1
|
Zhang CR, Wei SQ, Zhi XY, Shi HC, Liang J, Hao XJ, Cao H, Yang C. Development of natural perfume as potential fungicide candidates: construction and biological evaluation of vanillin analogs bearing the 1,3,4-oxadiazole/1,3-thiazolidin-4-one fragments. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1094-1105. [PMID: 38753582 DOI: 10.1080/10286020.2024.2346636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Two series of vanillin derivatives containing 1,3,4-oxadiazole and 1,3-thiazolidin-4-one scaffolds were prepared and evaluated for their antifungal activity. The results revealed that compounds 6j (29.73 μg/ml) and 7a (38.15 μg/ml) displayed excellent inhibitory activity against the spore of Fusarium solani. The inhibitory activity of compound 7d (10.53 μg/ml) against the spore of Alternaria solani was more than 42-fold that of vanillin. Compound 7a (37.54 μg/ml) showed better antifungal activity against the spore of B. cinerea than positive controls. The cytotoxicity assay confirmed that compounds 6k, 7a, and 7d showed good selectivity and less toxicity to normal mammalian cells.
Collapse
Affiliation(s)
- Cheng-Ran Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Si-Qi Wei
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Jing Liang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
2
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Wu Q, Cai H, Yuan T, Li S, Gan X, Song B. Novel vanillin derivatives containing a 1,3,4-thiadiazole moiety as potential antibacterial agents. Bioorg Med Chem Lett 2020; 30:127113. [PMID: 32199734 DOI: 10.1016/j.bmcl.2020.127113] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
In this study, thirty-four novel vanillin derivatives containing a 1,3,4-thiadiazole structure were obtained and their antibacterial activities were evaluated. The results indicate that most of the title compounds displayed inhibitory effects on Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). Among them, compound 29 exhibited excellent antibacterial activities against Xoo and Xoc in vitro, with the EC50 values of 3.14 and 8.83 μg/mL, respectively, much superior to thiodiazole copper (87.03 and 108.99 μg/mL) and bismerthiazol (67.64 and 79.26 μg/mL). Under greenhouse condition, the protective efficiency of compound 29 against rice bacterial leaf blight was 49.34%, and curative efficiency was 40.96%. In addition, compound 29 can reduce the exopolysaccharides production of Xoo, increase the permeability of cell membrane and damage cell membrane.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hui Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaoyuan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
4
|
Mao H, Wang H, Hu X, Zhang P, Xiao Z, Liu J. One-Pot Efficient Catalytic Oxidation for Bio-Vanillin Preparation and Carbon Isotope Analysis. ACS OMEGA 2020; 5:8794-8803. [PMID: 32337441 PMCID: PMC7178775 DOI: 10.1021/acsomega.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most widely used food spices. Aimed at bio-vanillin green production, the natural materials were directly catalytically oxidized efficiently in one pot under low O2 pressure (0.035 MPa) in the presence of a non-noble metal oxidation combined catalyst (NiCo2O4/SiO2 nanoparticles), which showed remarkable advantages of a short synthetic route and less industrial waste. The catalytic system showed good universality to many natural substrates with nearly 100% conversion and 86.3% bio-vanillin yield. More importantly, carbon isotope ratio investigations were employed to verify the origin of the organic matter. One hundred percent 14C content of the obtained vanillin was detected, which indicated that it was an efficient method to distinguish the vanillin from biomass or fossil materials. Furthermore, the 13C isotope examination showed effective distinguishing ability for the vanillin from a particular biomass source. The C isotope detection provides an effective method for commercial vanillin identification.
Collapse
Affiliation(s)
- Haifang Mao
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hongzhao Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Pingyi Zhang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School
of Perfume and Aroma Technology, Shanghai
Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jibo Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
5
|
Bezerra-Filho CS, Barboza JN, Souza MT, Sabry P, Ismail NS, de Sousa DP. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress. Mini Rev Med Chem 2019; 19:1681-1693. [DOI: 10.2174/1389557519666190312164355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Many phenolic compounds found in foods and medicinal plants have shown interesting
therapeutic potential and have attracted the attention of the pharmaceutical industry as promising
pharmacologically active compounds in health promotion and disease prevention. Vanillin is a phenolic
aldehyde, widely used as a flavoring agent in the food, pharmaceutical, and cosmetics industries. A
variety of pharmacological activities has been attributed to this compound and its main metabolites,
vanillic acid and vanillyl alcohol, including their anti-inflammatory ability. The relationship of the anti-
inflammatory effects of vanillin, vanillic acid, and vanillyl alcohol and their actions on oxidative
stress is well established. Considering that the inflammatory process is related to several pathologies,
including new diseases with few therapeutic options, and limited efficiency, the search for effective
treatment strategies and discovery of new anti-inflammatory agents capable of modulating inflammation
becomes necessary. Therefore, in this review, we discuss the therapeutic potential of vanillin and
its main metabolites for the treatment of inflammatory diseases and their actions on redox status. In
addition, the molecular docking evaluation of vanillin, its metabolites and isoeugenol were carried out
into the phospholipase A2 binding site.
Collapse
Affiliation(s)
| | - Joice N. Barboza
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| | - Marilia T.S. Souza
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristóvao, Brazil
| | - Peter Sabry
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Nasser S.M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Damião P. de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
6
|
Liu D, Zhang J, Zhao L, He W, Liu Z, Gan X, Song B. First Discovery of Novel Pyrido[1,2- a]pyrimidinone Mesoionic Compounds as Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11860-11866. [PMID: 31532652 DOI: 10.1021/acs.jafc.9b03606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant bacterial diseases cause tremendous decreases in crop yield and quality, and there is a lack of highly effective and low-risk antibacterial agents. A series of novel pyrido[1,2-a]pyrimidinone mesoionic compounds containing vanillin moieties were synthesized, and the application of these mesoionic compounds as plant antibacterial agents was reported here for the first time. The bioassay results revealed that the mesoionic compounds had good antibacterial activity. Of these compounds, compound 11 showed excellent in vitro activity against Xanthomonas oryzae pv. oryzae, with an EC50 value of 1.1 μg/mL, which was substantially better than that of bismerthiazol (92.7 μg/mL) and thiodiazole copper (105.4 μg/mL). Moreover, greenhouse condition trials indicated that the protective and curative activities of compound 11 against rice bacterial leaf blight were 75.12 and 72.04%, respectively, which were better than those of bismerthiazol (62.24 and 50.83%, respectively) and thiodiazole copper (53.35 and 65.04%, respectively). These results provide a basis for the application of mesoionic vanillin moieties as new antibacterial agents.
Collapse
Affiliation(s)
- Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Wengjing He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| |
Collapse
|
7
|
Preparation of magnesium-based two-dimensional phyllosilicate materials and simultaneous antioxidant drug intercalation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Celebioglu A, Kayaci-Senirmak F, İpek S, Durgun E, Uyar T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 2018; 7:3141-53. [PMID: 27353870 DOI: 10.1039/c6fo00569a] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced antioxidant property, etc.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Semran İpek
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey and Department of Engineering Physics, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
9
|
Zhang J, Zhao L, Zhu C, Wu Z, Zhang G, Gan X, Liu D, Pan J, Hu D, Song B. Facile Synthesis of Novel Vanillin Derivatives Incorporating a Bis(2-hydroxyethyl)dithhioacetal Moiety as Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4582-4588. [PMID: 28545296 DOI: 10.1021/acs.jafc.7b01035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of vanillin derivatives incorporating a bis(2-hydroxyethyl)dithioacetal moiety was designed and synthesized via a facile method. A plausible reaction pathway was proposed and verified by computational studies. Bioassay results demonstrated that target compounds possessed good to excellent activities against potato virus Y (PVY) and cucumber mosaic virus (CMV), of which, compound 6f incorporating a bis(2-hydroxyethyl)dithioacetal moiety, exhibited the best curative and protection activities against PVY and CMV in vivo, with 50% effective concentration values of 217.6, 205.7 μg/mL and 206.3, 186.2 μg/mL, respectively, better than those of ribavirin (848.0, 808.1 μg/mL and 858.2, 766.5 μg/mL, respectively), dufulin (462.6, 454.8 μg/mL and 471.2, 465.4 μg/mL, respectively), and ningnanmycin (440.5, 425.3 μg/mL and 426.1, 405.3 μg/mL, respectively). Current studies provide support for the application of vanillin derivatives incorporating bis(2-hydroxyethyl)dithioacetal as new antiviral agents.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Guoping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Jianke Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| |
Collapse
|
10
|
Dalmolin LF, Khalil NM, Mainardes RM. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:1-8. [PMID: 26952391 DOI: 10.1016/j.msec.2016.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/12/2023]
Abstract
Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery.
Collapse
Affiliation(s)
- Luciana Facco Dalmolin
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava, PR, Brazil.
| |
Collapse
|
11
|
Espinosa A, Campos C, Díaz-Vegas A, Galgani JE, Juretic N, Osorio-Fuentealba C, Bucarey JL, Tapia G, Valenzuela R, Contreras-Ferrat A, Llanos P, Jaimovich E. Insulin-dependent H2O2 production is higher in muscle fibers of mice fed with a high-fat diet. Int J Mol Sci 2013; 14:15740-54. [PMID: 23899788 PMCID: PMC3759883 DOI: 10.3390/ijms140815740] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.
Collapse
Affiliation(s)
- Alejandra Espinosa
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-02-297-866-64; Fax: +56-02-297-866-82
| | - Cristian Campos
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
| | - Alexis Díaz-Vegas
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José E. Galgani
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; E-Mail:
| | - Nevenka Juretic
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - César Osorio-Fuentealba
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José L. Bucarey
- School of Medicine, University of Valparaíso, Valparaíso 2341369, Chile; E-Mail:
| | - Gladys Tapia
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Rodrigo Valenzuela
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Paola Llanos
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| |
Collapse
|