trap air bubbles before they enter microfluidic systems is presented. The bubble trap is based on the combined interaction of surface tension and hydrodynamic forces. The design is simple, easy to fabricate and straightforward to use. The trap is made of tubes of different sizes and can easily be integrated into any microfluidic setup. We describe the general working principle and derive a simple theoretical model to explain the trapping. Furthermore, the natural oscillations of trapped air bubbles created in this system are explained and quantified in terms of bubble displacement over time and oscillation frequency. These oscillations may be exploited as a basis for fluidic oscillators in future microfluidic systems.
Collapse
Affiliation(s)
- Janick D Stucki
- Lung Regeneration Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland. and Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Olivier T Guenat
- Lung Regeneration Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland. and Division of Pulmonary Medicine, University Hospital of Bern, Switzerland
| |
Collapse
|
28
|
Liu J, Fu H, Yang T, Li S. Automatic sequential fluid handling with multilayer microfluidic sample isolated pumping. BIOMICROFLUIDICS 2015; 9:054118. [PMID: 26487904 PMCID: PMC4592428 DOI: 10.1063/1.4932303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.
Collapse
Affiliation(s)
- Jixiao Liu
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Hai Fu
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Tianhang Yang
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Songjing Li
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| |
Collapse
|
29
|
Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015; 519:70-3. [DOI: 10.1038/nature14253] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022]
|
30
|
Lee H, Choi S. A micro-sized bio-solar cell for self-sustaining power generation. LAB ON A CHIP 2015; 15:391-398. [PMID: 25367739 DOI: 10.1039/c4lc01069h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.
Collapse
Affiliation(s)
- Hankeun Lee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | | |
Collapse
|
31
|
Choi JW, Hosseini Hashemi SM, Erickson D, Psaltis D. A micropillar array for sample concentration via in-plane evaporation. BIOMICROFLUIDICS 2014; 8:044108. [PMID: 25379093 PMCID: PMC4189217 DOI: 10.1063/1.4890943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 05/15/2023]
Abstract
We present a method to perform sample concentration within a lab-on-a-chip using a microfluidic structure which controls the liquid-gas interface through a micropillar array fabricated in polydimethylsiloxane between microfluidic channels. The microstructure confines the liquid flow and a thermal gradient is used to drive evaporation at the liquid-gas-interface. The evaporation occurs in-plane to the microfluidic device, allowing for precise control of the ambient environment. This method is demonstrated with a sample containing 1 μm, 100 nm fluorescent beads and SYTO-9 labelled Escherichia coli bacteria. Over 100 s, the fluorescent beads and bacteria are concentrated by a factor of 10.
Collapse
Affiliation(s)
- Jae-Woo Choi
- School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | | | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Demetri Psaltis
- School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
32
|
Huang X, Hui W, Hao C, Yue W, Yang M, Cui Y, Wang Z. On-site formation of emulsions by controlled air plugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:758-765. [PMID: 24030982 DOI: 10.1002/smll.201202659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Air plugs are usually undesirable in microfluidic systems because of their detrimental effect on the system's stability and integrity. By controlling the wetting properties as well as the topographical geometry of the microchannel, it is reported herein that air plugs can be generated in pre-defined locations to function as a unique valve, allowing for the on-site formation of various emulsions including single-component droplets, composite droplets with droplet-to-droplet concentration gradient, blood droplets, paired droplets, as well as bubble arrays without the need for precious flow control, a difficult task with conventional droplet microfluidics. Moreover, the self-generated air valve can be readily deactivated (turned off) by the introduction of an oil phase, allowing for the on-demand release of as-formed droplets for downstream applications. It is proposed that the simple, yet versatile nature of this technique can act as an important method for droplet microfluidics and, in particular, is ideal for the development of affordable lab-on-a-chip systems without suffering from scalability and manufacturing challenges that typically confound the conventional droplet microfluidics.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Kang YJ, Yeom E, Seo E, Lee SJ. Bubble-free and pulse-free fluid delivery into microfluidic devices. BIOMICROFLUIDICS 2014; 8:014102. [PMID: 24753723 PMCID: PMC3982455 DOI: 10.1063/1.4863355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/15/2014] [Indexed: 05/26/2023]
Abstract
The bubble-free and pulse-free fluid delivery is critical to reliable operation of microfluidic devices. In this study, we propose a new method for stable bubble-free and pulse-free fluid delivery in a microfluidic device. Gas bubbles are separated from liquid by using the density difference between liquid and gas in a closed cavity. The pulsatile flow caused by a peristaltic pump is stabilized via gas compressibility. To demonstrate the proposed method, a fluidic chamber which is composed of two needles for inlet and outlet, one needle for a pinch valve and a closed cavity is carefully designed. By manipulating the opening or closing of the pinch valve, fluids fill up the fluidic chamber or are delivered into a microfluidic device through the fluidic chamber in a bubble-free and pulse-free manner. The performance of the proposed method in bubble-free and pulse-free fluid delivery is quantitatively evaluated. The proposed method is then applied to monitor the temporal variations of fluidic flows of rat blood circulating within a complex fluidic network including a rat, a pinch valve, a reservoir, a peristaltic pump, and the microfluidic device. In addition, the deformability of red blood cells and platelet aggregation are quantitatively evaluated from the information on the temporal variations of blood flows in the microfluidic device. These experimental demonstrations confirm that the proposed method is a promising tool for stable, bubble-free, and pulse-free supply of fluids, including whole blood, into a microfluidic device. Furthermore, the proposed method will be used to quantify the biophysical properties of blood circulating within an extracorporeal bypass loop of animal models.
Collapse
Affiliation(s)
- Yang Jun Kang
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Eunseok Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
34
|
Karlsson JM, Gazin M, Laakso S, Haraldsson T, Malhotra-Kumar S, Mäki M, Goossens H, van der Wijngaart W. Active liquid degassing in microfluidic systems. LAB ON A CHIP 2013; 13:4366-73. [PMID: 24056885 DOI: 10.1039/c3lc50778e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a method for efficient air bubble removal in microfluidic applications. Air bubbles are extracted from a liquid chamber into a vacuum chamber through a semipermeable membrane, consisting of PDMS coated with amorphous Teflon(®) AF 1600. Whereas air is efficiently extracted through the membrane, water loss is greatly reduced by the Teflon even at elevated temperatures. We present the water loss and permeability change with the amount of added Teflon AF to the membrane. Also, we demonstrate bubble-free, multiplex DNA amplification using PCR in a PDMS microfluidic device.
Collapse
Affiliation(s)
- J Mikael Karlsson
- Micro and Nanosystems, KTH Royal Institute of Technology, Osquldas väg 10, 100 44 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu C, Mauk M, Gross R, Bushman FD, Edelstein PH, Collman RG, Bau HH. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal Chem 2013; 85:10463-70. [PMID: 24099566 PMCID: PMC3897712 DOI: 10.1021/ac402459h] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert Gross
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul H. Edelstein
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
37
|
Hoffmann J, Riegger L, Bundgaard F, Mark D, Zengerle R, Ducrée J. Optical non-contact localization of liquid-gas interfaces on disk during rotation for measuring flow rates and viscosities. LAB ON A CHIP 2012; 12:5231-5236. [PMID: 23114972 DOI: 10.1039/c2lc40842b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a novel technique for the spatio-temporally resolved localization of liquid-gas interfaces on centrifugal microfluidic platforms based on total internal reflection (TIR) at the channel wall. The simple setup consists of a line laser and a linear image sensor array mounted in a stationary instrument. Apart from identifying the presence of usually unwanted gas bubbles, the here described online meniscus detection allows to measure liquid volumes with a high precision of 1.9%. Additionally, flow rates and viscosities (range: 1-12 mPa s, precision of 4.3%) can be sensed even during rotation at frequencies up to 30 Hz.
Collapse
Affiliation(s)
- Jochen Hoffmann
- Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, Freiburg, 79110, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS One 2012; 7:e42222. [PMID: 22879919 PMCID: PMC3411743 DOI: 10.1371/journal.pone.0042222] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. METHODOLOGY/PRINCIPAL FINDINGS An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. CONCLUSIONS/SIGNIFICANCE The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Hart
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariangela Bonizzoni
- College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Cubaud T, Sauzade M, Sun R. CO(2) dissolution in water using long serpentine microchannels. BIOMICROFLUIDICS 2012; 6:22002-220029. [PMID: 22655006 PMCID: PMC3360710 DOI: 10.1063/1.3693591] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/24/2012] [Indexed: 05/28/2023]
Abstract
The evolution of carbon dioxide bubbles dissolving in water is experimentally examined using long microchannels. We study the coupling between bubble hydrodynamics and dissolution in confined geometries. The gas impregnation process in liquid produces significant flow rearrangements. Depending on the initial volumetric liquid fraction, three operating regimes are identified, namely saturating, coalescing, and dissolving. The morphological and dynamical transition from segmented to dilute bubbly flows is investigated. Tracking individual bubbles along the flow direction is used to calculate the temporal evolution of the liquid volumetric fraction and the average flow velocity near reference bubbles over long distances. This method allows us to empirically establish the functional relationship between bubble size and velocity. Finally, we examine the implication of this relationship during the coalescing flow regime, which limits the efficiency of the dissolution process.
Collapse
Affiliation(s)
- Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
40
|
High-Throughput Micro-Debubblers for Bubble Removal with Sub-Microliter Dead Volume. MICROMACHINES 2012. [DOI: 10.3390/mi3020218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Lochovsky C, Yasotharan S, Günther A. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices. LAB ON A CHIP 2012; 12:595-601. [PMID: 22159026 DOI: 10.1039/c1lc20817a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gas bubbles present a frequent challenge to the on-chip investigation and culture of biological cells and small organs. The presence of a single bubble can adversely impair biological function and often viability as it increases the wall shear stress in a liquid-perfused microchannel by at least one order of magnitude. We present a microfluidic strategy for in-plane trapping and removal of gas bubbles with volumes of 0.1-500 nL. The presented bubble trap is compatible with single-layer soft lithography and requires a footprint of less than ten square millimetres. Nitrogen bubbles were consistently removed at a rate of 0.14 μL min(-1). Experiments were complemented with analytical and numerical models to comprehensively characterize bubble removal for liquids with different wetting behaviour. Consistent long-term operation of the bubble trap was demonstrated by removing approximately 4000 bubbles during one day. In a case study, we successfully applied the bubble trap to the on-chip investigation of intact small blood vessels. Scalability of the design was demonstrated by realizing eight parallel traps at a total removal rate of 0.9 μL min(-1) (measured for nitrogen).
Collapse
Affiliation(s)
- Conrad Lochovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S3G9, Canada
| | | | | |
Collapse
|
42
|
Liu C, Mauk MG, Hart R, Qiu X, Bau HH. A self-heating cartridge for molecular diagnostics. LAB ON A CHIP 2011; 11:2686-92. [PMID: 21734986 DOI: 10.1039/c1lc20345b] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 229 PhiladelphiaTowne, Building 220 South 33rd St, Philadelphia, Pennsylvania 19104-6315, USA
| | | | | | | | | |
Collapse
|