1
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
2
|
Hoque MA, Mahmood N, Ali KM, Sefat E, Huang Y, Petersen E, Harrington S, Fang X, Gluck JM. Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System. Biomimetics (Basel) 2023; 8:biomimetics8020170. [PMID: 37092422 PMCID: PMC10123682 DOI: 10.3390/biomimetics8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.
Collapse
Affiliation(s)
- Muh Amdadul Hoque
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Nasif Mahmood
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Kiran M Ali
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Eelya Sefat
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Yihan Huang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Emily Petersen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Shane Harrington
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Jessica M Gluck
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
3
|
Guglielmo M, Marta B. Stem Cells and the Microenvironment: Reciprocity with Asymmetry in Regenerative Medicine. Acta Biotheor 2022; 70:24. [PMID: 35962861 DOI: 10.1007/s10441-022-09448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Much of the current research in regenerative medicine concentrates on stem-cell therapy that exploits the regenerative capacities of stem cells when injected into different types of human tissues. Although new therapeutic paths have been opened up by induced pluripotent cells and human mesenchymal cells, the rate of success is still low and mainly due to the difficulties of managing cell proliferation and differentiation, giving rise to non-controlled stem cell differentiation that ultimately leads to cancer. Despite being still far from becoming a reality, these studies highlight the role of physical and biological constraints (e.g., cues and morphogenetic fields) placed by tissue microenvironment on stem cell fate. This asks for a clarification of the coupling of stem cells and microenvironmental factors in regenerative medicine. We argue that extracellular matrix and stem cells have a causal reciprocal and asymmetric relationship in that the 3D organization and composition of the extracellular matrix establish a spatial, temporal, and mechanical control over the fate of stem cells, which enable them to interact and control (as well as be controlled by) the cellular components and soluble factors of microenvironment. Such an account clarifies the notions of stemness and stem cell regeneration consistently with that of microenvironment.
Collapse
Affiliation(s)
- Militello Guglielmo
- IAS-Research Centre, University of the Basque Country, San Sebastián, Spain.
| | - Bertolaso Marta
- University Campus Bio-Medico of Rome, Institute of Scientific and Technological Practice, Rome, Italy
| |
Collapse
|
4
|
Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gabriele Maria Fortunato
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering, Indian Institute of Technology Banaras Hindu University Varanasi, Uttar Pradesh 221005, India
| | - Dario Presutti
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pooyan Makvandi
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Majid Shabani
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
5
|
Urdeitx P, Doweidar MH. Enhanced Piezoelectric Fibered Extracellular Matrix to Promote Cardiomyocyte Maturation and Tissue Formation: A 3D Computational Model. BIOLOGY 2021; 10:biology10020135. [PMID: 33572184 PMCID: PMC7914718 DOI: 10.3390/biology10020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell-cell and cell-extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell-cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.
Collapse
Affiliation(s)
- Pau Urdeitx
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Mohamed H. Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
6
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
7
|
A Computational Model for Cardiomyocytes Mechano-Electric Stimulation to Enhance Cardiac Tissue Regeneration. MATHEMATICS 2020. [DOI: 10.3390/math8111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrical and mechanical stimulations play a key role in cell biological processes, being essential in processes such as cardiac cell maturation, proliferation, migration, alignment, attachment, and organization of the contractile machinery. However, the mechanisms that trigger these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult to abstract conclusions. In this sense, computational models can establish parametric assays with a low economic and time cost to determine the optimal conditions of in-vitro experiments. Here, a computational model has been developed, using the finite element method, to study cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices, under mechano-electric stimulation. Different types of electric fields (continuous, pulsating, and alternating) in an intensity range of 50–350 Vm−1, and extracellular matrix with stiffnesses in the range of 10–40 kPa, are studied. In these experiments, the group’s morphology and cell orientation are compared to define the best conditions for cell culture. The obtained results are qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the formation of elongated groups. Group lengthening is observed when applying higher electric fields in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical stimulation, with better results for alternating electric fields.
Collapse
|
8
|
Tran RDH, Siemens M, Nguyen CHH, Ochs AR, Zaragoza MV, Grosberg A. The Effect of Cyclic Strain on Human Fibroblasts With Lamin A/C Mutations and Its Relation to Heart Disease. J Biomech Eng 2020; 142:061002. [PMID: 31233093 PMCID: PMC7104779 DOI: 10.1115/1.4044091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/12/2019] [Indexed: 12/26/2022]
Abstract
Although mutations in the Lamin A/C gene (LMNA) cause a variety of devastating diseases, the pathological mechanism is often unknown. Lamin A/C proteins play a crucial role in forming a meshwork under the nuclear membrane, providing the nucleus with mechanical integrity and interacting with other proteins for gene regulation. Most LMNA mutations result in heart diseases, including some types that primarily have heart disease as the main pathology. In this study, we used cells from patients with different LMNA mutations that primarily lead to heart disease. Indeed, it is a mystery why a mutation to the protein in every nucleus of the body manifests as a disease of primarily the heart in these patients. Here, we aimed to investigate if strains mimicking those within the myocardial environment are sufficient to cause differences in cells with and without the LMNA mutation. To test this, a stretcher device was used to induce cyclic strain upon cells, and viability/proliferation, cytoskeleton and extracellular matrix organization, and nuclear morphology were quantified. The properties of cells with Hutchinson-Gilford progeria syndrome (HGPS) were found to be significantly different from all other cell lines and were mostly in line with previous findings. However, the properties of cells from patients who primarily had heart diseases were not drastically different when compared to individuals without the LMNA mutation. Our results indicated that cyclic strain alone was insufficient to cause any significant differences that could explain the mechanisms that lead to heart diseases in these patients with LMNA mutations.
Collapse
Affiliation(s)
- Richard D. H. Tran
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall Irvine, Irvine, CA
92697-2700 e-mail:
| | - Mark Siemens
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall
Irvine, Irvine, CA 92697-2700
e-mail:
| | - Cecilia H. H. Nguyen
- Division of Genetics and Genomics, Department of Pediatrics, School of
Medicine, University of California, 2042 Hewitt Hall
Irvine, Irvine, CA 92697-3940
e-mail:
| | - Alexander R. Ochs
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Department of Biomedical Engineering,
University of California, 2131 Engineering Hall
Irvine, Irvine, CA 92697-2700
e-mail:
| | - Michael V. Zaragoza
- Department of Pediatrics, Division of Genetics & Genomics, 2042
Hewitt Hall Irvine, Irvine, CA 92697-3940
- Department of Biological Chemistry, University of California, School of
Medicine, 2042 Hewitt Hall Irvine, Irvine, CA
92697-3940 e-mail:
| | - Anna Grosberg
- Cardiovascular Modeling Laboratory, The Edwards Lifesciences Center for
Advanced Cardiovascular Technology, Center for Complex Biological Systems,
Department of Biomedical Engineering, University of California,
2418 Engineering Hall Irvine, Irvine, CA
92697-2700
- Department of Chemical and Biomolecular Engineering, University of
California, 2418 Engineering Hall Irvine, Irvine, CA
92697-2700 e-mail:
| |
Collapse
|
9
|
Hagiwara M, Koh I. Engineering approaches to control and design the in vitro environment towards the reconstruction of organs. Dev Growth Differ 2020; 62:158-166. [PMID: 31925787 DOI: 10.1111/dgd.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023]
Abstract
In vitro experimental models pertaining to human cells are considered essential for most biological experiments, such as drug development and analysis of disease mechanisms, because of their genetic consistency and ease for detailed and long-term analysis. Recent development of organoid cultures, such as intestine, liver, and kidney cultures, greatly promotes the potential of in vitro experiments. However, conventional culture methods that use manual pipetting have limitations in regenerating complex biosystems. Our body autonomously organizes cells to form a specific tissue shape, and the self-organization process occurs in an extremely systematic manner. In order to emulate this sophisticated process in vitro; first, methodologies for cell culture and organization of in vitro systems need to be updated; second, understanding the self-organizing system is a crucial issue. In this review, recent advancements in engineering technologies to control the microenvironment during cell culture are introduced. Both static and dynamic control have been developed for decades in engineering fields, and the means by which such technologies can help to elucidate and design a biosystem is discussed.
Collapse
Affiliation(s)
- Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.,Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Isabel Koh
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
| |
Collapse
|
10
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
11
|
Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf B Biointerfaces 2019; 181:1041-1047. [DOI: 10.1016/j.colsurfb.2019.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 01/15/2023]
|
12
|
You D, Li K, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites combined with electrical stimulation in wound healing: preparation and characterization. Int J Nanomedicine 2019; 14:7039-7052. [PMID: 31564864 PMCID: PMC6722438 DOI: 10.2147/ijn.s216365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE In this study, we fabricated multifunctional, electrically conductive composites by incorporating graphene oxide (GO) into a poly (lactic-co-glycolic acid) (PLGA) copolymer for wound repair. Furthermore, the resultant composites were coupled with electrical stimulation to further improve the therapeutic effect of wound repair. METHODS We evaluated the surface morphology of the composites, as well as their physical properties, cytotoxicity, and antibacterial activity, along with the combined effects of composites and electrical stimulation (ES) in a rat model of wound healing. RESULTS Application of the PLGA/GO composites to full-thickness wounds confirmed their advantageous biological properties, as evident from the observed improvements in wound-specific mechanical properties, biocompatibility, and antibacterial activity. Additionally, we found that the combination of composites and ES improved composite-mediated cell survival and accelerated wound healing in vivo by promoting neovascularization and the formation of type I collagen. CONCLUSION These results demonstrated that combined treatment with the PLGA/GO composite and ES promoted vascularization and epidermal remodeling and accelerated wound healing in rats, thereby suggesting the efficacy of PLGA/GO+ES for broad applications associated with wound repair.
Collapse
Affiliation(s)
- Di You
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Wenlai Guo
- Department of Hand and Foot Surgery, The Second Hospital of Jilin University, Changchun130012, People’s Republic of China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Chuan Fu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
13
|
Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes. Biomech Model Mechanobiol 2019; 19:291-303. [PMID: 31444593 PMCID: PMC7005075 DOI: 10.1007/s10237-019-01211-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022]
Abstract
In this paper, we present a transparent mechanical stimulation device capable of uniaxial stimulation, which is compatible with standard bioanalytical methods used in cellular mechanobiology. We validate the functionality of the uniaxial stimulation system using human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). The pneumatically controlled device is fabricated from polydimethylsiloxane (PDMS) and provides uniaxial strain and superior optical performance compatible with standard inverted microscopy techniques used for bioanalytics (e.g., fluorescence microscopy and calcium imaging). Therefore, it allows for a continuous investigation of the cell state during stretching experiments. The paper introduces design and fabrication of the device, characterizes the mechanical performance of the device and demonstrates the compatibility with standard bioanalytical analysis tools. Imaging modalities, such as high-resolution live cell phase contrast imaging and video recordings, fluorescent imaging and calcium imaging are possible to perform in the device. Utilizing the different imaging modalities and proposed stretching device, we demonstrate the capability of the device for extensive further studies of hiPSC-CMs. We also demonstrate that sarcomere structures of hiPSC-CMs organize and orient perpendicular to uniaxial strain axis and thus express more maturated nature of cardiomyocytes.
Collapse
|
14
|
Liu L, Zhang C, Wang W, Xi N, Wang Y. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation. Soft Robot 2018; 5:748-760. [DOI: 10.1089/soro.2018.0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, Emerging Technologies Institute, University of Hong Kong Pokfulam, Hong Kong, Hong Kong
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
15
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
16
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
17
|
Aznar-Cervantes S, Pagán A, Martínez JG, Bernabeu-Esclapez A, Otero TF, Meseguer-Olmo L, Paredes JI, Cenis JL. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells Int 2017; 2017:7471582. [PMID: 29075298 PMCID: PMC5623801 DOI: 10.1155/2017/7471582] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The microenvironment plays a crucial role in the behavior of stem and progenitor cells. In the heart, cardiac progenitor cells (CPCs) reside in specific niches, characterized by key components that are altered in response to a myocardial infarction. To date, there is a lack of knowledge on these niches and on the CPC interplay with the niche components. Insight into these complex interactions and into the influence of microenvironmental factors on CPCs can be used to promote the regenerative potential of these cells. In this review, we discuss cardiac resident progenitor cells and their regenerative potential and provide an overview of the interactions of CPCs with the key elements of their niche. We focus on the interaction between CPCs and supporting cells, extracellular matrix, mechanical stimuli, and soluble factors. Finally, we describe novel approaches to modulate the CPC niche that can represent the next step in recreating an optimal CPC microenvironment and thereby improve their regeneration capacity.
Collapse
|
19
|
Zhu Y, Wang L, Yu H, Yin F, Wang Y, Liu H, Jiang L, Qin J. In situ generation of human brain organoids on a micropillar array. LAB ON A CHIP 2017; 17:2941-2950. [PMID: 28752164 DOI: 10.1039/c7lc00682a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Brain organoids derived from human induced pluripotent stem cells can recapitulate the early stages of brain development, representing a powerful in vitro system for modeling brain development and diseases. However, the existing methods for brain organoid formation often require time-consuming procedures, including the initial formation of embryoid bodies (EBs) from hiPSCs, and subsequent neural induction and differentiation companied by multi-steps of cell transfer and encapsulation in a 3D matrix. Herein, we propose a simple strategy to enable in situ formation of massive brain organoids from hiPSCs on a micropillar array without tedious manual procedures. The optimized micropillar configurations allow for controlled EB formation, neural induction and differentiation, and generation of functional human brain organoids in 3D culture on a single device. The generated brain organoids were examined to imitate brain organogenesis in vivo at early stages of gestation with specific features of neuronal differentiation, brain regionalization, and cortical organization. By combining microfabrication techniques with stem cells and developmental biology principles, the proposed method can greatly simplify brain organoid formation protocols as compared to conventional methods, overcoming the potential limitations of cell contamination, lower throughput and variance of organoid morphology. It can also provide a useful platform for the engineering of stem cell organoids with improved functions and extending their applications in developmental biology, drug testing and disease modeling.
Collapse
Affiliation(s)
- Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Acta Biomater 2017; 53:293-306. [PMID: 28213098 DOI: 10.1016/j.actbio.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 01/02/2023]
Abstract
In this study, gelatin-based 3D conduits with three different microstructures (nanofibrous, macroporous and ladder-like) were fabricated for the first time via combined molding and thermally induced phase separation (TIPS) technique for peripheral nerve regeneration. The effects of conduit microstructure and mechanical properties on the transdifferentiation of bone marrow-derived mesenchymal stem cells (MSCs) into Schwann cell (SC) like phenotypes were examined to help facilitate neuroregeneration and understand material-cell interfaces. Results indicated that 3D macroporous and ladder-like structures enhanced MSC attachment, proliferation and spreading, creating interconnected cellular networks with large numbers of viable cells compared to nanofibrous and 2D-tissue culture plate counterparts. 3D-ladder-like conduit structure with complex modulus of ∼0.4×106Pa and pore size of ∼150μm provided the most favorable microenvironment for MSC transdifferentiation leading to ∼85% immunolabeling of all SC markers. On the other hand, the macroporous conduits with complex modulus of ∼4×106Pa and pore size of ∼100μm showed slightly lower (∼65% for p75, ∼75% for S100 and ∼85% for S100β markers) immunolabeling. Transdifferentiated MSCs within 3D-ladder-like conduits secreted significant amounts (∼2.5pg/mL NGF and ∼0.7pg/mL GDNF per cell) of neurotrophic factors, while MSCs in macroporous conduits released slightly lower (∼1.5pg/mL NGF and 0.7pg/mL GDNF per cell) levels. PC12 cells displayed enhanced neurite outgrowth in media conditioned by conduits with transdifferentiated MSCs. Overall, conduits with macroporous and ladder-like 3D structures are promising platforms in transdifferentiation of MSCs for neuroregeneration and should be further tested in vivo. STATEMENT OF SIGNIFICANCE This manuscript focuses on the effect of microstructure and mechanical properties of gelatin-based 3D conduits on the transdifferentiation of mesenchymal stem cells to Schwann cell-like phenotypes. This work builds on our recently accepted manuscript in Acta Biomaterialia focused on multifunctional 2D films, and focuses on 3D microstructured conduits designed to overcome limitations of current strategies to facilitate peripheral nerve regeneration. The comparison between conduits fabricated with nanofibrous, macroporous and ladder-like microstructures showed that the ladder-like conduits showed the most favorable environment for MSC transdifferentiation to Schwann-cell like phenotypes, as seen by both immunolabeling as well as secretion of neurotrophic factors. This work demonstrates the importance of controlling the 3D microstructure to facilitate tissue engineering strategies involving stem cells that can serve as promising approaches for peripheral nerve regeneration.
Collapse
|
21
|
Gelmi A, Cieslar‐Pobuda A, de Muinck E, Los M, Rafat M, Jager EWH. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1471-80. [PMID: 27126086 DOI: 10.1002/adhm.201600307] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 12/25/2022]
Abstract
The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.
Collapse
Affiliation(s)
- Amy Gelmi
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| | - Artur Cieslar‐Pobuda
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Ebo de Muinck
- Department of Cardiology Linköping University Hospital 581 85 Linköping Sweden
- Faculty of Medicine and Health Sciences Division of Cardiovascular Medicine 581 85 Linköping Sweden
| | - Marek Los
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Mehrdad Rafat
- Department of Biomedical Engineering Linkoping University 581 85 Linköping Sweden
| | - Edwin W. H. Jager
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| |
Collapse
|
22
|
Aznar-Cervantes S, Martínez JG, Bernabeu-Esclapez A, Lozano-Pérez AA, Meseguer-Olmo L, Otero TF, Cenis JL. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry 2016; 108:36-45. [DOI: 10.1016/j.bioelechem.2015.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
|
23
|
Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment. Stem Cells Int 2016; 2016:9098523. [PMID: 27073399 PMCID: PMC4814701 DOI: 10.1155/2016/9098523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023] Open
Abstract
More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.
Collapse
|
24
|
Blaauboer BJ, Boobis AR, Bradford B, Cockburn A, Constable A, Daneshian M, Edwards G, Garthoff JA, Jeffery B, Krul C, Schuermans J. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem Toxicol 2016; 91:19-35. [PMID: 26939913 DOI: 10.1016/j.fct.2016.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Utrecht University, Division of Toxicology, Institute for Risk Assessment Sciences, PO Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - Alan R Boobis
- Imperial College London, Department of Medicine, Centre for Pharmacology & Therapeutics, London, W12 0NN, United Kingdom
| | - Bobbie Bradford
- Unilever, Safety & Environmental Assurance Centre, London, EC4Y 0DY, United Kingdom
| | - Andrew Cockburn
- University of Newcastle, Toxico-Logical Consulting Ltd, The Old Boiler House, Moor Place Park, Kettle Green Lane, Much Hadham, Hertfordshire, SG10 6AA, United Kingdom
| | - Anne Constable
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Mardas Daneshian
- University of Konstanz, Center for Alternatives to Animal Testing-Europe CAAT-Europe, 78457, Konstanz, Germany
| | - Gareth Edwards
- Consultant, 63 Woodlands Road., Sonning Common, Reading, Berkshire, RG4 9TD, United Kingdom
| | | | - Brett Jeffery
- Mars, Global Chemical Food Safety Group, Slough, SL1 4JX, United Kingdom
| | - Cyrille Krul
- University of Applied Sciences, Research Centre Technology & Innovation, Dept. Innovative Testing in Life Sciences & Chemistry, PO Box 12011, 3501 AA, Utrecht, The Netherlands; TNO Healthy Living, PO box 360, 3700 AJ Zeist, The Netherlands
| | | |
Collapse
|
25
|
Santiesteban DY, Kubelick K, Dhada KS, Dumani D, Suggs L, Emelianov S. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies. Ann Biomed Eng 2016; 44:750-72. [PMID: 26692081 PMCID: PMC4956083 DOI: 10.1007/s10439-015-1509-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.
Collapse
Affiliation(s)
- Daniela Y Santiesteban
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kelsey Kubelick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
| | - Diego Dumani
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Laura Suggs
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. LAB ON A CHIP 2016; 16:599-610. [PMID: 26758922 DOI: 10.1039/c5lc01356a] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the past few years, microfluidic-based technology has developed microscale models recapitulating key physical and biological cues typical of the native myocardium. However, the application of controlled physiological uniaxial cyclic strains on a defined three-dimension cellular environment is not yet possible. Two-dimension mechanical stimulation was particularly investigated, neglecting the complex three-dimensional cell-cell and cell-matrix interactions. For this purpose, we developed a heart-on-a-chip platform, which recapitulates the physiologic mechanical environment experienced by cells in the native myocardium. The device includes an array of hanging posts to confine cell-laden gels, and a pneumatic actuation system to induce homogeneous uniaxial cyclic strains to the 3D cell constructs during culture. The device was used to generate mature and highly functional micro-engineered cardiac tissues (μECTs), from both neonatal rat and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), strongly suggesting the robustness of our engineered cardiac micro-niche. Our results demonstrated that the cyclic strain was effectively highly uniaxial and uniformly transferred to cells in culture. As compared to control, stimulated μECTs showed superior cardiac differentiation, as well as electrical and mechanical coupling, owing to a remarkable increase in junction complexes. Mechanical stimulation also promoted early spontaneous synchronous beating and better contractile capability in response to electric pacing. Pacing analyses of hiPSC-CM constructs upon controlled administration of isoprenaline showed further promising applications of our platform in drug discovery, delivery and toxicology fields. The proposed heart-on-a-chip device represents a relevant step forward in the field, providing a standard functional three-dimensional cardiac model to possibly predict signs of hypertrophic changes in cardiac phenotype by mechanical and biochemical co-stimulation.
Collapse
Affiliation(s)
- Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Chiara Conficconi
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland. and Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Marta Lemme
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland. and Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Emanuele Gaudiello
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Giulia Cerino
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| |
Collapse
|
27
|
Iacovacci V, Ricotti L, Menciassi A, Dario P. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochem Pharmacol 2016; 100:12-27. [DOI: 10.1016/j.bcp.2015.08.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023]
|
28
|
Puckert C, Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Adv 2016. [DOI: 10.1039/c6ra11682e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characterisation of biomaterials for cardiac tissue engineering applications is vital for the development of effective treatments for the repair of cardiac function.
Collapse
Affiliation(s)
- C. Puckert
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - A. Gelmi
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - M. K. Ljunggren
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85
- Sweden
| | - M. Rafat
- Department of Biomedical Engineering
- Linköping University
- Linköping 581 85
- Sweden
| | - E. W. H. Jager
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| |
Collapse
|
29
|
Lee JH, Park HK, Kim KS. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2015; 473:752-7. [PMID: 26403968 DOI: 10.1016/j.bbrc.2015.09.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2015] [Indexed: 01/07/2023]
Abstract
Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.
Collapse
Affiliation(s)
- Jin-Ho Lee
- School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Healthcare Industry Research Institute, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Ovchinnikov DA, Hidalgo A, Yang SK, Zhang X, Hudson J, Mazzone SB, Chen C, Cooper-White JJ, Wolvetang EJ. Isolation of contractile cardiomyocytes from human pluripotent stem-cell-derived cardiomyogenic cultures using a human NCX1-EGFP reporter. Stem Cells Dev 2015; 24:11-20. [PMID: 25075536 DOI: 10.1089/scd.2014.0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prospective isolation of defined contractile human pluripotent stem cell (hPSC)-derived cardiomyocytes is advantageous for regenerative medicine and drug screening applications. Currently, enrichment of cardiomyocyte populations from such cultures can be achieved by combinations of cell surface markers or the labor-intensive genetic modification of cardiac developmental genes, such as NKX2.5 or MYH6, with fluorescent reporters. To create a facile, portable method for the isolation of contractile cardiomyocytes from cardiomyogenic hPSC cultures, we employed a highly conserved cardiac enhancer sequence in the SLC8A1 (NCX1) gene to generate a lentivirally deliverable, antibiotic-selectable NCX1cp-EGFP reporter. We show that human embryonic stem cells (and induced pluripotent stem cells) transduced with the NCX1cp-EGFP reporter cassette exhibit enhanced green fluorescent protein (EGFP) expression in cardiac progenitors from 5 days into the directed cardiac hPSC differentiation protocol, with all reporter-positive cells transitioning to spontaneously contracting foci 3 days later. In subsequent stages of cardiomyocyte maturation, NCX1cp-EGFP expression was exclusively limited to contractile cells expressing high levels of cardiac troponin T (CTNT), MLC2a/v, and α-actinin proteins, and was not present in CD90/THY1(+) cardiac stromal cells or CD31/PECAM(+) endothelial cells. Flow-assisted cytometrically sorted EGFP(+) fractions of differentiated cultures were highly enriched in both early (NKX2.5 and TBX5) and late (CTNT/TNNI2, MYH6, MYH7, NPPA, and MYL2) cardiomyocyte markers, with a significant proportion of cells displaying a ventricular-like action potential pattern in patch-clamp recordings. We conclude that the use of the cardiac-specific promoter of the human SLC8A1(NCX1) gene is an effective strategy to isolate contractile cardiac cells and their progenitors from hPSC-derived cardiomyogenic cultures.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- 1 Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laiva AL, Venugopal JR, Navaneethan B, Karuppuswamy P, Ramakrishna S. Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond) 2015; 10:2907-30. [PMID: 26371367 DOI: 10.2217/nnm.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Compelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons. This review provides an overview on the significance of stem cell therapy, the current attempts to resolve the drawbacks with the cell implantation approach and the various stratagems adopted with electrospun hybrid nanofibers for implementation in myocardial regenerative therapy.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576.,Amity Institute of Nanotechnology, Amity University, Noida, UP, India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Balchandar Navaneethan
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Priyadharsini Karuppuswamy
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
32
|
Chen YH, Peng CC, Tung YC. Flip channel: A microfluidic device for uniform-sized embryoid body formation and differentiation. BIOMICROFLUIDICS 2015; 9:054111. [PMID: 26487897 PMCID: PMC4592426 DOI: 10.1063/1.4931638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/11/2015] [Indexed: 05/05/2023]
Abstract
This paper reports a two-layered polydimethylsiloxane microfluidic device-Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.
Collapse
Affiliation(s)
- Ying-Hua Chen
- Research Center for Applied Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica , Taipei 11529, Taiwan
| |
Collapse
|
33
|
Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2015; 75:67-81. [PMID: 26298640 DOI: 10.1016/j.bios.2015.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022]
Abstract
Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.
Collapse
Affiliation(s)
- Elzbieta Jastrzebska
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Ewelina Tomecka
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Jesion
- Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
34
|
Controlled electromechanical cell stimulation on-a-chip. Sci Rep 2015; 5:11800. [PMID: 26135970 PMCID: PMC4488866 DOI: 10.1038/srep11800] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Stem cell research has yielded promising advances in regenerative medicine, but standard assays generally lack the ability to combine different cell stimulations with rapid sample processing and precise fluid control. In this work, we describe the design and fabrication of a micro-scale cell stimulator capable of simultaneously providing mechanical, electrical, and biochemical stimulation, and subsequently extracting detailed morphological and gene-expression analysis on the cellular response. This micro-device offers the opportunity to overcome previous limitations and recreate critical elements of the in vivo microenvironment in order to investigate cellular responses to three different stimulations. The platform was validated in experiments using human bone marrow mesenchymal stem cells. These experiments demonstrated the ability for inducing changes in cell morphology, cytoskeletal fiber orientation and changes in gene expression under physiological stimuli. This novel bioengineering approach can be readily applied to various studies, especially in the fields of stem cell biology and regenerative medicine.
Collapse
|
35
|
Cao H, Kang BJ, Lee CA, Shung KK, Hsiai TK. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration. IEEE Rev Biomed Eng 2015; 8:114-24. [PMID: 25974948 DOI: 10.1109/rbme.2015.2431681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous microelectrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration.
Collapse
|
36
|
Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells 2015; 33:1021-35. [DOI: 10.1002/stem.1929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Yohan Farouz
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
| | - Yong Chen
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
| | | | - Philippe Menasché
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Department of Cardiovascular Surgery; Paris France
| |
Collapse
|
37
|
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14:248-60. [PMID: 25792263 DOI: 10.1038/nrd4539] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improving the effectiveness of preclinical predictions of human drug responses is critical to reducing costly failures in clinical trials. Recent advances in cell biology, microfabrication and microfluidics have enabled the development of microengineered models of the functional units of human organs - known as organs-on-chips - that could provide the basis for preclinical assays with greater predictive power. Here, we examine the new opportunities for the application of organ-on-chip technologies in a range of areas in preclinical drug discovery, such as target identification and validation, target-based screening, and phenotypic screening. We also discuss emerging drug discovery opportunities enabled by organs-on-chips, as well as important challenges in realizing the full potential of this technology.
Collapse
Affiliation(s)
- Eric W Esch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, Hammad S, Landuyt B, Hengstler JG, Kelm JM, Hierlemann A, Frey O. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol 2015; 205:24-35. [PMID: 25592049 DOI: 10.1016/j.jbiotec.2015.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/20/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
Rational development of more physiologic in vitro models includes the design of robust and flexible 3D-microtissue-based multi-tissue devices, which allow for tissue-tissue interactions. The developed device consists of multiple microchambers interconnected by microchannels. Pre-formed spherical microtissues are loaded into the microchambers and cultured under continuous perfusion. Gravity-driven flow is generated from on-chip reservoirs through automated chip-tilting without any need for additional tubing and external pumps. This tilting concept allows for operating up to 48 devices in parallel in order to test various drug concentrations with a sufficient number of replicates. For a proof of concept, rat liver and colorectal tumor microtissues were interconnected on the chip and cultured during 8 days in the presence of the pro-drug cyclophosphamide. Cyclophosphamide has a significant impact on tumor growth but only after bio-activation by the liver. This effect was only observed in the perfused and interconnected co-cultures of different microtissue types on-chip, whereas the discontinuous transfer of supernatant via pipetting from static liver microtissues that have been treated with cyclophosphamide did not significantly affect tumor growth. The results indicate the utility and multi-tissue functionality of this platform. The importance of continuous medium circulation and tissue interaction is highlighted.
Collapse
Affiliation(s)
- Jin-Young Kim
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, 4058 Basel, Switzerland
| | - David A Fluri
- InSphero AG, Wagistrasse 27, 8952 Schlieren, Switzerland
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Kurt Boonen
- KU Leuven, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Soumyaranjan Mohanty
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Prateek Singh
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Seddik Hammad
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Ardeystrasse 67, 44139 Dortmund, Germany; Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Bart Landuyt
- KU Leuven, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Ardeystrasse 67, 44139 Dortmund, Germany
| | - Jens M Kelm
- InSphero AG, Wagistrasse 27, 8952 Schlieren, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Olivier Frey
- ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
39
|
Precise manipulation of cell behaviors on surfaces for construction of tissue/organs. Colloids Surf B Biointerfaces 2014; 124:97-110. [DOI: 10.1016/j.colsurfb.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
|
40
|
Ahmed D, Muddana HS, Lu M, French JB, Ozcelik A, Fang Y, Butler PJ, Benkovic SJ, Manz A, Huang TJ. Acoustofluidic chemical waveform generator and switch. Anal Chem 2014; 86:11803-10. [PMID: 25405550 PMCID: PMC4255676 DOI: 10.1021/ac5033676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eliciting a cellular response to a changing chemical microenvironment is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. The nature and scope of the response is highly dependent upon the spatiotemporal characteristics of the stimulus. To date, studies that investigate this phenomenon have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Here, we demonstrate an acoustofluidic (i.e., fusion of acoustics and microfluidics) approach for generating programmable chemical waveforms that permits continuous modulation of the signal characteristics including the amplitude (i.e., sample concentration), shape, frequency, and duty cycle, with frequencies reaching up to 30 Hz. Furthermore, we show fast switching between multiple distinct stimuli, wherein the waveform of each stimulus is independently controlled. Using our device, we characterized the frequency-dependent activation and internalization of the β2-adrenergic receptor (β2-AR), a prototypic G-protein coupled receptor (GPCR), using epinephrine. The acoustofluidic-based programmable chemical waveform generation and switching method presented herein is expected to be a powerful tool for the investigation and characterization of the kinetics and other dynamic properties of many biological and biochemical processes.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, ‡Biomedical Engineering, §Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Kim MH, Ogawa Y, Yamada K, Taya M, Kino-oka M. Directed differentiation of human mesenchymal stem cells toward a cardiomyogenic fate commitment through formation of cell aggregates. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B 2014; 2:3860-3867. [DOI: 10.1039/c4tb00142g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the influence of conductive polymer dopants on surface properties and chemistry, and how they may modify cardiac progenitor cell interactions.
Collapse
Affiliation(s)
- A. Gelmi
- Biosensors and Bioelectronics Centre
- Dept. of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83, Sweden
| | - M. K. Ljunggren
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85, Sweden
| | - M. Rafat
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85, Sweden
- Department of Biomedical Engineering
| | - E. W. H. Jager
- Biosensors and Bioelectronics Centre
- Dept. of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83, Sweden
| |
Collapse
|
44
|
Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading. PLoS One 2013; 8:e81113. [PMID: 24282570 PMCID: PMC3839898 DOI: 10.1371/journal.pone.0081113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/13/2013] [Indexed: 12/12/2022] Open
Abstract
Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol) hydrogels using Dip Pen Nanolithography (DPN), we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs) spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa) hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.
Collapse
|
45
|
Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One 2013; 8:e61283. [PMID: 23637803 PMCID: PMC3630136 DOI: 10.1371/journal.pone.0061283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/06/2013] [Indexed: 12/14/2022] Open
Abstract
In native fibrocartilage, mechanotransduction allows the cells to perceive the physical microenvironment not only through topographical cues from the extracellular matrix, but also through mechanical cues, such as interstitial flow. To create a microenvironment that simultaneously integrates nanotopography and flow stimulus, we developed a biomimetic microfluidic device embedded with aligned nanofibers to contain microchambers of different angles, which enabled the flow direction to form different angles with the fibers. Using this device, we investigated the effects of microfluidic and nanotopographical environment on the morphology and fibrochondrogenesis of mesenchymal stem cells (MSCs) and the involvement of RhoA/ROCK pathway and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). The results showed that the flow direction perpendicular to aligned nanofibers was conducive to fibrochondrogenesis of MSCs. In addition, ROCK inhibitor and knockdown of YAP/TAZ disrupted fibrochondrogenic differentiation of MSCs. In conclusion, our data suggest the crucial role of mechanotransduction in regulating fibrochondrogenic differentiation of MSCs, which may be mediated by RhoA/ROCK pathway and YAP/TAZ.
Collapse
|
46
|
Zhong W, Tian K, Zheng X, Li L, Zhang W, Wang S, Qin J. Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein. Stem Cells Dev 2013; 22:2083-93. [PMID: 23442010 DOI: 10.1089/scd.2012.0685] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mechanical cues exert considerable influence on the fates of stem cells and terminally differentiated chondrocytes. The elucidation of the interactions between cell fate and mechanical cues in nuclear mechanotransduction will provide new clues to modulate tissue homeostasis and regeneration. In this study, we used an integrated microfluidic perfusion device to simultaneously generate multiple-parameter fluid shear stresses to investigate the role of fluid flow stimuli in the regulation of Yes-associated protein (YAP) expression and the fates of mesenchymal stem cells (MSCs) and primary chondrocytes. YAP expression was regulated by the level of fluid flow stimulus in both MSCs and chondrocytes. An increase in the magnitude of stimulation enhanced the expression of YAP, ultimately resulting in an increase in osteogenesis and a decrease in adipogenesis for MSCs, and initiating dedifferentiation for chondrocytes. Cytochalasin D not only repressed nuclear YAP accumulation in the flow state, but also abrogated flow-induced effects on MSC differentiation and the chondrocyte phenotype, resulting in MSC adipogenesis and the maintenance of the chondrocyte phenotype. Our findings reveal the connection between YAP and MSC/chondrocyte fates in a fluid flow-induced mechanical microenvironment and provide new insights into the mechanisms by which mechanical cues regulate the fates of MSCs and chondrocytes.
Collapse
Affiliation(s)
- Weiliang Zhong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Kang PL, Chen CH, Chen SY, Wu YJ, Lin CY, Lin FH, Kuo SM. Nano-sized collagen I molecules enhanced the differentiation of rat mesenchymal stem cells into cardiomyocytes. J Biomed Mater Res A 2013; 101:2808-16. [DOI: 10.1002/jbm.a.34589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | - Chih-Hao Chen
- Department of Electrical Engineering; I-Shou University; Kaohsiung; Taiwan
| | - Shu Ying Chen
- Department of Biomedical Engineering; I-Shou University; Kaohsiung; Taiwan
| | - Yi-Jhen Wu
- Department of Biomedical Engineering; I-Shou University; Kaohsiung; Taiwan
| | - Chia Yun Lin
- Department of Biomedical Engineering; I-Shou University; Kaohsiung; Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering; National Taiwan University; Taipei; Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering; I-Shou University; Kaohsiung; Taiwan
| |
Collapse
|
48
|
Llucià-Valldeperas A, Sanchez B, Soler-Botija C, Gálvez-Montón C, Prat-Vidal C, Roura S, Rosell-Ferrer J, Bragos R, Bayes-Genis A. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery. J Tissue Eng Regen Med 2013; 9:E76-83. [DOI: 10.1002/term.1710] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Affiliation(s)
- A. Llucià-Valldeperas
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
| | - B. Sanchez
- Electronic and Biomedical Instrumentation Group, Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya; Barcelona Spain
| | - C. Soler-Botija
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
| | - C. Gálvez-Montón
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
| | - C. Prat-Vidal
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
| | - S. Roura
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
| | - J. Rosell-Ferrer
- Electronic and Biomedical Instrumentation Group, Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya; Barcelona Spain
| | - R. Bragos
- Electronic and Biomedical Instrumentation Group, Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya; Barcelona Spain
| | - A. Bayes-Genis
- ICREC Research Programme; Health Science Research Institute Germans Trias i Pujol; Badalona Spain
- Cardiology Service; Hospital Universitari Germans Trias i Pujol; Badalona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
- Networking Biomedical Research Centre on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona Spain
- Red de Terapia Celular (TerCel); ISCIII; Spain
| |
Collapse
|
49
|
Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chem Rev 2013; 113:3297-328. [DOI: 10.1021/cr300426x] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials
Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura,
Setagaya-ku, Tokyo 157-8535, Japan
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
- Institute of Systems Biology
and Bioinformatics, National Central University, No. 300 Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Bei Rd., Jhongli, Taoyuan 320, Taiwan
| | - Shih-Tien Hsu
- Taiwan Landseed Hospital, 77 Kuangtai Road, Pingjen City, Tao-Yuan
County 32405, Taiwan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura,
Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
50
|
Mu X, Zheng W, Sun J, Zhang W, Jiang X. Microfluidics for manipulating cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:9-21. [PMID: 22933509 DOI: 10.1002/smll.201200996] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Indexed: 05/02/2023]
Abstract
Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.
Collapse
Affiliation(s)
- Xuan Mu
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for NanoScience and Technology, No. 11, Beiyitiao, ZhongGuanCun, Beijing 100190, PR China
| | | | | | | | | |
Collapse
|