1
|
Seling TR, Songsart-Power M, Shringi AK, Paudyal J, Yan F, Limbu TB. Ti 3C 2T x MXene-Based Hybrid Photocatalysts in Organic Dye Degradation: A Review. Molecules 2025; 30:1463. [PMID: 40286046 PMCID: PMC11990510 DOI: 10.3390/molecules30071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides an overview of the fabrication methods for Ti3C2Tx MXene-based hybrid photocatalysts and evaluates their role in degrading organic dye pollutants. Ti3C2Tx MXene has emerged as a promising material for hybrid photocatalysts due to its high metallic conductivity, excellent hydrophilicity, strong molecular adsorption, and efficient charge transfer. These properties facilitate faster charge separation and minimize electron-hole recombination, leading to exceptional photodegradation performance, long-term stability, and significant attention in dye degradation applications. Ti3C2Tx MXene-based hybrid photocatalysts significantly improve dye degradation efficiency, as evidenced by higher percentage degradation and reduced degradation time compared to conventional semiconducting materials. This review also highlights computational techniques employed to assess and enhance the performance of Ti3C2Tx MXene-based hybrid photocatalysts for dye degradation. It identifies the challenges associated with Ti3C2Tx MXene-based hybrid photocatalyst research and proposes potential solutions, outlining future research directions to address these obstacles effectively.
Collapse
Affiliation(s)
- Tank R. Seling
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Mackenzie Songsart-Power
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA;
| | - Amit Kumar Shringi
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Janak Paudyal
- Department of Chemistry and Physics, McNeese State University, Lake Charles, LA 70605, USA;
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Tej B. Limbu
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA;
| |
Collapse
|
2
|
Yanagiyama K, Takimoto K, Dinh Le S, Nu Thanh Ton N, Taniike T. High-throughput experimentation for photocatalytic water purification in practical environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122974. [PMID: 37981181 DOI: 10.1016/j.envpol.2023.122974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
High-throughput screening instrument was developed for photocatalytic water purification, enabling the simultaneous testing of 132 photocatalytic reactions under uniform visible light irradiation, temperature control, and stirring. The instrument was used to investigate the effects of different catalysts (TiO2, ZnO, α-Fe2O3) and environmental waters (seawater, urban wastewater, and industrial wastewater) on dye degradation. It was observed environmental ions, particularly carbonate and phosphate ions, significantly reduced catalyst activity by inhibiting the adsorption of dye molecules. To develop effective catalysts for dye degradation in industrial wastewater, 15 types of noble metal nanoparticles (NPs) were supported on photocatalysts. The study found that noble metal NPs with high work functions and oxidation resistance, such as Au and Pt, exhibited higher activity even in the industrial wastewater, likely converting environmental ions into active species. These findings, based on 432 test results, demonstrate the effectiveness of the developed high-throughput screening instrument for optimizing photocatalytic water purification.
Collapse
Affiliation(s)
- Kyo Yanagiyama
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Ken Takimoto
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Nhan Nu Thanh Ton
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
3
|
Shukla RK, Yadav RK, Gole VL, Na CY, Jeong GH, Singh S, Baeg JO, Choi MY, Gupta NK, Kim TW. Aloe vera-derived graphene-coupled phenosafranin photocatalyst for generation and regeneration of ammonia and NADH by mimicking natural photosynthetic route. Photochem Photobiol 2024; 100:41-51. [PMID: 37458262 DOI: 10.1111/php.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 01/17/2024]
Abstract
Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.
Collapse
Affiliation(s)
- Ravindra K Shukla
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - V L Gole
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Chae Yeong Na
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| | - Gyoung Hwa Jeong
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Jin-Ook Baeg
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Navneet Kumar Gupta
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| |
Collapse
|
4
|
Yu J, Yang Y, Sun F, Chen J. Research status and prospect of nano silver (Ag)-modified photocatalytic materials for degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:191-214. [PMID: 38049687 DOI: 10.1007/s11356-023-31166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023]
Abstract
Nano silver (Ag) was metallic Ag monomers with particle size to the nanoscale. Photocatalyst was a kind of semiconductor material with photocatalytic function. Loading precious metal Ag onto semiconductor surfaces by microwave, laser-induced, solvent-thermal and hydrothermal methods could capture photogenerated electrons, reduced the compounding rate of holes and photogenerated electrons during the photocatalytic process, thereby improving the electron transfer efficiency of photocatalysis and enhancing the absorption of visible light by silver nanoparticles through the plasma resonance effect. The highly reactive free radicals produced by photocatalysts were used in the organic degradation process to degrade organic matter into inorganic matter and was a faster, more efficient and less polluting method of pollutant degradation, which has attracted a lot of attention from researchers. This review discussed the modification of various types of photocatalysts by nano Ag through different methods. The photocatalytic degradation of dyes, antibiotics and persistent organic pollutants by different modified composites was also analyzed. This review covered the several ways and means in which nano Ag has modified diverse photocatalytic materials as well as the photocatalytic degradation of dyes, antibiotics and persistent organic pollutants. This review identified the drawbacks of the existing nano Ag-modified photocatalytic materials, including their low yield and lack of recyclability, and it also offered suggestions for potential future directions for their improvement. The purpose of this review was to further research on the technology of nano Ag-modified photocatalytic materials and to encourage the creation of new modified photocatalytic nanomaterials for the treatment of organic pollutant degradation.
Collapse
Affiliation(s)
- Jingjing Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
5
|
Palem RR, Bathula C, Shimoga G, Lee SH, Ghfar AA, Sekar S, Kim HS, Seo YS, Rabani I. Fabrication of Ru loaded MgB 2 with guar gum hybrid for photocatalytic degradation of crystal violet. Int J Biol Macromol 2023; 253:126948. [PMID: 37722634 DOI: 10.1016/j.ijbiomac.2023.126948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Today, dyes/pigment-based materials are confronting a serious issue in harming marine ecology. Annihilate these serious water pollutants using photoactive 2D nanohybrid catalysts showed promising comparativeness over available photocatalysts. In the present work, a facile route to decorate Ruthenium (Ru) on 2D MgB2 flower-like nanostructures was developed via ecofriendly guar gum biopolymer substantial template (MgB2/GG@Ru NFS) and its photocatalytic performance was reported. Synthesis of MgB2@Ru, MgB2/GG@Ru NFS and commercial MgB2, was studied by FTIR, XRD, FE-SEM, EDX, AFM, TEM, UV-vis spectra, and XPS analysis. From the results, the MgB2/GG@Ru NFS exhibited a superior photocatalytic performance (99.7 %) than its precursors MgB2@Ru (79.7 %), and MgB2 (53.7 %), with the degradation efficiency of the crystal violet (CV) within 100 min under visible light irradiation. The proposed photo-catalyst MgB2/GG@Ru NFS showed negligible loss of photocatalytic activity even after five successive cycles, revealing its reusability and enhanced stability due to the network structure. The photocatalytic mechanism for MgB2/GG@Ru NFS was evaluated by trapping experiment of active species, verifying that superoxide (O2-) and electron (e-) contributed significant role in the dye degradation.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganesh Shimoga
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; Interaction Lab, Future Convergence Engineering, Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sankar Sekar
- Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
6
|
Li QK, Li Y, Wang YJ, Qi JY, Wang Y, Liu YD, Liu XQ. Construction of Ag-TiO 2 Hierarchical Micro-/Nanostructures on a Ti Plate for Photocatalysts via Femtosecond Laser Hybrid Technology. MICROMACHINES 2023; 14:1815. [PMID: 37893252 PMCID: PMC10609506 DOI: 10.3390/mi14101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Titanium dioxide photocatalysts can break down pollutants using natural light. They possess notable light stability, chemical stability, and catalytic effects, thus leading to extensive research worldwide. However, the limited light absorption range of titanium dioxide and their inefficiencies in generating and transporting photogenerated carriers hinder the enhancement of their photocatalytic performance. In this study, we employ a femtosecond laser composite processing method to create an Ag-TiO2 nanoplate composite catalyst. This method doubles the catalytic efficiency compared with the structure processed solely with the femtosecond laser. The resulting Ag-TiO2 nanoplate composite catalysts show significant promise for addressing environmental and energy challenges, including the photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Qian-Kun Li
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, China;
| | - Yue Li
- Key Laboratory of Advanced Structural Materials of Ministry of Education, Changchun University of Technology, Changchun 220103, China; (Y.L.); (Y.-J.W.); (Y.-D.L.)
| | - Yan-Jun Wang
- Key Laboratory of Advanced Structural Materials of Ministry of Education, Changchun University of Technology, Changchun 220103, China; (Y.L.); (Y.-J.W.); (Y.-D.L.)
| | - Jin-Yong Qi
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Yan Wang
- Key Laboratory of Advanced Structural Materials of Ministry of Education, Changchun University of Technology, Changchun 220103, China; (Y.L.); (Y.-J.W.); (Y.-D.L.)
| | - Yao-Dong Liu
- Key Laboratory of Advanced Structural Materials of Ministry of Education, Changchun University of Technology, Changchun 220103, China; (Y.L.); (Y.-J.W.); (Y.-D.L.)
| | - Xue-Qing Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
7
|
Kumar N, Kumari M, Ismael M, Tahir M, Sharma RK, Kumari K, Koduru JR, Singh P. Graphitic carbon nitride (g-C 3N 4)-assisted materials for the detection and remediation of hazardous gases and VOCs. ENVIRONMENTAL RESEARCH 2023; 231:116149. [PMID: 37209982 DOI: 10.1016/j.envres.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials are attracting attention for their unique properties, such as low-cost, chemical stability, facile synthesis, adjustable electronic structure, and optical properties. These facilitate the use of g-C3N4 to design better photocatalytic and sensing materials. Environmental pollution by hazardous gases and volatile organic compounds (VOCs) can be monitored and controlled using eco-friendly g-C3N4- photocatalysts. Firstly, this review introduces the structure, optical and electronic properties of C3N4 and C3N4 assisted materials, followed by various synthesis strategies. In continuation, binary and ternary nanocomposites of C3N4 with metal oxides, sulfides, noble metals, and graphene are elaborated. g-C3N4/metal oxide composites exhibited better charge separation that leads to enhancement in photocatalytic properties. g-C3N4/noble metal composites possess higher photocatalytic activities due to the surface plasmon effects of metals. Ternary composites by the presence of dual heterojunctions improve properties of g-C3N4 for enhanced photocatalytic application. In the later part, we have summarised the application of g-C3N4 and its assisted materials for sensing toxic gases and VOCs and decontaminating NOx and VOCs by photocatalysis. Composites of g-C3N4 with metal and metal oxide give comparatively better results. This review is expected to bring a new sketch for developing g-C3N4-based photocatalysts and sensors with practical applications.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Monika Kumari
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Mohammed Ismael
- Electrical energy storage system, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | | | - Kavitha Kumari
- Baba Mastnath University, Asthal Bohar, Rohtak, 124001, India
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
8
|
Ciocarlan RG, Blommaerts N, Lenaerts S, Cool P, Verbruggen SW. Recent Trends in Plasmon-Assisted Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202201647. [PMID: 36626298 DOI: 10.1002/cssc.202201647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4 , CO, CH3 OH/CH3 CH2 OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Natan Blommaerts
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sammy W Verbruggen
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
9
|
Superior photocatalytic decomposition of ciprofloxacin over AgVO3 photocatalyst decorated with AgInS2. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
10
|
Kulis-Kapuscinska A, Kwoka M, Borysiewicz MA, Wojciechowski T, Licciardello N, Sgarzi M, Cuniberti G. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. NANOTECHNOLOGY 2023; 34:155702. [PMID: 36595265 DOI: 10.1088/1361-6528/aca910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The photocatalytic degradation of the wastewater dye pollutant methylene blue (MB) at ZnO nanostructured porous thin films, deposited by direct current reactive magnetron sputtering on Si substrates, was studied. It was observed that over 4 photocatalytic cycles (0.3 mg · l-1MB solution, 540 minUV irradiation), the rate constantkof MB degradation decreased by ∼50%, varying in the range (1.54 ÷ 0.78) · 10-9(mol·l-1·min-1). For a deeper analysis of the photodegradation mechanism, detailed information on the nanostructured ZnO surface morphology and local surface and subsurface chemistry (nonstoichiometry) were obtained by using scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) as complementary analytical methods. The SEM studies revealed that at the surface of the nanostructured ZnO thin films a coral reef structure containing polycrystalline coral dendrites is present, and that, after the photocatalytic experiments, the sizes of individual crystallites increased, varying in the range 43 ÷ 76 nm for the longer axis, and in the range 28 ÷ 58 nm for the shorter axis. In turn, the XPS studies showed a slight non-stoichiometry, mainly defined by the relative [O]/[Zn] concentration of ca. 1.4, whereas [C]/[Zn] was ca. 1.2, both before and after the photocatalytic experiments. This phenomenon was directly related to the presence of superficial ZnO lattice oxygen atoms that can participate in the oxidation of the adsorbed MB molecules, as well as to the presence of surface hydroxyl groups acting as hole-acceptors to produce OH· radicals, which can be responsible for the generation of superoxide ions. In addition, after experiments, the XPS measurements revealed the presence of carboxyl and carbonyl functional groups, ascribable to the oxidation by-products formed during the photodegradation of MB.
Collapse
Affiliation(s)
- Anna Kulis-Kapuscinska
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Monika Kwoka
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Michal Adam Borysiewicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Tomasz Wojciechowski
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Nadia Licciardello
- Institute for Materials Science, Max Bergmann Centre of Biomaterials and Dresden Center for Nanoanalysis, TU Dresden, D-01062, Dresden, Germany
| | - Massimo Sgarzi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venezia Mestre, Italy
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Centre of Biomaterials and Dresden Center for Nanoanalysis, TU Dresden, D-01062, Dresden, Germany
| |
Collapse
|
11
|
Wu R, Song J, Lu J, Ji X, Tian G, Zhang F. Constructions of Fe3O4/HAp/Au Nanohybrids with Multifunctional Structure for Efficient Photocatalysis and Environmental Remediation of Organic Dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Fan X, Liu X, Wang Y. Low-cost and resource-efficient monolithic photocatalyst with enhanced solar light utilization for the photocatalytic treatment of organic wastewater. CHEMOSPHERE 2023; 312:137052. [PMID: 36343729 DOI: 10.1016/j.chemosphere.2022.137052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Developing low-cost, well-performing, and resource-efficient photocatalysts with enhanced solar light utilization can contribute to the practicability of photocatalytic techniques in organic wastewater treatment. This study fabricated and characterized a novel sunlight-driven BiOBr- and acetylene black (AB)-loaded monolithic photocatalyst. The fly ash-based geopolymer acts as photocatalyst support that can also provide adsorption sites and semiconductor metal oxide (Fe2O3). A conductive network in the geopolymer structure formed by AB can promote the separation of e--h+ pairs generated by active sites (BiOBr and Fe2O3). Moreover, the photothermal effect induced by AB can assist the photocatalytic reaction at the microinterface of the photocatalyst. This photocatalyst was suspended on the surface of an aqueous solution for sufficient contact with oxygen from the air and is thus beneficial for producing 1O2 and ·OH as the main active species. Within 30 min, it exhibited higher photothermal-photocatalytic activity with 96% removal efficiency of the target pollutant methylene blue (MB), which occurred at an initial concentration of 20 mg L-1. The demethylation and hydroxylation process induced by the active species constituted the primary degradation pathway for MB by Bi/AB/MFGP. Overall, this study provides a valuable reference for developing economical, effective, and practical photocatalysts and applying geopolymers in photocatalysis.
Collapse
Affiliation(s)
- Xiaoyu Fan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xianjing Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
13
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
14
|
Farjood M, Zanjanchi MA. Enhanced photocatalytic activity of nano-silica/copper plasmon by aminofunctional silane for dye pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77656-77670. [PMID: 35687288 DOI: 10.1007/s11356-022-21145-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of silica gel nanostructures and loading it with copper specie via a hydrothermal process were performed. The sample is treated with an amino-functional reagent 3-aminopropyl triethoxysilane (APTES). The products were characterized by X-ray diffraction (XRD), FT-IR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), TGA/DSC measurements, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the nanostructures were studied for degradation of methylene blue dye (as a classic dye contaminant) in aqueous solution utilizing visible light source. The results displayed that the sample treated with APTES is much more effective in photocatalytic degradation of methylene blue. This modified catalyst could eliminate methylene blue dye (50 mL, 18 µg mL-1) within 60 min under visible light. The degradation efficiency was increased by shortening the degradation time to 30 min in the alkaline medium. The pseudo-first-order model well describes the kinetics of the reaction.
Collapse
Affiliation(s)
- Mehrdad Farjood
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran
| |
Collapse
|
15
|
Rajagopal S, Thangudu S, Feng JY, Sriram P, Yen TJ, Hwang KC. Hotspots in action: near-infrared light mediated photoelectrochemical oxygen evolution on high index faceted plasmonic gold nanoarchitectures. NANOSCALE 2022; 14:11323-11334. [PMID: 35894176 DOI: 10.1039/d2nr02741k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photo-induced electrochemical water splitting is a fascinating approach to overcome the present energy demands as well as environmental issues. To this end, near-infrared (NIR) photocatalysts stand out as promising candidates (where 53% of the solar light is NIR light) to solve the present energy crisis but the lack of NIR-activated photocatalysts has remained a great challenge for decades. Herein, for the first time, we report the synthesis of high-index faceted plasmonic Au nano-branched 12 tip nanostars, which can absorb the whole spectral region of electromagnetic radiation (UV-vis-NIR), for efficient water splitting. Moreover, the plasmonic hot spots on the Au 12 tip nanostars significantly promote the photoelectrochemical oxygen evolution reaction (OER) under NIR light (915 nm) with long-term stability. Remarkably, the Au 12 tip nanostars exhibit 250-fold enhancement of activity under 915 nm laser irradiation and 6.5-fold enhancement of activity under 532 nm laser irradiation, as compared to the Au NPs. Furthermore, the Finite-Difference Time-Domain (FDTD) study confirmed that the significant photoelectrochemical (PEC) enhancement in the NIR light region could be attributed to the hot-electron injection/plasmonic hot spot mechanism upon localized surface plasmonic resonance (LSPR) excitation. Overall, we anticipate that the present work would help to develop new NIR photoelectrocatalysts for meeting future energy demands.
Collapse
Affiliation(s)
- Sanjeevan Rajagopal
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - June-Yen Feng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Pavithra Sriram
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| |
Collapse
|
16
|
Alsaidi M, Azeez FA, Al-Hajji LA, Ismail AA. Impact of reaction parameters for photodegradation pharmaceuticals in wastewater over gold/titania photocatalyst synthesized by pyrolysis of NH 2-MIL-125(Ti). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115047. [PMID: 35452879 DOI: 10.1016/j.jenvman.2022.115047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The efficient remediation of pharmaceuticals, including wastewater, remains a remarkably challenging issue for water regeneration. Herein, porous Au/TiO2 synthesized by pyrolysis of NH2-MIL-125(Ti) was utilized to be an efficient photocatalyst for mineralization of trimethoprim (TMP) and Metronidazole (MNZ) as the parent compound. The effects of different factors, including TMP and MNZ concentrations, light intensity, H2O2 concentration, Au/TiO2 dosage, and pH value of reaction solution on the degradation and mineralization performances during UV and visible light (VIS), were addressed. The porous Au/TiO2 photocatalyst exhibited superior photocatalytic degradation of TMP and MNZ under UV and VIS illumination. The optimum pH values were 4; the optimum dosage of Au/TiO2 was 1.5 g/L, H2O2 concentration was 9.8 mM, TMP and MNZ concentrations was 10 ppm, and their photodegradation efficiency was 100% after 30 min illumination time and mineralization efficiency 98.2% after 3 h illumination for TMP and MNZ, respectively under UV illumination, however, the photodegradation efficiency was 100% after 50 min illumination and mineralization efficiency 96.3% after 4.5 h illumination time for TMP and MNZ, respectively under VIS illumination. The real wastewater matrix with 10 mg/L of TMP and MNZ were subjected to 60 min of illumination under similar optimum conditions of synthetic solution. The results indicated that photodegradation efficiency was determined to be 100% after 70 min illumination time for removal of both TMP (k = 3.4 × 10-2 min-1) and MNZ (k = 2.87 × 10-2 min-1). This is ascribed to the incorporation of Au NPs onto TiO2, reducing the photoinduced electron-hole recombination, thus promoting the photocatalytic performance. The possible mechanism for photodegradation of antibiotics was also discussed. The demonstration of photocatalysis mechanism over Au/TiO2 photocatalyst can provide some directing in the enhancement of novel photocatalysts based on MOFs doped by noble metal.
Collapse
Affiliation(s)
- M Alsaidi
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| | - Fadhel A Azeez
- Chemical Engineering Department, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - L A Al-Hajji
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| | - Adel A Ismail
- Nanotechnology and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, 13109, Kuwait
| |
Collapse
|
17
|
Belessiotis GV, Falara PP, Ibrahim I, Kontos AG. Magnetic Metal Oxide-Based Photocatalysts with Integrated Silver for Water Treatment. MATERIALS 2022; 15:ma15134629. [PMID: 35806752 PMCID: PMC9267654 DOI: 10.3390/ma15134629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
In this review, the most recent advances in the field of magnetic composite photocatalysts with integrated plasmonic silver (Ag) is presented, with an overview of their synthesis techniques, properties and photocatalytic pollutant removal applications. Magnetic attributes combined with plasmonic properties in these composites result in enhancements for light absorption, charge-pair generation-separation-transfer and photocatalytic efficiency with the additional advantage of their facile magnetic separation from water solutions after treatment, neutralizing the issue of silver’s inherent toxicity. A detailed overview of the currently utilized synthesis methods and techniques for the preparation of magnetic silver-integrated composites is presented. Furthermore, an extended critical review of the most recent pollutant removal applications of these composites via green photocatalysis technology is presented. From this survey, the potential of magnetic composites integrated with plasmonic metals is highlighted for light-induced water treatment and purification. Highlights: (1) Perspective of magnetic properties combined with plasmon metal attributes; (2) Overview of recent methods for magnetic silver-integrated composite synthesis; (3) Critical view of recent applications for photocatalytic pollutant removal.
Collapse
Affiliation(s)
- George V. Belessiotis
- National Center for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece; (G.V.B.); (I.I.)
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Pinelopi P. Falara
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Islam Ibrahim
- National Center for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece; (G.V.B.); (I.I.)
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Athanassios G. Kontos
- National Center for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece; (G.V.B.); (I.I.)
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
- Correspondence:
| |
Collapse
|
18
|
Monjezi Z, Vosough M, Heydar KT, Tarlani A. Enhanced photocatalytic treatment using plasmonic Ag @Ag 3PO 4/Ag @AgCl nanophotocatalyst for simultaneous degradation of multiple parabens and UV-filters in various aquatic environments under visible light irradiation. Photochem Photobiol Sci 2022; 21:1601-1616. [PMID: 35644001 DOI: 10.1007/s43630-022-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (∙O2-) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4 (30%)/Ag@AgCl (70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples.
Collapse
Affiliation(s)
- Zahra Monjezi
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Maryam Vosough
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Kourosh Tabar Heydar
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Aliakbar Tarlani
- Development of Chemical Process Department, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
19
|
Yang X, Liang J, Fu H, Ran X, An X. Fabrication of Au-Ag@TiO2 ternary core-shell nanostructures with enhanced sunlight photocatalytic activity. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Bi/Bi2WO6 Plasmonic Composites with Enhanced Photocatalytic Activity for Degradation of Gasphase Toluene. Catal Letters 2022. [DOI: 10.1007/s10562-022-04001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Khan S, Guan Q, Liu Q, Qin Z, Rasheed B, Liang X, Yang X. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152279. [PMID: 34902423 DOI: 10.1016/j.scitotenv.2021.152279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) have been highly recognized as emerging promising materials for environmental remediation due to their versatile structure and extraordinary properties. Among them, MILs (MIL = Matérial Institute of Lavoisier) are the series of MOFs mostly known for their incredible stability, unique tailorable pore structures, and astounding versatile environmental applications. Their exclusive physiochemical properties and multifunctionality make them proficient for a wide range of pollutants removal in the exposure of versatile harsh environments, compared to other MOFs. This piece of research summarizes the state-of-the-art of development of MILs on the broad spectrum, highlighting their specificities, such as synthesis techniques, modifications and applications for environmental remediation. However, MILs wonderful properties and extraordinary applications in multiple fields, their deployment on practical and commercial-scale pollutants remediation is hindered by insufficient scientific research on underlying mechanisms and relationships. Henceforth, this review not only signifies the emerging importance of MILs for environmental applications but also indicates the urgency to maximize the scientific research for exploitation of MOFs on a practical level and promotion of green technologies for environmental remediation.
Collapse
Affiliation(s)
- Sara Khan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qing Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qian Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zewan Qin
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Bilal Rasheed
- School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
22
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
23
|
Zhang T, Han X, Nguyen NT, Yang L, Zhou X. TiO2-based photocatalysts for CO2 reduction and solar fuel generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64045-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Designing Ag2O modified g-C3N4/TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Alorabi AQ, Hassan MS, Algethami JS, Baghdadi NE. Synthesis and characterization of Ag-AgVO 3/Cu 2O heterostructure with improved visible-light photocatalytic performance. Sci Prog 2021; 104:368504211050300. [PMID: 34637366 PMCID: PMC10358579 DOI: 10.1177/00368504211050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterostructure Ag-AgVO3/Cu2O photocatalyst was prepared by the hydrothermal procedure. The prepared photocatalysts were characterized by different physico-chemical techniques. For Ag-AgVO3/Cu2O composites, AgVO3 shows the monoclinic phase whereas Ag and Cu2O show a cubic phase. SEM images of Ag-AgVO3/Cu2O composites illustrated that the surface of AgVO3 nanorods was covered by Ag and Cu2O nanoparticles. Ultra violet - visible diffuse reflectance spectra revealed that the calculated optical response of Ag-AgVO3/Cu2O composite was found to be 2.24 eV. Additionally, the composite catalyst demonstrated improved photo-efficiency for the decolorization of methylene blue dye compared to that of pristine AgVO3. The better performance of the composite sample can be ascribed to its high charge separation and inhibition in recombination of charges in Ag-AgVO3/Cu2O catalyst Finally, this heterostructure Ag-AgVO3/Cu2O catalyst demonstrated good stability which simply can be recycled a number of times with steadiness; thus, unwraps new possibilities for applications as innovative photocatalyst.
Collapse
Affiliation(s)
- Ali Q. Alorabi
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M. Shamshi Hassan
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Jari S. Algethami
- Empty Quarter Research Unit, Chemistry Department, Faculty of Science and Arts at Sharurah, Najran University, Najran, Sharurah, Saudi Arabia
| | | |
Collapse
|
27
|
Monjezi Z, Vosough M, Salemi A. Investigation of simultaneous multiple UV filters degradation efficiency of plasmonic Ag @AgCl photocatalyst in the aquatic environment under sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54781-54791. [PMID: 34014478 DOI: 10.1007/s11356-021-14440-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
UV filters as an important class of emerging organic pollutants are continuously released into and transported between the aquatic environments. So, the removal of these compounds from aquatic environments is of great importance. This study was conducted to evaluate the simultaneous photodegradation of three widely used UV filter compounds (4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate), in an aqueous environment under sunlight and Ag@AgCl photocatalyst integrated with plasmonic effect. The plasmonic Ag@AgCl nanocomposite was constructed via photochemical conversion and photoreduction. The enhanced photocatalytic performance can be attributed to the surface plasmon resonance effect of the silver nanoparticles and the hybrid effect caused by AgCl. For the monitoring of the target compounds' degradation before and after photodegradation, an optimized method based on membrane-protected micro-solid-phase extraction coupled with gas chromatography-mass spectrometry (GC-MS) was employed. The simultaneous degradation of selected UV filters was also further investigated in contaminated real samples (river water) and the results showed that the matrix constituents could diminish the photocatalytic degradation efficiency.
Collapse
Affiliation(s)
- Zahra Monjezi
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Maryam Vosough
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Amir Salemi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, P.O. Box 19839-63113, Tehran, Iran
| |
Collapse
|
28
|
Abstract
The ongoing COVID-19 pandemic has pushed scientists and technologists to find novel strategies to develop new materials to prevent the transmission, spread, and entry of pathogens into the human body. In this report, the fabrication of polyvinyl chloride (PVC)-SiO2-Ag composite is presented, in which the percentage of Ag is 0.84% wt. Our findings render that this composite eliminates (> 99.8%) bacteria and fungus (Staphylococcus aureus, Escherichia coli, Penicillium funiculosum) and SARS-CoV-2, by surface contact in 2 h hours and 15 min, respectively. Specific migration analysis shown that the use of the PVC-SiO2-Ag composite is considered safe and effective for food preservation. This research and innovation front can be considered a breakthrough for the design of biocide materials. Future directions for this exciting and highly significant research field can open the door to the development of new technologies for the fabrication of packaging films to protect consumer products (such as fruits, vegetables, and other foods).
Collapse
|
29
|
Mohana Roopan S, Khan MA. MoS 2 based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1962493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Mohammad Ahmed Khan
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
30
|
Ghaly HA, El-Kalliny AS, Gad-Allah TA, El-Sattar NEAA. Photodegradation of Naproxen Using Ag/AgCl–PANI Composite under Solar Light: Transformation Product and Reaction Kinetics. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Yuan L, Geng Z, Fan B, Guo F, Han C. State-of-the-art progress in tracking plasmon-mediated photoredox catalysis. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal nanocrystals (NCs), particularly for plasmonic metal NCs with specific morphology and size, can strongly interact with ultraviolet-visible or even near-infrared photons to generate energetic charge carriers, localized heating, and electric field enhancement. These unique properties offer a promising opportunity for maneuvering solar-to-chemical energy conversion through different mechanisms. As distinct from previous works, in this review, recent advances of various characterization techniques in probing and monitoring the photophysical/photochemical processes, as well as the reaction mechanisms of plasmon-mediated photoredox catalysis are thoroughly summarized. Understanding how to distinguish and track these reaction mechanisms would furnish basic guidelines to design next-generation photocatalysts for plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Zhaoyi Geng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Baoan Fan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Chuang Han
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , USA
| |
Collapse
|
33
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
34
|
Single ruthenium atom supported on g-C3N4 as an efficient photocatalyst for nitrogen fixation in ultra-pure water. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Naya SI, Kunimoto T, Tada H. A photothermal catalyst consisting of manganese oxide clusters and antimony–doped tin oxide nanocrystal: Application to environmental purification. CHEM LETT 2021. [DOI: 10.1246/cl.210188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shin-ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takeshi Kunimoto
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
36
|
Que M, Cai W, Chen J, Zhu L, Yang Y. Recent advances in g-C 3N 4 composites within four types of heterojunctions for photocatalytic CO 2 reduction. NANOSCALE 2021; 13:6692-6712. [PMID: 33885474 DOI: 10.1039/d0nr09177d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studies of photocatalytic conversion of CO2 into hydrocarbon fuels, as a promising solution to alleviate global warming and energy issues, are booming in recent years. Researchers have focused their interest in developing g-C3N4 composite photocatalysts with intriguing features of robust light harvesting ability, excellent catalysis, and stable performance. Four types of heterojunctions (type-II, Z-scheme, S-scheme and Schottky) of the g-C3N4 composites are widely adopted. This review aims at presenting and comparing the photocatalytic mechanisms, characteristics, and performances of g-C3N4 composites concerning these four types of heterojunctions. Besides, perspectives and undergoing efforts for further development of g-C3N4 composite photocatalysts are discussed. This review would be helpful for researchers to gain a comprehensive understanding of the progress and future development trends of g-C3N4 composite heterojunctions for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.
| | | | | | | | | |
Collapse
|
37
|
BiOCl ultrathin nanosheets modified with Fe3+ for enhanced visible light driven photocatalytic activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ratshiedana R, Kuvarega AT, Mishra AK. Titanium dioxide and graphitic carbon nitride-based nanocomposites and nanofibres for the degradation of organic pollutants in water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10357-10374. [PMID: 33405162 DOI: 10.1007/s11356-020-11987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The paper reviews graphitic carbon nitride-based nanostructured photocatalytic materials and nanofibres for applications in water purification. Titanium dioxide has shown unique features that continue to attract research and development (R&D) due to its unique properties such as availability, ultraviolet absorptivity, photocatalysis, adsorption of pollutants and solar cell engineering. Graphitic carbon nitride is an attractive photocatalyst due to its non-toxicity characteristics, good visible light absorption and good thermal and chemical stabilities. In water purification, nanofibres are currently noticed due to their distinctive properties of effective separation and sometimes elimination of organic pollutants in water. In this review, synthesis and utility of doped titanium dioxide and carbon nitride with metal nanoparticles and polymeric nanofibres from nanocomposites as effective materials for the degradation of organic contaminations from water are discussed. The history, current trends and future perspectives are highlighted.
Collapse
Affiliation(s)
- Rudzani Ratshiedana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Ajay Kumar Mishra
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa.
| |
Collapse
|
39
|
Optical Characterization of Ultra-Thin Films of Azo-Dye-Doped Polymers Using Ellipsometry and Surface Plasmon Resonance Spectroscopy. PHOTONICS 2021. [DOI: 10.3390/photonics8020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.
Collapse
|
40
|
Zhou Z, Li B, Liu X, Li Z, Zhu S, Liang Y, Cui Z, Wu S. Recent Progress in Photocatalytic Antibacterial. ACS APPLIED BIO MATERIALS 2021; 4:3909-3936. [DOI: 10.1021/acsabm.0c01335] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ziling Zhou
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Bo Li
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Panchal P, Meena P, Nehra SP. A rapid green synthesis of Ag/AgCl-NC photocatalyst for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3972-3982. [PMID: 33398749 PMCID: PMC7781416 DOI: 10.1007/s11356-020-11834-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
The present study focuses on extract-mediated Ag nanoparticles (NPs), AgCl-NPs, and Ag/AgCl nanocomposites (NCs) as photocatalysts along with its antimicrobial and dye degradation activities. The synthesis of these NPs and NCs was performed by using Azadirachta indica plant fruit extract and analyzed using UV-Vis spectroscopy to confirm the synthesis and band gap of these NPs and NCs, X-ray diffraction (XRD) to determine its size and crystalline nature. Fourier transform infrared spectroscopy (FTIR) to discern phytochemicals, responsible for the reduction and capping of the synthesized NCs. Scanning electron microscopy analysis (SEM), transmission electron microscopy analysis (TEM), and energy dispersive X-ray (EDX) spectroscopy analysis were performed to validate the morphology and presence of silver and chloride percentage in the composites. Later, these NPs and NCs were used for their potential role in photocatalytic degradation of methylene blue dye and antibacterial activity against Escherichia coli and Staphylococcus aureus of human pathogen. The prepared Ag/AgCl-NCs exhibited an enhanced photocatalytic and antibacterial activities in comparison with pure Ag and AgCl nanomaterials. However, green-synthesized NPs and NCs played dual roles as a photocatalyst and antibacterial agent in various biomedical and industrial sectors. Moreover, we found that it might be a hot research in many other environmental applications in upcoming days.
Collapse
Affiliation(s)
- Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Poonam Meena
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|
42
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
43
|
Lan Y, Tang W, Yuan C, Xue XG, Liu X, Zhu B, Meng L, Zhou C, Liu F, Xu J, Wang J, Rao G. High-field polarization boosting visible-light photocatalytic H 2 evolution of narrow-bandgap semiconducting (1 − x)KNbO 3– xBa(Ni 1/2Nb 1/2)O 3−δ ferroelectric ceramics. NEW J CHEM 2021. [DOI: 10.1039/d1nj03796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic H2 evolution of semiconducting KN-based ferroelectrics and its further boosting via a high-field polarization has been studied.
Collapse
Affiliation(s)
- Yuchen Lan
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Wenbin Tang
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Changlai Yuan
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Xiao Gang Xue
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Xiao Liu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Baohua Zhu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Liufang Meng
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Changrong Zhou
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Fei Liu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Jiwen Xu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Jiang Wang
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Guanghui Rao
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
- Institute of Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
44
|
Ju P, Wang Y, Sun Y, Zhang D. In-situ green topotactic synthesis of a novel Z-scheme Ag@AgVO3/BiVO4 heterostructure with highly enhanced visible-light photocatalytic activity. J Colloid Interface Sci 2020; 579:431-447. [DOI: 10.1016/j.jcis.2020.06.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
|
45
|
Vu NN, Kaliaguine S, Do TO. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO 2 : Details, Developments, and Perspectives. CHEMSUSCHEM 2020; 13:3967-3991. [PMID: 32476290 DOI: 10.1002/cssc.202000905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic photocatalysis is among the most efficient processes for the photoreduction of CO2 into valuable fuels. The formation of localized surface plasmon resonance (LSPR), energy transfer, and surface reaction are the significant steps in this process. LSPR plays an essential role in the performance of plasmonic photocatalysts as it promotes an excellent, light absorption over a broad wavelength range while simultaneously facilitating an efficient energy transfer to semiconductors. The LSPR transfers energy to a semiconductor through various mechanisms, which have both advantages and disadvantages. This work points out four critical features for plasmonic photocatalyst design, that is, plasmonic materials, size, shape of plasmonic nanoparticles (PNPs), and the contact between PNPs and semiconductor. Various developed plasmonic photocatalysts, as well as their photocatalytic performance in CO2 photoreduction, are reviewed and discussed. Finally, perspectives of advanced architectures and structural engineering for plasmonic photocatalyst design are put forward with high expectations to achieve an efficient CO2 photoreduction shortly.
Collapse
Affiliation(s)
- Nhu-Nang Vu
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Serge Kaliaguine
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
46
|
Dziike F, Franklyn PJ, Hlekelele L, Durbach S. Recovery of waste gold for the synthesis of gold nanoparticles supported on radially aligned nanorutile: the growth of carbon nanomaterials. RSC Adv 2020; 10:28090-28099. [PMID: 35519089 PMCID: PMC9055640 DOI: 10.1039/d0ra03797d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
Precious and expensive metals are lost each year through the discarding of old jewellery pieces and mine tailings. In this work, small amounts of gold were recovered by digestion with aqua regia from waste tailings. The recovered gold in the form of HAuCl4 was then used to deposit Au0 onto radially aligned nanorutile (RANR) to form a supported catalyst material. The support material, RANR, was synthesized using the hydrothermal technique whereas the deposition of gold was achieved using the deposition–precipitation with urea method at various loadings. Electron microscopy was used to show that the structure of the support is a sphere formed by multiple nanorods aligned in a radial structure. The Au nanoparticles were observed at the tips of the nanorods. It was confirmed by XRD that the support was indeed a rutile phase of TiO2 and that the Au nanoparticles had a face-centred cubic structure. The various catalysts were then used to synthesize carbon nanomaterials (CNMs) using the chemical vapour deposition technique. A parametric study varying the reaction temperature, duration and carbon source gas flow rate was conducted to study the effects these conditions have on the structural properties of the resulting CNMs. Here, it was found that mainly carbon nanofibers were formed and that the different reaction conditions influenced their graphicity, width, structure and thermal properties. A hydrothermal method was used to prepare rutile TiO2 dandelions. A deposition–precipitation method using urea (DPU) was used to load Au metal nanoparticles in calculated weight percentages and the Au/RANR catalysts where used to synthesise CNFs in a CVD reaction.![]()
Collapse
Affiliation(s)
- Farai Dziike
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand Johannesburg 2050 South Africa .,DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, WITS 2050 Johannesburg South Africa
| | - Paul J Franklyn
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand Johannesburg 2050 South Africa
| | - Lerato Hlekelele
- Polymers and Composites, Materials and Manufacturing Science, CSIR Pretoria 0001 South Africa
| | - Shane Durbach
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand Johannesburg 2050 South Africa .,DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, WITS 2050 Johannesburg South Africa
| |
Collapse
|
47
|
Bi S, Li Q, Asare-Yeboah K, Na J, Sun Y, Jiang C. Ultra-High-Responsivity Vertical Nanowire-based Phototransistor under Standing-Wave Plasmon Mode Interaction Induced by Near-Field Circular OLED. J Phys Chem Lett 2020; 11:3947-3954. [PMID: 32352303 DOI: 10.1021/acs.jpclett.0c00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-responsivity photodevices are strongly desired for various demanding applications, such as optical communications, logic circuits, and sensors. The use of quantum and photon confinement has enabled a true revolution in the development of high-performance devices. Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant. Here we design and fabricate an ultra-high-responsivity organic-light-emitting-diode-induced nanowire resonance phototransistor (ONRPT) based on standing-wave resonance in the nanoscale cavity, subjected to a near-field light. Observations of the ONRPT in standing-wave resonance mode indicate a >104 enhancement in the on/off ratio and a six times higher subthreshold slope when compared with the ONRPT in non-resonance mode. The ONRPT, which leads itself to outstanding electrical and favorably stable performance, opens up a plethora of opportunities for high-efficiency energy devices and allows for nanowire applications in the solar cell, piezo-photonic detectors, and optical modulators.
Collapse
Affiliation(s)
- Sheng Bi
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Qikun Li
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Kyeiwaa Asare-Yeboah
- Department of Electrical and Computer Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Jin Na
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yeqing Sun
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Chengming Jiang
- Institute of Photoelectric Nanoscience and Nanotechnology, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
48
|
InGaN Nanorods Decorated with Au Nanoparticles for Enhanced Water Splitting Based on Surface Plasmon Resonance Effects. NANOMATERIALS 2020; 10:nano10050912. [PMID: 32397381 PMCID: PMC7279278 DOI: 10.3390/nano10050912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022]
Abstract
Photoelectrochemical (PEC) water splitting has great application potential in converting solar energy into hydrogen energy. However, what stands in the way of the practical application of this technology is the low conversion efficiency, which can be promoted by optimizing the material structure and device design for surface functionalization. In this work, we deposited gold nanoparticles (Au NPs) with different loading densities on the surface of InGaN nanorod (NR) arrays through a chemical solvent route to obtain a composite PEC water splitting system. Enhanced photocatalytic activity, which can be demonstrated by the surface plasmon resonance (SPR) effect induced by Au NPs, occurred and was further confirmed to be associated with the different loading densities of Au NPs. These discoveries use solar water splitting as a platform and provide ideas for exploring the mechanism of SPR enhancement.
Collapse
|
49
|
Atwan AA, Elmehasseb IM, Talha N, El‐Kemary M. Parameters affecting carbofuran photocatalytic degradation in water using ZnO nanoparticles. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Asmaa A. Atwan
- Chemistry Department, Faculty of Science Kafrelsheikh University KafrElSheikh Egypt
- Soils, Waters and Environment Research Institute. ARC Cairo Egypt
| | | | - Naser Talha
- Soils, Waters and Environment Research Institute. ARC Cairo Egypt
| | - Maged El‐Kemary
- Nanoscience & Nanotechnology Institute Kafrelsheikh University KafrElSheikh Egypt
| |
Collapse
|
50
|
Ayodhya D, Veerabhadram G. Green synthesis of garlic extract stabilized Ag@CeO2 composites for photocatalytic and sonocatalytic degradation of mixed dyes and antimicrobial studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|