1
|
Brooks J, Everett J, Sadler PJ, Telling N, Collingwood JF. On the origin of metal species in the human brain: a perspective on key physicochemical properties. Metallomics 2025; 17:mfaf004. [PMID: 39924175 PMCID: PMC11890113 DOI: 10.1093/mtomcs/mfaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Normal functioning of the human brain is dependent on adequate regulation of essential metal nutrients. However, it is also highly sensitive to metal-mediated toxicity, linked to various neurodegenerative disorders. Exposure to environmental metal sources (especially to particulate air pollution) can stimulate toxicity and neuropathologic effects, which is particularly evident in populations chronically exposed to high levels of air pollution. Identifying the sources of metal-rich deposits in the human brain is important in not only distinguishing the effects of environmentally acquired metals from endogenous metal dysregulation, but also for tracing pollutant sources which may be subject to exposure control. This perspective reviews evidence for key physicochemical properties (size/morphology, chemical composition, oxidation state, magnetic properties, and isotopic composition) concerning their capacity to distinguish sources of metals in the brain. The scope for combining analytical techniques to study properties in tandem is also discussed.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - James Everett
- School of Engineering, University of Warwick, Coventry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | | |
Collapse
|
2
|
Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol 2025; 207:50. [PMID: 39891715 DOI: 10.1007/s00203-025-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Trimetallic nanoparticles (TMNPs) have emerged as a pivotal area of research due to their unique properties and diverse applications across medicine, agriculture, and environmental sciences. This review provides several novel contributions that distinguish it from existing literature on trimetallic nanoparticles (TMNPs). Firstly, it offers a focused exploration of TMNPs, specifically addressing their unique properties and applications, which have been less examined compared to other multimetallic nanoparticles. This targeted analysis fills a significant gap in current research. Secondly, the review emphasizes innovative biosynthesis methods utilizing microorganisms and plant extracts, positioning these green synthesis approaches as environmentally friendly alternatives to traditional chemical methods. This focus aligns with the increasing demand for sustainable practices in nanotechnology. Furthermore, the review integrates discussions on both medical and agricultural applications of TMNPs, highlighting their multifunctional potential across diverse fields. This comprehensive perspective enhances our understanding of how TMNPs can address various challenges. Additionally, the review explores the synergistic effects among the different metals in TMNPs, providing insights into how these interactions can be harnessed to optimize their properties for specific applications. Such discussions are often overlooked in existing studies. Moreover, this review identifies critical research gaps and challenges within the field, outlining future directions that encourage further investigation and innovation in TMNP development. By doing so, it proactively contributes to advancing the field. Finally, the review advocates for interdisciplinary collaboration among material scientists, biologists, and environmental scientists, emphasizing the importance of diverse expertise in enhancing the research and application of TMNPs.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | | | - Mahmoud A Diab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Amer Morsy Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Mohamed Abdelrahman Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nasser Ibrahim Issa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ziad A Hamdy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed E Nafea
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Nageh Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Albraa Adel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdulrahman Hasib
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Mostafa Hawela
- Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | | | - Mustafa A Nouh
- Research and Development Department, ALSALAM International for Development & Agricultural Investment, Giza, Egypt
| | - Ahmed Abdelhay Nahool
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:80-99. [PMID: 39416693 PMCID: PMC11446360 DOI: 10.1016/j.biotno.2024.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.
Collapse
Affiliation(s)
- Mahalakshmi Devaraji
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Punniyakoti V. Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Aziz NMA, Goda DA, Abdel-Meguid DI, El-Sharouny EE, Soliman NA. A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents. Microb Cell Fact 2024; 23:156. [PMID: 38802818 PMCID: PMC11131221 DOI: 10.1186/s12934-024-02422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Biosynthesis of metallic nanoparticles using microorganisms are a fabulous and emerging eco-friendly science with well-defined sizes, shapes and controlled monodispersity. Copper nanoparticles, among other metal particles, have sparked increased attention due to their applications in electronics, optics, catalysis, and antimicrobial agents. RESULTS This investigation explains the biosynthesis and characterization of copper nanoparticles from soil strains, Niallia circulans G9 and Paenibacillus sp. S4c by an eco-friendly method. The maximum reduction of copper ions and maximum synthesis CuNPs was provided by these strains. Biogenic formation of CuNPs have been characterized by UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray analysis and transmission electron microscopy analysis. Using UV-visible spectrum scanning, the synthesised CuNPs' SPR spectra showed maximum absorption peaks at λ304&308 nm. TEM investigation of the produced CuNPs revealed the development of spherical/hexagonal nanoparticles with a size range of 13-100 nm by the G9 strain and spherical nanoparticles with a size range of 5-40 nm by the S4c strain. Functional groups and chemical composition of CuONPs were also confirmed. The antimicrobial activity of the biosynthesized CuNPs were investigated against some human pathogens. CuNPs produced from the G9 strain had the highest activity against Candida albicans ATCC 10,231 and the lowest against Pseudomonas aeruginosa ATCC 9027. CuNPs from the S4c strain demonstrated the highest activity against Escherichia coli ATCC 10,231 and the lowest activity against Klebsiella pneumonia ATCC 13,883. CONCLUSION The present work focused on increasing the CuNPs production by two isolates, Niallia circulans G9 and Paenibacillus sp. S4c, which were then characterized alongside. The used analytics and chemical composition techniques validated the existence of CuONPs in the G9 and S4c biosynthesized nano cupper. CuNPs of S4c are smaller and have a more varied shape than those of G9 strain, according to TEM images. In terms of antibacterial activity, the biosynthesized CuNPs from G9 and S4c were found to be more effective against Candida albicans ATCC 10,231 and E. coli ATCC 10,231, respectively.
Collapse
Affiliation(s)
- Nahla M Abdel Aziz
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, P.O. 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Dina I Abdel-Meguid
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Ebaa E El-Sharouny
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, P.O. 21934, New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
5
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
6
|
Yasawong M, Wongchitrat P, Isarankura-Na-Ayudhya C, Isarankura-Na-Ayudhya P, Na Nakorn P. Draft genome sequence data of heavy metal-resistant Morganella morganii WA01/MUTU, a silver nanoparticle (AgNP) synthesising bacterium. Data Brief 2024; 52:109873. [PMID: 38146295 PMCID: PMC10749224 DOI: 10.1016/j.dib.2023.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
Morganella morganii WA01/MUTU is a heavy metal tolerant strain capable of producing silver nanoparticles (AgNPs) from AgNO3. Here we present the draft genome sequence of M. morganii WA01/MUTU isolated from a water sample collected in Nakhon Pathom province, Thailand. The draft genome was sequenced on the Illumina NextSeq 550 sequencer. The genome consisted of 34 contigs with a total size of 3,991,804 bp, an N50 value of 364,423 bp and a GC content of 50.93%. The digital DNA-DNA hybridisation (dDDH) between WA01/MUTU and Morganella morganii (NBRC 3848) was 83.9%, identifying the strain as Morganella morganii. The data presented here can be used in comparative genomics to identify gene clusters involved in AgNP biosynthesis and secondary metabolite production. The draft genome sequence data was deposited at NCBI under Bioproject accession number PRJNA493966.
Collapse
Affiliation(s)
- Montri Yasawong
- Program on Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chartchalerm Isarankura-Na-Ayudhya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | | | - Piyada Na Nakorn
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
7
|
Kimber RL, Elizondo G, Jedyka K, Boothman C, Cai R, Bagshaw H, Haigh SJ, Coker VS, Lloyd JR. Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper mine. Environ Microbiol 2023; 25:3139-3150. [PMID: 37697680 PMCID: PMC10946571 DOI: 10.1111/1462-2920.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023]
Abstract
Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed.
Collapse
Affiliation(s)
- Richard L. Kimber
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Gretta Elizondo
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Klaudia Jedyka
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Rongsheng Cai
- Department of MaterialsUniversity of ManchesterManchesterUK
| | - Heath Bagshaw
- SEM Shared Research Facility, School of EngineeringUniversity of LiverpoolLiverpoolUK
| | - Sarah J. Haigh
- Department of MaterialsUniversity of ManchesterManchesterUK
| | - Victoria S. Coker
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| | - Jonathan R. Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, School of Natural SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
8
|
das Neves Vasconcellos Brandão IY, Ferreira de Macedo E, Barboza de Souza Silva PH, Fontana Batista A, Graciano Petroni SL, Gonçalves M, Conceição K, de Sousa Trichês E, Batista Tada D, Maass D. Bionanomining of copper-based nanoparticles using pre-processed mine tailings as the precursor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117804. [PMID: 36996570 DOI: 10.1016/j.jenvman.2023.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.
Collapse
Affiliation(s)
| | - Erenilda Ferreira de Macedo
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | | | - Aline Fontana Batista
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), Zip-code 12228-904, São José dos Campos, SP, Brazil
| | - Sérgio Luis Graciano Petroni
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), Zip-code 12228-904, São José dos Campos, SP, Brazil
| | - Maraisa Gonçalves
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Katia Conceição
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Eliandra de Sousa Trichês
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Dayane Batista Tada
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Danielle Maass
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil.
| |
Collapse
|
9
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
10
|
Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S. Photosynthetic microbes in nanobiotechnology: Applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156457. [PMID: 35662597 DOI: 10.1016/j.scitotenv.2022.156457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.
Collapse
Affiliation(s)
- Rahul Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, Telangana, India; Department of Genetics, Osmania University, Hyderabad 500007, Telangana, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Microbiology, School of Science, RK University, Rajkot 360020, Gujarat, India.
| |
Collapse
|
11
|
Naveen Prasad S, Anderson SR, Joglekar MV, Hardikar AA, Bansal V, Ramanathan R. Bimetallic nanozyme mediated urine glucose monitoring through discriminant analysis of colorimetric signal. Biosens Bioelectron 2022; 212:114386. [DOI: 10.1016/j.bios.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022]
|
12
|
Kumar S, Kaur P, Brar RS, Babu JN. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review. Heliyon 2022; 8:e10140. [PMID: 36042719 PMCID: PMC9420493 DOI: 10.1016/j.heliyon.2022.e10140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | - Parminder Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | | | - J Nagendra Babu
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| |
Collapse
|
13
|
Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51281-51297. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
Abstract
Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Sana Asghar
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Temoor Ahmed
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Usman Ijaz
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Noman
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
14
|
Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy metal removal using genetically engineered organisms (GEOs) offer more cost and energy-efficient, safer, greener, and environmentally-friendly opportunities as opposed to conventional strategies requiring hazardous or toxic chemicals, complex processes, and high pressure/temperature. Additionally, GEOs exhibited superior potentials for biosynthesis of nanoparticles with significant capabilities in bioreduction of heavy metal ions that get accumulated as nanocrystals of various shapes/dimensions. In this context, GEO-aided nanoparticle assembly and the related reaction conditions should be optimized. Such strategies encompassing biosynthesized nanoparticle conforming to the green chemistry precepts help minimize the deployment of toxic precursors and capitalize on the safety and sustainability of the ensuing nanoparticle. Different GEOs with improved uptake and appropriation of heavy metal ions potentials have been examined for bioreduction and biorecovery appliances, but effective implementation to industrial-scale practices is nearly absent. In this perspective, the recent developments in heavy metal removal and nanoparticle biosynthesis using GEOs are deliberated, focusing on important challenges and future directions.
Collapse
|
15
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
16
|
Waterborne Antifouling Paints Containing Nanometric Copper and Silver against Marine Bacillus Species. Bioinorg Chem Appl 2022; 2022:2435756. [PMID: 35211162 PMCID: PMC8863476 DOI: 10.1155/2022/2435756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Due to the concern to find an alternative to reduce the colonization (microfouling and macrofouling) or the biocorrosion of surfaces submerged for long periods in water, we evaluated the antifouling activity of a commercial paint added with silver nanoparticles (AgNP's) and copper nanoparticles (CuNP's), beside copper-soybean chelate, by electrolytic synthesis, using them in low concentrations (6.94E − 04 mg Ag g−1 paint, 9.07E − 03 mg Cu g−1 paint, and 1.14E − 02 mg Cu g−1 paint, respectively). The test for paint samples was carried out by JIS Z2801-ISO 22196 for periods of initial time, 6 months, and 12 months, against three bacterial strains of marine origin, Bacillus subtilis, Bacillus pumilus, and Bacillus altitudinis. It was possible to demonstrate, according to the standard, that the sample with the greatest antimicrobial activity was the copper-soybean chelate against two of the three strains studied (B. pumilus with R = 2.11 and B. subtilis with R = 2.41), which represents more than 99% of bacterial inhibition. Therefore, we considered a novel option for inhibiting bacterial growth with nanoparticles as antifouling additives.
Collapse
|
17
|
Hassabo AA, Ibrahim EI, Ali BA, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Enhancing Nb2O5 activity for CO2 photoreduction through Cu nanoparticles cocatalyst deposited by DC-magnetron sputtering. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Singh S, Kumar V, Gupta P, Ray M, Singh A. An implication of biotransformation in detoxification of mercury contamination by Morganella sp. strain IITISM23. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35661-35677. [PMID: 33677667 DOI: 10.1007/s11356-021-13176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The contamination of soil by heavy metals such as Hg is growing immensely nowadays. The drawbacks of physicochemical methods in the decontamination of polluted soils resulted in the search for an eco-friendly and cost-effective means in this regard. In this study, a potential Hg-resistant bacterial (IITISM23) strain was investigated for their removal potential of Hg, isolated from Hg-contaminated soil. IITISM23 strain was identified as Morganella sp. (MT062474.1) as it showed 99% similarity to genus Morganella of Gammaproteobacteria based on 16S rRNA gene sequencing. The toxicity experiment confirmed that the strain showed high resistance toward Hg. In low nutrient medium, EC50 (effective concentration) values were 6.8 ppm and minimum effective concentration (MIC) was 7.3 ppm, and in a nutrient-rich medium, EC50 value was 32.29 ppm and MIC value was 34.92 ppm, respectively. In in vitro conditions, IITISM23 showed the removal efficiency (81%) of Hg (II) by the volatilization method in Luria-Bertani (LB) broth. The changes in surface morphology of bacteria upon the supplementation of Hg (II) in broth media were determined by SEM-EDX studies, while the changes in functional groups were studied by FT-IR spectroscopy. The mercury reductase activity was determined by a crude extract of the bacterial strain. The optimal pH and temperature for maximum enzyme activity were 8 and 30oC, with Km of 3.5 μmol/l and Vmax of 0.88 μmol/min, respectively. Also, strain IITISM23 showed resistance toward various antibiotics and other heavy metals like cadmium, lead, arsenic, and zinc. Hence, the application of microbes can be an effective measure in the decontamination of Hg from polluted soils.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| |
Collapse
|
21
|
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021; 11:886. [PMID: 34203733 PMCID: PMC8246319 DOI: 10.3390/biom11060886] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anil Kumar Poonia
- Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
22
|
Everett J, Lermyte F, Brooks J, Tjendana-Tjhin V, Plascencia-Villa G, Hands-Portman I, Donnelly JM, Billimoria K, Perry G, Zhu X, Sadler PJ, O'Connor PB, Collingwood JF, Telling ND. Biogenic metallic elements in the human brain? SCIENCE ADVANCES 2021; 7:eabf6707. [PMID: 34108207 PMCID: PMC8189590 DOI: 10.1126/sciadv.abf6707] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/22/2021] [Indexed: 05/12/2023]
Abstract
The chemistry of copper and iron plays a critical role in normal brain function. A variety of enzymes and proteins containing positively charged Cu+, Cu2+, Fe2+, and Fe3+ control key processes, catalyzing oxidative metabolism and neurotransmitter and neuropeptide production. Here, we report the discovery of elemental (zero-oxidation state) metallic Cu0 accompanying ferromagnetic elemental Fe0 in the human brain. These nanoscale biometal deposits were identified within amyloid plaque cores isolated from Alzheimer's disease subjects, using synchrotron x-ray spectromicroscopy. The surfaces of nanodeposits of metallic copper and iron are highly reactive, with distinctly different chemical and magnetic properties from their predominant oxide counterparts. The discovery of metals in their elemental form in the brain raises new questions regarding their generation and their role in neurochemistry, neurobiology, and the etiology of neurodegenerative disease.
Collapse
Affiliation(s)
- James Everett
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire ST4 7QB, UK
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Frederik Lermyte
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Jake Brooks
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Vindy Tjendana-Tjhin
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Ian Hands-Portman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane M Donnelly
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Kharmen Billimoria
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
- LGC Ltd., Queens Road, Teddington TW11 0LY, UK
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peter J Sadler
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Joanna F Collingwood
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Neil D Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire ST4 7QB, UK.
| |
Collapse
|
23
|
Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: Characterization and Potential Application as Antimicrobial Agents. Mar Drugs 2021; 19:md19050263. [PMID: 34066868 PMCID: PMC8151786 DOI: 10.3390/md19050263] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Herein, an original and efficient route for the microbial synthesis of copper NPs using bacterial strains newly isolated from an Antarctic consortium is described. UV-visible spectra of the NPs showed a maximum absorbance in the range of 380–385 nm. Transmission electron microscopy analysis showed that these NPs are all monodispersed, spherical in nature, and well segregated without any agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a polycrystalline nature and face centered cubic lattice and revealed characteristic diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared spectra confirmed the presence of capping proteins on the NP surface that act as stabilizers. All CuONPs manifested antimicrobial activity against various types of Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-effective and eco-friendly biosynthesis of these CuONPs make them particularly attractive in several application from nanotechnology to biomedical science.
Collapse
|
24
|
Giachino A, Focarelli F, Marles-Wright J, Waldron KJ. Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiol Ecol 2021; 97:6021318. [PMID: 33501489 DOI: 10.1093/femsec/fiaa249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
One of the current aims of synthetic biology is the development of novel microorganisms that can mine economically important elements from the environment or remediate toxic waste compounds. Copper, in particular, is a high-priority target for bioremediation owing to its extensive use in the food, metal and electronic industries and its resulting common presence as an environmental pollutant. Even though microbe-aided copper biomining is a mature technology, its application to waste treatment and remediation of contaminated sites still requires further research and development. Crucially, any engineered copper-remediating chassis must survive in copper-rich environments and adapt to copper toxicity; they also require bespoke adaptations to specifically extract copper and safely accumulate it as a human-recoverable deposit to enable biorecycling. Here, we review current strategies in copper bioremediation, biomining and biorecycling, as well as strategies that extant bacteria use to enhance copper tolerance, accumulation and mineralization in the native environment. By describing the existing toolbox of copper homeostasis proteins from naturally occurring bacteria, we show how these modular systems can be exploited through synthetic biology to enhance the properties of engineered microbes for biotechnological copper recovery applications.
Collapse
Affiliation(s)
- Andrea Giachino
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Francesca Focarelli
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jon Marles-Wright
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kevin J Waldron
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
25
|
Gracioso LH, Peña-Bahamonde J, Karolski B, Borrego BB, Perpetuo EA, do Nascimento CAO, Hashiguchi H, Juliano MA, Robles Hernandez FC, Rodrigues DF. Copper mining bacteria: Converting toxic copper ions into a stable single-atom copper. SCIENCE ADVANCES 2021; 7:7/17/eabd9210. [PMID: 33893098 PMCID: PMC8064636 DOI: 10.1126/sciadv.abd9210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The chemical synthesis of monoatomic metallic copper is unfavorable and requires inert or reductive conditions and the use of toxic reagents. Here, we report the environmental extraction and conversion of CuSO4 ions into single-atom zero-valent copper (Cu0) by a copper-resistant bacterium isolated from a copper mine in Brazil. Furthermore, the biosynthetic mechanism of Cu0 production is proposed via proteomics analysis. This microbial conversion is carried out naturally under aerobic conditions eliminating toxic solvents. One of the most advanced commercially available transmission electron microscopy systems on the market (NeoArm) was used to demonstrate the abundant intracellular synthesis of single-atom zero-valent copper by this bacterium. This finding shows that microbes in acid mine drainages can naturally extract metal ions, such as copper, and transform them into a valuable commodity.
Collapse
Affiliation(s)
- Louise Hase Gracioso
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
- The Interunits Graduate Program in Biotechnology, University of São Paulo, Lineu Prestes Ave., 2415. São Paulo-SP, Brazil
| | - Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Bruno Karolski
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
| | - Bruna Bacaro Borrego
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
- The Interunits Graduate Program in Biotechnology, University of São Paulo, Lineu Prestes Ave., 2415. São Paulo-SP, Brazil
| | - Elen Aquino Perpetuo
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil.
- Institute of Marine Sciences, Federal University of São Paulo, Imar-Unifesp, Carvalho de Mendonça Ave., 144, Santos, São Paulo, Brazil
| | | | | | | | - Francisco C Robles Hernandez
- Mechanical Engineering Technology, Advanced Manufacturing Institute, Materials Science and Engineering, University of Houston, Houston, TX, USA.
| | - Debora Frigi Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
26
|
Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A, Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm 2021; 597:120311. [PMID: 33539998 DOI: 10.1016/j.ijpharm.2021.120311] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
The skin is the primordial barrier that protects the human body against environmental factors. Due to the arise of dermatological pathologies, the development of efficient delivery systems for topical applications has received increased interest. The highest challenge consists of increasing the penetration of the active ingredients through the skin barrier, alongside to the need of obtaining enough skin retention to achieve therapeutic concentrations. Metals, specially noble metals, have been used for years to treat and prevent health issues, among them dermatological disorders. Nanoparticles have been extensively used for topical applications given their advantages, namely by enhancing solubility of apolar drugs, the possibility of controlled release, the higher stability and the capability to target specific areas and delivery of high concentrations of active ingredients. In order to take advantage of the before mentioned unique properties of nanoparticles and the biological activities of metals, various metal-based nanoparticles (MNPs) have been synthesized in the past few years, such as silver (AgNPs), gold (AuNPs), zinc (ZnNPs), zinc oxide (ZnONPs), copper (CuNPs) and copper oxide (CuONPs) nanoparticles. These MNPs are flexible structures that allow the control of physical characteristics, with enhanced surface properties, which provides a high applicability in dermopharmacy and cosmetics. The conventional methods for synthesizing nanoparticles (physical and chemical approaches) are associated with major drawbacks, being the most concerning the high cost (in resources, energy, time and space) and human/environmental toxicity. Hence, the need to develop an alternative synthesis pathway was imposed, giving rise to the green synthesis methodology. In general, green synthesis consist of using biological sources (plants, bacteria or fungi) to synthesize ecological benign, non-hazard and biocompatible nanoparticles. With the development of green synthesis, starting materials have been used more frequently, among them plants. Plant-mediated green synthesis of nanoparticles is based on the use of plant extracts to synthesize nanoparticles, and their outstanding advantages have paved the way for exciting developments on nanoparticle synthesis to the detriment of complex and toxicity-associated chemical and physical synthesis. MNPs produced by plant-mediated synthesis also demonstrate notorious biological activities, i.e., anticancer, antioxidant, anti-inflammatory, antimicrobial, wound healing and antiaging activities. However, safety assessment of phyto MNPs (phyto-MNPs) holds significant importance due to the lack of toxicological studies and the conception issues that some of the available studies show. In general, current studies suggest the biocompatibility and safety of phyto-MNPs, together with significantly improved and relevant biological activities towards dermopharmaceutical and cosmetic applications. Against this backdrop, there is still a long way to run until the application of phyto-MNPs in the medical, pharmaceutical and cosmetic fields, but studies so far show a very high potential towards their clinical translation for dermopharmaceutical and cosmetics applications. This review focuses on phyto-MNPs synthesized resorting to various plant extracts, including their production, characterization and the biological activities that support their topical application for dermopharmaceutical and cosmetic purposes.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Ana Margarida Herdade
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António Paranhos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Naveen Prasad S, Weerathunge P, Karim MN, Anderson S, Hashmi S, Mariathomas PD, Bansal V, Ramanathan R. Non-invasive detection of glucose in human urine using a color-generating copper NanoZyme. Anal Bioanal Chem 2021; 413:1279-1291. [PMID: 33399880 DOI: 10.1007/s00216-020-03090-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023]
Abstract
Renal complications are long-term effect of diabetes mellitus where glucose is excreted in urine. Therefore, reliable glucose detection in urine is critical. While commercial urine strips offer a simple way to detect urine sugar, poor sensitivity and low reliability limit their use. A hybrid glucose oxidase (GOx)/horseradish peroxidase (HRP) assay remains the gold standard for pathological detection of glucose. A key restriction is poor stability of HRP and its suicidal inactivation by hydrogen peroxide, a key intermediate of the GOx-driven reaction. An alternative is to replace HRP with a robust inorganic enzyme-mimic or NanoZyme. While colloidal NanoZymes show promise in glucose sensing, they detect low concentrations of glucose, while urine has high (mM) glucose concentration. In this study, a free-standing copper NanoZyme is used for the colorimetric detection of glucose in human urine. The sensor could operate in a biologically relevant dynamic linear range of 0.5-15 mM, while showing minimal sample matrix effect such that glucose could be detected in urine without significant sample processing or dilution. This ability could be attributed to the Cu NanoZyme that for the first time showed an ability to promote the oxidation of a TMB substrate to its double oxidation diimine product rather than the charge-transfer complex product commonly observed. Additionally, the sensor could operate at a single pH without the need to use different pH conditions as used during the gold standard assay. These outcomes outline the high robustness of the NanoZyme sensing system for direct detection of glucose in human urine. Graphical abstract.
Collapse
Affiliation(s)
- Sanjana Naveen Prasad
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Pabudi Weerathunge
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Md Nurul Karim
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Samuel Anderson
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Sabeen Hashmi
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Pyria D Mariathomas
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia.
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
28
|
Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem 2020; 8:799. [PMID: 33195027 PMCID: PMC7658653 DOI: 10.3389/fchem.2020.00799] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle synthesis using microorganisms and plants by green synthesis technology is biologically safe, cost-effective, and environment-friendly. Plants and microorganisms have established the power to devour and accumulate inorganic metal ions from their neighboring niche. The biological entities are known to synthesize nanoparticles both extra and intracellularly. The capability of a living system to utilize its intrinsic organic chemistry processes in remodeling inorganic metal ions into nanoparticles has opened up an undiscovered area of biochemical analysis. Nanotechnology in conjunction with biology gives rise to an advanced area of nanobiotechnology that involves living entities of both prokaryotic and eukaryotic origin, such as algae, cyanobacteria, actinomycetes, bacteria, viruses, yeasts, fungi, and plants. Every biological system varies in its capabilities to supply metallic nanoparticles. However, not all biological organisms can produce nanoparticles due to their enzymatic activities and intrinsic metabolic processes. Therefore, biological entities or their extracts are used for the green synthesis of metallic nanoparticles through bio-reduction of metallic particles leading to the synthesis of nanoparticles. These biosynthesized metallic nanoparticles have a range of unlimited pharmaceutical applications including delivery of drugs or genes, detection of pathogens or proteins, and tissue engineering. The effective delivery of drugs and tissue engineering through the use of nanotechnology exhibited vital contributions in translational research related to the pharmaceutical products and their applications. Collectively, this review covers the green synthesis of nanoparticles by using various biological systems as well as their applications.
Collapse
Affiliation(s)
| | | | | | | | - Guang-wei Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Kalia A, Singh S. Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech 2020; 10:384. [PMID: 32802726 PMCID: PMC7415790 DOI: 10.1007/s13205-020-02378-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Effluents of textile, paper, and related industries contain significant amounts of synthetic dyes which has serious environmental and health implications. Remediation of dyes through physical and chemical techniques has specific limitations. Augmented biological decontamination strategies 'microbial remediation' may involve ring-opening of dye molecules besides the reduction of constituent metal ions. Both bacterial and fungal genera are known to exhibit metabolic versatility which can be harnessed for effective bio-removal of the toxic dye contaminants. Ascomycetous/basidiomycetes fungi can effectively decontaminate azo dyes through laccase/peroxidase enzyme-mediated catalysis. The extent, efficacy, and range of fungal dye decontamination can be enhanced by the conjugated application of nanomaterials, including nanoparticles (NPs) and their composites. Fungal cell-enabled NP synthesis- 'myco-farmed NPs', is a low-cost strategy for scaled-up fabrication of a variety of metal, metal oxide, non-metal oxide NPs through oxidation/reduction of dissolved ions/molecules by extracellular biomolecules. Augmented and rapid decontamination of azo dyes at high concentrations can be achieved by the use of myco-farmed NPs, NPs adsorbed fungal biomass, and nano-immobilized fungi-derived bio-catalytical agents. This manuscript will explore the opportunities and benefits of mycoremediation and application of fungus-NP bionanoconjugate to remediate dye pollutants in wastewaters and land contaminated with the effluent of textile industries.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Swarnjeet Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
30
|
Biomineralization of Cu 2S Nanoparticles by Geobacter sulfurreducens. Appl Environ Microbiol 2020; 86:AEM.00967-20. [PMID: 32680873 PMCID: PMC7480366 DOI: 10.1128/aem.00967-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms. Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens. Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed. IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.
Collapse
|
31
|
Zou X, Cheng S, You B, Yang C. Bio-mediated synthesis of copper oxide nanoparticles using Pogestemon benghalensis extract for treatment of the esophageal cancer in nursing care. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
A review on ameliorative green nanotechnological approaches in diabetes management. Biomed Pharmacother 2020; 127:110198. [DOI: 10.1016/j.biopha.2020.110198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
|
33
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
34
|
Hossain Z, Yasmeen F, Komatsu S. Nanoparticles: Synthesis, Morphophysiological Effects, and Proteomic Responses of Crop Plants. Int J Mol Sci 2020; 21:E3056. [PMID: 32357514 PMCID: PMC7246787 DOI: 10.3390/ijms21093056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Plant cells are frequently challenged with a wide range of adverse environmental conditions that restrict plant growth and limit the productivity of agricultural crops. Rapid development of nanotechnology and unsystematic discharge of metal containing nanoparticles (NPs) into the environment pose a serious threat to the ecological receptors including plants. Engineered nanoparticles are synthesized by physical, chemical, biological, or hybrid methods. In addition, volcanic eruption, mechanical grinding of earthquake-generating faults in Earth's crust, ocean spray, and ultrafine cosmic dust are the natural source of NPs in the atmosphere. Untying the nature of plant interactions with NPs is fundamental for assessing their uptake and distribution, as well as evaluating phytotoxicity. Modern mass spectrometry-based proteomic techniques allow precise identification of low abundant proteins, protein-protein interactions, and in-depth analyses of cellular signaling networks. The present review highlights current understanding of plant responses to NPs exploiting high-throughput proteomics techniques. Synthesis of NPs, their morphophysiological effects on crops, and applications of proteomic techniques, are discussed in details to comprehend the underlying mechanism of NPs stress acclimation.
Collapse
Affiliation(s)
- Zahed Hossain
- Department of Botany, University of Kalyani, West Bengal 741235, India
| | - Farhat Yasmeen
- Department of Botany, Women University, Swabi 23340, Pakistan
| | - Setsuko Komatsu
- Department of Environmental and Food Science, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
35
|
Pantidos N, Horsfall L. Understanding the role of SilE in the production of metal nanoparticles by Morganella psychrotolerans using MicroScale Thermophoresis. N Biotechnol 2020; 55:1-4. [PMID: 31539639 DOI: 10.1016/j.nbt.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Metal nanoparticle synthesis has been observed in several species of bacteria but the underlying mechanisms of synthesis are not well understood. Morganella psychrotolerans is a Gram-negative psychrophilic bacterium that is able to tolerate relatively high concentrations of Cu and Ag ions, and it is through the associated resistance pathways that this species is able to convert metal ions to nanoparticles. The purpose of this study was to investigate the mechanism of nanoparticle synthesis, looking at the interaction of the metal binding protein SilE with metal ions using MicroScale Thermophoresis (MST). MST assays give a rapid and accurate determination of binding affinities, allowing for the testing of SilE with a range of environmentally significant metal ions. The binding affinities (Kd) of Ag+ and Cu2+ were measured as 0.17 mM and 0.13 mM respectively, consistent with the observations of strong binding reported in the literature, whereas the binding to Al3+ and Co2+ was measured as Kd values of 4.19 mM and 1.35 mM respectively.
Collapse
Affiliation(s)
- Nikolaos Pantidos
- School of Biological Sciences and Centre for Science at Extreme Conditions, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Roger Land Building, Edinburgh, EH9 3FF, United Kingdom
| | - Louise Horsfall
- School of Biological Sciences and Centre for Science at Extreme Conditions, University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Roger Land Building, Edinburgh, EH9 3FF, United Kingdom.
| |
Collapse
|
36
|
Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsamhary K, Alshehri W, Alwakeel S, Alharbi S. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127233] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Nanoparticle-Mediated Chaetomium, Unique Multifunctional Bullets: What Do We Need for Real Applications in Agriculture? Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Nakhaeepour Z, Mashreghi M, Matin MM, NakhaeiPour A, Housaindokht MR. Multifunctional CuO nanoparticles with cytotoxic effects on KYSE30 esophageal cancer cells, antimicrobial and heavy metal sensing activities. Life Sci 2019; 234:116758. [PMID: 31421083 DOI: 10.1016/j.lfs.2019.116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
In this work, fluorescent copper oxide nanoparticles (CuO NPs) were green synthesized using viable cells, cell lysate supernatant (CLS) and protein extracts of luminescent Vibrio sp. VLC. Biogenic CuO NPs were then characterized by XRD, FTIR, UV/Vis spectroscopy, TEM, DLS, and PL spectroscopy. Results showed that CLS method was more efficient for CuO NPs production, therefore CuO NPs synthesized by this method from copper sulfate (CuO NPs-1) and/or copper nitrate (CuO NPs-2) were used for further studies. The crystallite size of polydispersed CuO NPs-1 and CuO NPs-2 were about 8.83 and 8.77 nm, respectively indicating their suitability for biological applications. Antibacterial activity of CuO NPs was determined using broth microdilution, well diffusion agar, and time-kill curves methods. Both CuO NP-1 and CuO NP-2 inhibited bacterial growth at the minimum inhibitory concentration (MIC) of 625 mg/L except St. mutants (MIC = 1250 mg/L). Emission of fluorescent light from the surface of NPs was increased when exposed to Cd2+, As2+ and Hg2+ ions but decreased by Pb2+ ions. Results showed that CuO NP-1 had anticancer properties against KYSE30 esophageal cancer cell line (IC50 = 13.96 mg/L) while no higher cytotoxic effects were observed on Human Dermal Fibroblasts (HDF) (IC50 = 48.88 mg/L).
Collapse
Affiliation(s)
- Zahra Nakhaeepour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostic and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostic and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Ali NakhaeiPour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | |
Collapse
|
39
|
Zaki SA, Eltarahony MM, Abd-El-Haleem DA. Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23661-23678. [PMID: 31201708 DOI: 10.1007/s11356-019-05479-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Disinfection of water and wastewater strongly contributes to solving the problem of water shortage in arid/semi-arid areas; cheap and ecofriendly approaches have to be used to meet water quality standards. In the present study, a green synthesis of iron nanoparticles (INPs) under aerobic and anaerobic conditions via nitrate reductases (NAP/NAR) enzymes produced by Proteus mirabilis strain 10B were employed for this target. The biosynthesized INPs were characterized; UV-Vis spectroscopy revealed surface plasmon resonance at 410 (aerobic) and 265 nm (anaerobic). XRD indicated crystalline magnetite ((MNPs) aerobically synthesized) and zerovalent INPs (ZVINPs anaerobically synthesized). EDX demonstrated strong iron signal with atomic percentages 73.3% (MNPs) and 61.7% (ZVINPs). TEM micrographs illustrated tiny, spherical, periplasmic MNPs (1.44-1.92 nm) and cytoplasmic ZVINPs with 11.7-60.8 nm. Zeta potential recorded - 31.8 mV (ZVINPs) and - 66.4 mV (MNPs) affirming colloidal stability. Moreover, the disinfection power of INPs was evaluated for standards organisms and real water (fresh, sea and salt mine) and wastewater (municipal, agricultural and industrial) samples. The results reported that INPs displayed higher antagonistic effect than iron precursor, 700 and 850 μg/mL of MNPs and ZVINPs, respectively, was sufficient to show a drastic algicidal effect on algal growth. Both types of INPs demonstrated obvious dose-dependent antibiofilm efficiency. Due to their smaller size, MNPs were more efficient than ZVINPs at the suppression of microbial growth in all examined water samples. Overall, MNPs showed superior antagonistic activity, which promotes their exploitation in enhancing water/wastewater quality.
Collapse
Affiliation(s)
- Sahar A Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Marwa Moustafa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Desouky A Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
40
|
Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:734-748. [PMID: 30408767 DOI: 10.1016/j.jenvman.2018.10.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 05/02/2023]
Abstract
The continuous increase in water pollution by various organic & inorganic contaminants has become a major issue of concern worldwide. Furthermore, the anthropogenic activities for the manufacturing of various products have boosted this problem manifold. To overcome this serious issue, nanotechnology has initiated to explore various proficient strategies to treat waste water in a more precise and accurate way with the support of various nanomaterials. In recent times, nanosized materials have proved their applicability to provide clean and affordable water treatment technologies. The exclusive features such as high surface area and mechanical properties, greater chemical reactivity, lower cost and energy, efficient regeneration for reuse allow the nanomaterials perfect for water remediation. But the conventional routes of synthesis of nanomaterials encompass the involvement of hazardous and volatile chemicals; therefore the use of nanomaterials further creates the secondary pollution. This issue has intrigued the scientists to develop biogenic pathways and procedures which are environmentally safer and inexpensive. It has led to the new trends that involve developing bio-inspired nano-scale adsorbents and catalysts for the removal and degradation of a wide range of water pollutants. Carbohydrates, proteins, polymers, flavonoids, alkaloids and several antioxidants obtained from plants, bacteria, fungi, and algae have proven their effectiveness as capping and stabilizing agents during manufacture of nanomaterials. Application of biogenic nanomaterials for waste water treatment is relatively newer but rapidly escalating area of research. In the present review, promises and challenges for the synthesis of various biogenic nanomaterials and their potential applications in waste water treatment and/or water purification have been discussed.
Collapse
Affiliation(s)
- Pavan Kumar Gautam
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India.
| |
Collapse
|
41
|
Extract of Ginkgo biloba leaves mediated biosynthesis of catalytically active and recyclable silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Complete Genome Sequence of Enterobacter xiangfangensis Pb204, a South African Strain Capable of Synthesizing Gold Nanoparticles. Microbiol Resour Announc 2018; 7:MRA01406-18. [PMID: 30533853 PMCID: PMC6284085 DOI: 10.1128/mra.01406-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 12/02/2022] Open
Abstract
Enterobacter xiangfangensis Pb204, isolated from acid mine decant from a uranium mine, produces a wide variety of gold nanoparticles (AuNPs), ranging from large triangular plates to small spherical AuNPs. The complete genome sequence of this isolate incorporates an integrative and conjugative element which may be pivotal to AuNP synthesis. Enterobacter xiangfangensis Pb204, isolated from acid mine decant from a uranium mine, produces a wide variety of gold nanoparticles (AuNPs), ranging from large triangular plates to small spherical AuNPs. The complete genome sequence of this isolate incorporates an integrative and conjugative element which may be pivotal to AuNP synthesis.
Collapse
|
43
|
Bacterial indoleacetic acid-induced synthesis of colloidal Ag 2O nanocrystals and their biological activities. Bioprocess Biosyst Eng 2018; 42:401-414. [PMID: 30448964 DOI: 10.1007/s00449-018-2044-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
The biosynthesis and biological activity of colloidal Ag2O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag2O biosynthesis using Xanthomonas sp. P5. The optimal conditions for Ag2O synthesis were 50 °C, pH 8, and 2.5 mM AgNO3. Using these conditions the yield of Ag2O obtained at 10 h was about five times higher than that obtained at 12 h under unoptimized conditions. Ag2O was characterized by FESEM-EDS, TEM, dynamic light scattering, XRD, and UV-Visible spectroscopy. Indoleacetic acid produced by the strain P2 was involved in the synthesis of Ag2O. Ag2O exhibited a broad antimicrobial spectrum against several human pathogens. Furthermore, Ag2O exhibited 1,1-diphenyl-2-picrylhydrazyl (IC50 = 25.1 µg/ml) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (IC50 = 16.8 µg/ml) radical scavenging activities, and inhibited collagenase (IC50 = 27.9 mg/ml). Cytotoxicity of Ag2O was tested in fibroblast cells and found to be non-toxic, demonstrating biocompatibility.
Collapse
|
44
|
Liu W, Wang Y, Jing C. Transcriptome analysis of silver, palladium, and selenium stresses in Pantoea sp. IMH. CHEMOSPHERE 2018; 208:50-58. [PMID: 29860144 DOI: 10.1016/j.chemosphere.2018.05.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal contamination is a significant environmental issue. Using bacteria for removal and reduction of heavy metals is an attractive alternative owing to its low-cost and eco-friendly properties. However, the mechanisms of resistance to and reduction of Ag(I), Pd(II), and Se(IV), especially in the same strain, remain unclear. Here, Pantoea sp. IMH was examed for its reduction of Ag(I), Pd(II), and Se(IV) to nanoparticles (NPs), and the molecular mechanism was investigated by transcriptome analysis. The results revealed that genes encoding binding, transport, catalytic activity, and metabolism were differentially expressed in cells exposed to Ag(I), Pd(II), and Se(IV). The same resistance mechanisms for all metals included multiple stress resistance protein BhsA and glutathione detoxification metabolism. However, zinc transport protein and sulfate metabolism played an important role in the resistance to cationic metals (Ag+ and Pd2+), while the oxalate transporter and arsenic resistance mechanisms were specifically involved in the resistance to and reduction of anion (SeO32-). In addition, Ag(I) was speculated to be reduced to AgNPs by glucose and cytochrome CpxP was involved in Pd(II) reduction. Our results provided new clues on the mechanisms of resistance to and reduction of Ag(I), Pd(II), and Se(IV).
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Eltarahony M, Zaki S, ElKady M, Abd-El-Haleem D. Biosynthesis, Characterization of Some Combined Nanoparticles, and Its Biocide Potency against a Broad Spectrum of Pathogens. JOURNAL OF NANOMATERIALS 2018; 2018:1-16. [DOI: 10.1155/2018/5263814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The development of environmentally benign procedures for the synthesis of metallic nanoparticles (NPs) is a vital aspect in bionanotechnology applications for health care and the environment. This study describes the biosynthesis of Ag, Co, Ni, and Zn NPs by employing nanobiofactory Proteus mirabilis strain 10B. The physicochemical characterization UV-visible spectroscopy, scanning electron microscopy-energy-dispersive X-ray microanalysis (EDX), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS) technique including ζ potential, and polydispersity index (PDI) confirmed the formation of pure, stable monodisperse quasi-spherical oxide NPs of corresponding metals. The antimicrobial activity of biofabricated NPs was assessed against Gram-negative and Gram-positive bacteria, biofilm, yeast, mold, and algae via a well diffusion method. The results displayed significant antagonistic activity in comparison to their bulk and commercial antibiotics. Interestingly, the combined NPs exhibited promising synergistic biocide efficiency against examined pathogens which encourages their applications in adjuvant therapy and water/wastewater purification for controlling multiple drug-resistant microorganisms. To the best of our knowledge, no previous study reported the synthesis of semiconductor NPs by Proteus mirabilis and the biocide potency of combined NPs against a broad spectrum of pathogens not reported previously.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Borg El Arab, Alexandria, Egypt
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Borg El Arab, Alexandria, Egypt
| | - Marwa ElKady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University for Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Fabrication Technology Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Borg El Arab, Alexandria, Egypt
| |
Collapse
|
46
|
Ghosh S. Copper and palladium nanostructures: a bacteriogenic approach. Appl Microbiol Biotechnol 2018; 102:7693-7701. [PMID: 29998411 DOI: 10.1007/s00253-018-9180-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 01/25/2023]
Abstract
Copper nanoparticles (CuNPs) and palladium nanoparticles (PdNPs) have attracted wide attention owing to their multifaceted utility in catalysis, sensors, and biomedical applications. Their therapeutic spectrum includes anticancer, antiviral, antibacterial, antifungal, antidiabetic, antioxidant potential which rationalizes the exploration of diverse physical, chemical, and biological routes for fabrication. In this article, we focused on bacterium-assisted design of nanostructured copper and palladium for applications in therapy against multidrug-resistant pathogens, dehalogenation of diatrizoate, Heck coupling of iodobenzene, polymer electric membrane fuel cell, metal recovery, and electronic waste management. Further, hypothesis behind microbial synthesis of PdNPs in E. coli containing [NiFe] hydrogenase Hyd-1 is discussed. Similarly, detailed mechanism of synthesis and stabilization in Cyanobacteria is also documented. Both CuNPs and PdNPs act as potent chemotherapeutic agents that can further be enhanced by conjugation with drugs and/or fluorophores and ligands for simultaneous diagnosis and targeted drug delivery to the cancer site or infection. These bacteriogenic nanoparticles can be used in sensors and pollution control.
Collapse
Affiliation(s)
- Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.
| |
Collapse
|
47
|
Amelia TSM, Amirul AAA, Saidin J, Bhubalan K. Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials. Trop Life Sci Res 2018; 29:187-199. [PMID: 30112149 PMCID: PMC6072720 DOI: 10.21315/tlsr2018.29.2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Jasnizat Saidin
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
48
|
Singh AV, Jahnke T, Kishore V, Park BW, Batuwangala M, Bill J, Sitti M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater 2018; 71:61-71. [PMID: 29499399 DOI: 10.1016/j.actbio.2018.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). STATEMENT OF SIGNIFICANCE Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Timotheus Jahnke
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Vimal Kishore
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Madu Batuwangala
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
49
|
Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Kónya Z, Tóth-Szeles E, Szűcs R, Lagzi I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 2018; 8:3943. [PMID: 29500365 PMCID: PMC5834445 DOI: 10.1038/s41598-018-22112-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 02/08/2023] Open
Abstract
Alternative methods, including green synthetic approaches for the preparation of various types of nanoparticles are important to maintain sustainable development. Extracellular or intracellular extracts of fungi are perfect candidates for the synthesis of metal nanoparticles due to the scalability and cost efficiency of fungal growth even on industrial scale. There are several methods and techniques that use fungi-originated fractions for synthesis of gold nanoparticles. However, there is less knowledge about the drawbacks and limitations of these techniques. Additionally, identification of components that play key roles in the synthesis is challenging. Here we show and compare the results of three different approaches for the synthesis of gold nanoparticles using either the extracellular fraction, the autolysate of the fungi or the intracellular fraction of 29 thermophilic fungi. We observed the formation of nanoparticles with different sizes (ranging between 6 nm and 40 nm) and size distributions (with standard deviations ranging between 30% and 70%) depending on the fungi strain and experimental conditions. We found by using ultracentrifugal filtration technique that the size of reducing agents is less than 3 kDa and the size of molecules that can efficiently stabilize nanoparticles is greater than 3 kDa.
Collapse
Affiliation(s)
| | | | | | | | - Zsolt Fogarassy
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary
| | - György Sáfrán
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Budapest, Hungary
| | - Tamás Varga
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Szeged, Hungary
| | - Eszter Tóth-Szeles
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Rózsa Szűcs
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
- MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, H-1111, Szent Gellért tér 4, Budapest, Hungary
| | - István Lagzi
- Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary.
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
50
|
Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G, Gianolio D, Haigh SJ, Pattrick RAD, Turner NJ, Lloyd JR. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14. [PMID: 29359400 DOI: 10.1002/smll.201703145] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/23/2017] [Indexed: 05/20/2023]
Abstract
Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.
Collapse
Affiliation(s)
- Richard L Kimber
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Edward A Lewis
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Kurt Smith
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Heath Bagshaw
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Toby Starborg
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Nimisha Joshi
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Adriana I Figueroa
- Magnetic Spectroscopy Group, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Gerrit van der Laan
- Magnetic Spectroscopy Group, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | | | | | - Sarah J Haigh
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Richard A D Pattrick
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|