1
|
Sun QY, He HZ, Zhou Y, Dai YP, Shang P, Jiang XF. Photocatalytic Hydroxylation and Oxidative Coupling Reactions Mediated by Multinuclear Au(I) Supramolecular Clusters. Angew Chem Int Ed Engl 2025; 64:e202420499. [PMID: 39715710 DOI: 10.1002/anie.202420499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Polynuclear Au(I) cluster photocatalysts, known for their high activity and stability, hold substantial potential in organic synthetic chemistry. This study synthesized two Au(I) supramolecular cluster catalysts with different nuclearities: a tetranuclear cluster, C1 ([(dppmAu2)2L1] • PF6 -), and a hexadecanuclear cluster, C2 [(dppmAu2)6(Au4)(L1)4] • 4PF6 -, through a multicomponent stepwise self-assembly approach. Both cluster structures feature aurophilicity interaction motifs that endow them with exceptional photocatalytic performance, exhibiting optical band gaps of 2.27 eV and 2.41 eV, respectively. Upon photoexcitation, these clusters efficiently generate reactive oxygen species, significantly enhancing their photocatalytic efficacy for the oxidative hydroxylation of phenylboronic acids and oxidative coupling of benzylamines under mild conditions. Catalytic efficiencies exceeding 90 % were achieved. Turnover frequencies for C2 and C1 were measured at 52.045 h-1 and 6.030 h-1, respectively, representing the highest efficiencies reported for photocatalysts to date. Compared to C1, C2 exhibited superior photocatalytic activity, attributed to its higher photoelectric sensitivity and greater exposure of active metal sites. Using a combination of experimental data and density functional theory calculations, the plausible mechanisms were proposed for two photocatalytic reactions. This study demonstrates that the use of multicomponent cooperative self-assembly strategy to synthesize high-nuclearity Au(I) clusters offers innovative pathways for the development of efficient, green, light-driven organic synthesis.
Collapse
Affiliation(s)
- Qing-Ya Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Hui-Zhen He
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ying Zhou
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu-Peng Dai
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ping Shang
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, Hubei, 445000, P. R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
2
|
Kumar S, Agarwal K, Sanyam, Mondal A, Gupta I. Harnessing Solar Power for Oxidation of Organic Compounds by Re(I)Dipyrrinato Complexes. Chem Asian J 2024; 19:e202400680. [PMID: 38961687 DOI: 10.1002/asia.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Metal dipyrrinato complexes of 4d and 5d metals have distinctive features such as high absorption coefficients in the visible section and room temperature phosphorescence in the red region. This work demonstrates the light-assisted oxidation of organic compounds employing rhenium(I)dipyrrinato complexes as catalysts. The heavy atom effect in rhenium(I)dipyrrinato complexes leads to the formation of long-lived triplet excited states, and these complexes can generate singlet oxygen in excellent yields (up to 84 %). A method was developed for photocatalytic aerobic oxidation of sulfides and amines using only 0.05 mol % and 0.025 mol % of the rhenium(I)dipyrrinato complexes, respectively. The method is efficient, and within 2 h, a variety of substrates were oxidized to produce sulfoxides and imines in high yields (up to 97 %). Rhenium(I)dipyrrinato complexes work very well both in visible light and sunlight, making them promising candidates for photocatalytic applications.
Collapse
Affiliation(s)
- Shekhar Kumar
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar Gujarat, 382355, India
| | - Kritika Agarwal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar Gujarat, 382355, India
| | - Sanyam
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar Gujarat, 382355, India
| | - Anirban Mondal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar Gujarat, 382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar Gujarat, 382355, India
| |
Collapse
|
3
|
Fukuzumi S, Lee YM, Nam W. Functional molecular models of photosynthesis. iScience 2024; 27:110694. [PMID: 39286498 PMCID: PMC11404225 DOI: 10.1016/j.isci.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This perspective focuses on functional models of photosynthesis to achieve molecular photocatalytic systems that mimic photosystems I and II (PSI and PSII). A long-lived and high-energy electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes) has been attained as a simple and useful model of the photosynthetic reaction center. Acr+-Mes has been used as an effective photoredox catalyst for photocatalytic hydrogen evolution and regioselective reduction of NAD(P)+ from plastoquinone analogs as a molecular functional model of PSI. A functional molecular model system to mimic the function of PSII has also been developed to oxidize water by plastoquinone analogs to produce O2 and plastoquinol analogs. The PSI molecular models have finally been integrated with the PSII molecular models to achieve production of a solar fuel (hydrogen) and NAD(P)H and its analogs from water by use of solar energy as a molecular artificial photosynthesis.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Research Institute for Basic Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
4
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
5
|
Chauhan C, Tanuj, Kumar R, Kumar J, Sharma S, Benmansour S, Kumar S. Synthesis, structural characterization, DFT and molecular dynamics simulations of dinuclear (μ-hydroxo)-bridged triethanolamine copper(II) complexes: efficient candidates towards visible light-mediated photo-Fenton degradation of organic dyes. Dalton Trans 2024. [PMID: 39087793 DOI: 10.1039/d4dt01463d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multinuclear (di/tri) copper(II) complexes bridged through hydroxyl groups are very interesting coordination complexes owing to their potential applications in various fields. In this work, three novel dinuclear (μ-hydroxo)-bridged copper(II) complexes in the crystal form, namely, [Cu2(3,5-DIFLB)2(H2tea)2](H2O) (1), [Cu2(4-ClB)2(H2tea)2](H2O) (2), and [Cu2(4-ETHB)2(H2tea)2](H2O)2 (3) (where DIFLB = difluorobenzoate, CLB = chlorobenzoate, ETHB = ethoxybenzoate, and H3tea = triethanolamine), were isolated at room temperature using methanol and water in a 4 : 1 v/v ratio as a solvent. Furthermore, all three complexes (1-3) were characterised using spectroscopic (UV-vis, DRS, and FT-IR), electrochemical (CV) and single-crystal X-ray diffraction techniques. Structural insights gained by packing analysis revealed the role of steric constraints of substituents and various non-covalent interactions in lattice stabilization, which were indeed supported by theoretical and molecular electrostatic potential illustrations. Hirshfeld surface analysis provided quantitative verification about various non-covalent interactions (interatomic contacts) involved in the packing of molecules. Interestingly, as a potential application, complexes 1-3 all exhibited remarkable visible light-mediated photo-Fenton degradation of approximately 98% for 50 ppm concentration of organic dyes (fuchsin basic (FB) and methyl orange (MO)) in 90 minutes with the optimized conditions of 1 mg mL-1 of dye solution. In all the cases, dye degradation by these materials was ascribed to the symbiotic relations among the molecular structures of complexes 1-3, which were endowed with various electron-withdrawing and electron-releasing substituents and ionic strength, with respect to the structure, shape and interacting patterns of dye molecules. The adsorption mechanism indicates that various weak interactions between the donor and acceptor groups of complexes and dyes, such as electrostatic, hydrogen bonding, and direct coordination to metal sites, play a crucial role, which is confirmed by molecular dynamics (MD) simulations. Theoretical studies by DFT-based descriptors, molecular electrostatic potentials, and band gaps provided deep insights into various electronic and reactivity parameters. For subsequent processes of dye degradation, complexes 1-3 were stable and recoverable. The successful integration of experimental and theoretical approaches sheds light on copper-based dinuclear stable coordination complexes, showcasing a significant step towards the development of novel heterogeneous photo-Fenton catalysts.
Collapse
Affiliation(s)
- Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Tanuj
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| | - Jitendra Kumar
- Department of Chemistry, MLPK, College, Balrampur, UP, India
| | - Subhash Sharma
- CONAHCyT-Centro de Nanociencias y Nanotecnología. Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada AP14, Ensenada, 22860, B.C, Mexico
| | - Samia Benmansour
- Departamento de Química Inorgánica, Edificio F Grupo M4 (Materiales moleculares Multifuncionales y Modulables) C/Doctor Moliner, 50 46100-Burjassot, Spain.
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India.
| |
Collapse
|
6
|
Sawada N, Yu Z, Takinami H, Inoue D, Ghosh T, Sasaki N, Nokami T, Taniguchi T, Abe M, Koike T. Organophotocatalytic access to C-glycosides: multicomponent coupling reactions using glycosyl bromides. Chem Commun (Camb) 2024. [PMID: 39034774 DOI: 10.1039/d4cc02833c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Photochemical multi-component coupling reactions initiated by the activation of glycosyl bromides in the presence of 1,4-bis(diphenylamino)benzene (BDB) as an organic photocatalyst were developed. C-glycosides accompanied by olefin (di)functionalization were obtained. This method allows us to access various C-glycosides with alkene, carbonyl, alcohol, ether, and amide functionalities.
Collapse
Affiliation(s)
- Naoya Sawada
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Ziyi Yu
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Hiryu Takinami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Daichi Inoue
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Titli Ghosh
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Tsuyoshi Taniguchi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba city, Ibaraki, 305-8565, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-8526, Japan
| | - Takashi Koike
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, E24-315, 4-1 Gakuendai, Miyashiro-Machi, Minamisaitama-Gun, 345-8501 Saitama, Japan
| |
Collapse
|
7
|
Kawasaki T, Tosaki T, Miki S, Takada T, Murakami M, Ishida N. Dehydrogenative Coupling of Alkylamines with Primary Alcohols Forming α-Amino Ketones. J Am Chem Soc 2024; 146:17566-17572. [PMID: 38885646 DOI: 10.1021/jacs.4c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Acceptorless dehydrogenative coupling reactions between C-H bonds offer straightforward and atom-economical methods connecting readily available materials while liberating gaseous hydrogen as the sole byproduct. Despite the growing interest in such transformations, their realization still poses a significant challenge. Here we report a photoinduced dehydrogenative coupling reaction of alkylamines with primary alcohols. C-H bonds adjacent to nitrogen and oxygen are site-selectively cleaved, and a C-C bond is created between the carbon atoms in a cross-selective manner to produce α-amino ketones. Diverse polar functionalities such as esters, amides, and carboxylic acids survived, demonstrating the broad applicability of the present method.
Collapse
Affiliation(s)
- Tairin Kawasaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tomohiro Tosaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shousuke Miki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Tsuyoshi Takada
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Furuta M, Arii S, Umeda H, Matsukawa R, Shizu K, Kaji H, Kawashima SA, Hori Y, Tomita T, Sohma Y, Mitsunuma H, Kanai M. Leuco Ethyl Violet as Self-Activating Prodrug Photocatalyst for In Vivo Amyloid-Selective Oxygenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401346. [PMID: 38689504 PMCID: PMC11234409 DOI: 10.1002/advs.202401346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Aberrant aggregates of amyloid-β (Aβ) and tau protein (tau), called amyloid, are related to the etiology of Alzheimer disease (AD). Reducing amyloid levels in AD patients is a potentially effective approach to the treatment of AD. The selective degradation of amyloids via small molecule-catalyzed photooxygenation in vivo is a leading approach; however, moderate catalyst activity and the side effects of scalp injury are problematic in prior studies using AD model mice. Here, leuco ethyl violet (LEV) is identified as a highly active, amyloid-selective, and blood-brain barrier (BBB)-permeable photooxygenation catalyst that circumvents all of these problems. LEV is a redox-sensitive, self-activating prodrug catalyst; self-oxidation of LEV through a hydrogen atom transfer process under photoirradiation produces catalytically active ethyl violet (EV) in the presence of amyloid. LEV effectively oxygenates human Aβ and tau, suggesting the feasibility for applications in humans. Furthermore, a concept of using a hydrogen atom as a caging group of a reactive catalyst functional in vivo is postulated. The minimal size of the hydrogen caging group is especially useful for catalyst delivery to the brain through BBB.
Collapse
Affiliation(s)
- Masahiro Furuta
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Suguru Arii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Umeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsukawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukiko Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Youhei Sohma
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Fay TP, Limmer DT. Unraveling the mechanisms of triplet state formation in a heavy-atom free photosensitizer. Chem Sci 2024; 15:6726-6737. [PMID: 38725521 PMCID: PMC11077524 DOI: 10.1039/d4sc01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Triplet excited state generation plays a pivotal role in photosensitizers, however the reliance on transition metals and heavy atoms can limit the utility of these systems. In this study, we demonstrate that an interplay of competing quantum effects controls the high triplet quantum yield in a prototypical boron dipyrromethene-anthracene (BD-An) donor-acceptor dyad photosensitizer, which is only captured by an accurate treatment of both inner and outer sphere reorganization energies. Our ab initio-derived model provides excellent agreement with experimentally measured spectra, triplet yields and excited state kinetic data, including the triplet lifetime. We find that rapid triplet state formation occurs primarily via high-energy triplet states through both spin-orbit coupled charge transfer and El-Sayed's rule breaking intersystem crossing, rather than direct spin-orbit coupled charge transfer to the lowest lying triplet state. Our calculations also reveal that competing effects of nuclear tunneling, electronic state recrossing, and electronic polarizability dictate the rate of non-productive ground state recombination. This study sheds light on the quantum effects driving efficient triplet formation in the BD-An system, and offers a promising simulation methodology for diverse photochemical systems.
Collapse
Affiliation(s)
- Thomas P Fay
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - David T Limmer
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Kavli Energy Nanoscience Institute Berkeley CA 94720 USA
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Material Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
10
|
Gao K, Cheng Y, Zhang Z, Huo X, Guo C, Fu W, Xu J, Hou GL, Shang X, Zhang M. Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202319488. [PMID: 38305830 DOI: 10.1002/anie.202319488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Ying Cheng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xingda Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
11
|
Sau SC, Schmitz M, Burdenski C, Baumert M, Antoni PW, Kerzig C, Hansmann MM. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. J Am Chem Soc 2024; 146:3416-3426. [PMID: 38266168 DOI: 10.1021/jacs.3c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.
Collapse
Affiliation(s)
- Samaresh C Sau
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Chris Burdenski
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Marcel Baumert
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| |
Collapse
|
12
|
Wu Y, Cao H, Bakirov MM, Sukhanov AA, Li J, Liao S, Xiao X, Zhao J, Li MD, Kandrashkin YE. A Rational Way to Control the Triplet State Wave Function Confinement of Organic Chromophores: Effect of the Connection Sites and Spin Density Distribution-Guided Molecular Structure Design Principles in Bodipy Dimers. J Phys Chem Lett 2024; 15:959-968. [PMID: 38252167 DOI: 10.1021/acs.jpclett.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 μs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.
Collapse
Affiliation(s)
- Yanran Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huaiman Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Marcel M Bakirov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| |
Collapse
|
13
|
Chen X, Rehmat N, Kurganskii IV, Maity P, Elmali A, Zhao J, Karatay A, Mohammed OF, Fedin MV. Efficient Spin-Orbit Charge-Transfer Intersystem Crossing and Slow Intramolecular Triplet-Triplet Energy Transfer in Bodipy-Perylenebisimide Compact Dyads and Triads. Chemistry 2023; 29:e202302137. [PMID: 37553294 DOI: 10.1002/chem.202302137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 μs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 μs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ivan V Kurganskii
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matvey V Fedin
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
14
|
Žurauskas J, Boháčová S, Wu S, Butera V, Schmid S, Domański M, Slanina T, Barham JP. Electron-Poor Acridones and Acridiniums as Super Photooxidants in Molecular Photoelectrochemistry by Unusual Mechanisms. Angew Chem Int Ed Engl 2023; 62:e202307550. [PMID: 37584300 DOI: 10.1002/anie.202307550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Electron-deficient acridones and in situ generated acridinium salts are reported as potent, closed-shell photooxidants that undergo surprising mechanisms. When bridging acyclic triarylamine catalysts with a carbonyl group (acridones), this completely diverts their behavior away from open-shell, radical cationic, 'beyond diffusion' photocatalysis to closed-shell, neutral, diffusion-controlled photocatalysis. Brønsted acid activation of acridones dramatically increases excited state oxidation power (by +0.8 V). Upon reduction of protonated acridones, they transform to electron-deficient acridinium salts as even more potent photooxidants (*E1/2 =+2.56-3.05 V vs SCE). These oxidize even electron-deficient arenes where conventional acridinium salt photooxidants have thusfar been limited to electron-rich arenes. Surprisingly, upon photoexcitation these electron-deficient acridinium salts appear to undergo two electron reductive quenching to form acridinide anions, spectroscopically-detected as their protonated forms. This new behaviour is partly enabled by a catalyst preassembly with the arene, and contrasts to conventional SET reductive quenching of acridinium salts. Critically, this study illustrates how redox active chromophoric molecules initially considered photocatalysts can transform during the reaction to catalytically active species with completely different redox and spectroscopic properties.
Collapse
Affiliation(s)
- Jonas Žurauskas
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Shangze Wu
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Valeria Butera
- Central European Institute of Technology, CEITEC, 61200 Brno (Czech Republic), Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, 90128, Palermo, Italy
| | - Simon Schmid
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Michał Domański
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Joshua P Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
15
|
Li W, Gong Q, Wu Q, Guo L, Guo X, Guo D, Jiao L, Hao E. Pictet-Spengler synthesis of twisted quinoline-fused BODIPYs as heavy-atom-free photosensitizers. Chem Commun (Camb) 2023; 59:12330-12333. [PMID: 37753618 DOI: 10.1039/d3cc04460b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Singly and doubly quinoline-fused BODIPYs were effectively synthesized through a reaction sequence consisting of the reduction of nitrophenyl-substituted BODIPYs and subsequent Pictet-Spengler cyclization. The combination of the BODIPY core and fused quinoline rings imposed significantly twisted conformations in the quinoline-fused BODIPYs (around 20.0° deviation from coplanarity obtained from X-ray crystal structure analysis). These twisted BODIPYs showed significantly reduced LUMO, redshifted absorption/emission bands, high molar extinction coefficients and satisfactory reactive oxygen species generation efficiency up to 0.56, indicating potential use as heavy-atom-free photosensitizers.
Collapse
Affiliation(s)
- Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Qingbao Gong
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Luying Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Dianjun Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
16
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
17
|
Koike T. Fluoroalkyl Sulfoximines for Versatile Photocatalytic Radical Fluoroalkylations. CHEM REC 2023; 23:e202300032. [PMID: 36942940 DOI: 10.1002/tcr.202300032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkyl sulfoximines, which serve as electron-accepting fluoroalkyl radical sources, are easy-to-handle, solid, and bench-stable chemicals. Fluoroalkyl radicals can be generated from sulfoximine reagents using strong one-electron injectors, such as a highly reducing photoredox catalyst in the excited state. Our group has developed photocatalytic radical di- and mono-fluoromethylation and α-monofluoroalkylation of olefins with the corresponding fluoroalkyl sulfoximines. In this personal account, appropriate combinations of fluoroalkyl sulfoximines and photoredox catalysts, leading to successful radical fluoroalkylation, have been discussed.
Collapse
Affiliation(s)
- Takashi Koike
- Department of Applied Chemistry, Faculty of Fundamental Engineering Nippon Institute of Technology E24-315, 4-1 Gakuendai, Miyashiro-Machi, Minamisaitama-gun, Saitama, 345-8501, Japan
| |
Collapse
|
18
|
Ortiz-Rodríguez LA, Fang YG, Niogret G, Hadidi K, Hoehn SJ, Folkwein HJ, Jockusch S, Tor Y, Cui G, Levi L, Crespo-Hernández CE. Thieno[3,4- d]pyrimidin-4(3 H)-thione: an effective, oxygenation independent, heavy-atom-free photosensitizer for cancer cells. Chem Sci 2023; 14:8831-8841. [PMID: 37621444 PMCID: PMC10445467 DOI: 10.1039/d3sc02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
All-organic, heavy-atom-free photosensitizers based on thionation of nucleobases are receiving increased attention because they are easy to make, noncytotoxic, work both in the presence and absence of molecular oxygen, and can be readily incorporated into DNA and RNA. In this contribution, the DNA and RNA fluorescent probe, thieno[3,4-d]pyrimidin-4(1H)-one, has been thionated to develop thieno[3,4-d]pyrimidin-4(3H)-thione, which is nonfluorescent and absorbs near-visible radiation with about 60% higher efficiency. Steady-state absorption and emission spectra are combined with transient absorption spectroscopy and CASPT2 calculations to delineate the electronic relaxation mechanisms of both pyrimidine derivatives in aqueous and acetonitrile solutions. It is demonstrated that thieno[3,4-d]pyrimidin-4(3H)-thione efficiently populates the long-lived and reactive triplet state generating singlet oxygen with a quantum yield of about 80% independent of solvent. It is further shown that thieno[3,4-d]pyrimidin-4(3H)-thione exhibits high photodynamic efficacy against monolayer melanoma cells and cervical cancer cells both under normoxic and hypoxic conditions. Our combined spectroscopic, computational, and in vitro data demonstrate the excellent potential of thieno[3,4-d]pyrimidin-4(1H)-thione as a heavy-atom-free PDT agent and paves the way for further development of photosensitizers based on the thionation of thieno[3,4-d]pyrimidine derivatives. Collectively, the experimental and computational results demonstrate that thieno[3,4-d]pyrimidine-4(3H)-thione stands out as the most promising thiobase photosensitizer developed to this date.
Collapse
Affiliation(s)
| | - Ye-Guang Fang
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Germain Niogret
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University Bowling Green Ohio 43403 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ganglong Cui
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Liraz Levi
- Celloram Inc Cleveland OH 44106 USA
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | | |
Collapse
|
19
|
Bertrams MS, Hermainski K, Mörsdorf JM, Ballmann J, Kerzig C. Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class. Chem Sci 2023; 14:8583-8591. [PMID: 37592982 PMCID: PMC10430750 DOI: 10.1039/d3sc01725g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Metal complex - arene dyads typically act as more potent triplet energy donors compared to their parent metal complexes, which is frequently exploited for increasing the efficiencies of energy transfer applications. Using unexplored dicationic phosphonium-bridged ladder stilbenes (P-X2+) as quenchers, we exclusively observed photoinduced electron transfer photochemistry with commercial organic photosensitizers and photoactive metal complexes. In contrast, the corresponding pyrene dyads of the tested ruthenium complexes with the very same metal complex units efficiently sensitize the P-X2+ triplets. The long-lived and comparatively redox-inert pyrene donor triplet in the dyads thus provides an efficient access to acceptor triplet states that are otherwise very tricky to obtain. This dyad-enabled control over the quenching pathway allowed us to explore the P-X2+ photochemistry in detail using laser flash photolysis. The P-X2+ triplet undergoes annihilation producing the corresponding excited singlet, which is an extremely strong oxidant (+2.3 V vs. NHE) as demonstrated by halide quenching experiments. This behavior was observed for three P2+ derivatives allowing us to add a novel basic structure to the very limited number of annihilators for sensitized triplet-triplet annihilation in neat water.
Collapse
Affiliation(s)
- Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Katharina Hermainski
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
20
|
Zhang X, Sukhanov AA, Liu X, Taddei M, Zhao J, Harriman A, Voronkova VK, Wan Y, Dick B, Di Donato M. Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing N, N, O, O-boron-chelated Bodipys. Chem Sci 2023; 14:5014-5027. [PMID: 37206394 PMCID: PMC10189861 DOI: 10.1039/d3sc00854a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Xi Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg D-93053 Regensburg Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM, Istituto di Chimica dei Complessi OrganoMetallici Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
21
|
Ren ZG, Yu WL, Zheng HX, Xu PF. PCET-Mediated Ring-Opening Alkenylation of Cycloalkanols via Dual Photoredox and Cobalt Catalysis. Org Lett 2023; 25:93-98. [PMID: 36546834 DOI: 10.1021/acs.orglett.2c03894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of molecular skeletons and modification of molecules using widely available and easily prepared alcohols as radical precursors for coupling reactions are significant and challenging subjects. We herein report a straightforward strategy for the dehydrogenative ring-opening alkenylation of cycloalkanols with alkenes by combining a proton-coupled electron transfer strategy and a dual photoredox and cobalt catalysis system. With this approach, a series of distally unsaturated ketones were obtained in 17-83% yields with high E selectivity.
Collapse
Affiliation(s)
- Zi-Gang Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Modern Photocatalytic Strategies in Natural Product Synthesis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 120:1-104. [PMID: 36587307 DOI: 10.1007/978-3-031-11783-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Modern photocatalysis has proven its generality for the development and functionalization of native functionalities. To date, the field has found broad applications in diverse research areas, including the total synthesis of natural products. This contribution covers recent reports of total syntheses involving as a key step a photocatalytic reaction. Among the selected examples, the photocatalytic processes proceed in a highly chemo-, regio-, and stereoselective manner, thereby allowing the rapid access to structurally complex architectures under light-driven conditions.
Collapse
|
23
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
24
|
Patra K, Bhattacherya A, Li C, Bera JK, Soo HS. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamaless Patra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chenfei Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
25
|
Han W, Xiang W, Shi J, Ji Y. Recent Advances in the Heterogeneous Photocatalytic Hydroxylation of Benzene to Phenol. Molecules 2022; 27:molecules27175457. [PMID: 36080224 PMCID: PMC9457663 DOI: 10.3390/molecules27175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important chemical material that is widely used in industry. Currently, phenol is dominantly produced by the well−known three−step cumene process, which suffers from severe drawbacks. Therefore, developing a green, sustainable, and economical strategy for the production of phenol directly from benzene is urgently needed. In recent years, the photocatalytic hydroxylation of benzene to phenol, which is economically feasible and could be performed under mild conditions, has attracted more attention, and development of highly efficient photocatalyst would be a key issue in this field. In this review, we systematically introduce the recent achievements of photocatalytic hydroxylation of benzene to phenol from 2015 to mid−2022, and various heterogeneous photocatalysts are comprehensively reviewed, including semiconductors, polyoxometalates (POMs), graphitic carbon nitride (g−C3N4), metal–organic frameworks (MOFs), carbon materials, and some other types of photocatalysts. Much effort is focused on the physical and chemical approaches for modification of these photocatalysts. The challenges and future promising directions for further enhancing the catalytic performances in photocatalytic hydroxylation of benzene are discussed in the end.
Collapse
Affiliation(s)
- Weiwei Han
- Correspondence: ; Tel.: +86-29-8838-2703
| | | | | | | |
Collapse
|
26
|
Zhilyaev K, Lipilin D, Kosobokov M, Samigullina A, Dilman AD. Preparation and Evaluation of Sterically Hindered Acridine Photocatalysts. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kirill Zhilyaev
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | - Dmitry Lipilin
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
27
|
Park G, Karimi M, Liu W, Gabbaï FP. Green‐Light‐Driven Reductive Elimination of Chlorine from a Carbene‐Xanthylium Gold(III) Complex. Angew Chem Int Ed Engl 2022; 61:e202206265. [DOI: 10.1002/anie.202206265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gyeongjin Park
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | | | - Wei‐Chun Liu
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - François P. Gabbaï
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
28
|
Pavanello A, Miranda MA, Marin ML. Organic photoredox catalysts for wastewater remediation: Beyond the established advanced oxidation processes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Zhang X, Liu X, Taddei M, Bussotti L, Kurganskii I, Li M, Jiang X, Xing L, Ji S, Huo Y, Zhao J, Di Donato M, Wan Y, Zhao Z, Fedin MV. Red Light‐Emitting Thermally‐Activated Delayed Fluorescence of Naphthalimide‐Phenoxazine Electron Donor‐Acceptor Dyad: Time‐Resolved Optical and Magnetic Spectroscopic Studies. Chemistry 2022; 28:e202200510. [DOI: 10.1002/chem.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Xiao Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Ivan Kurganskii
- International Tomography Center, SB RAS, and Novosibirsk State University 630090 Novosibirsk Russia
| | - Minjie Li
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiao Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) School of Environmental Science and Technology Dalian University of Technology Dalian 116024 P. R. China
| | - Longjiang Xing
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yanping Huo
- Light Industry and Chemical Engineering College Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR via Madonna del Piano 10–12 50019 Sesto Fiorentino (FI) Italy
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Matvey V. Fedin
- International Tomography Center, SB RAS, and Novosibirsk State University 630090 Novosibirsk Russia
| |
Collapse
|
30
|
Manae MA, Hazra A. Quantum effects in photosensitization: the case of singlet oxygen generation by thiothymines. Phys Chem Chem Phys 2022; 24:13266-13274. [PMID: 35604080 DOI: 10.1039/d2cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosensitization is the indirect electronic excitation of a molecule with the aid of a photosensitizer and is a bimolecular nonradiative energy transfer. In this study, we have attempted to elucidate its mechanism, and we do this by calculating rate constants of photosensitization of oxygen by thiothymines (2-thiothymine, 4-thiothymine and 2,4 dithiothymine). The rate constants have been calculated using two approaches: (a) a classical limit of Fermi's Golden Rule (FGR), and (b) a time-dependent variant of FGR, where the treatment is purely quantum mechanical. The former approach has previously been developed for bimolecular systems and has been applied to the photosensitization reactions studied here. The latter approach, however, has so far only been used for unimolecular reactions, and in this work, we describe how it can be adapted for bimolecular reactions. Experimentally, all three thiothymines are known to have significant singlet oxygen yields, which are indicative of similar rates. Rate constants calculated using the time-dependent variant of FGR are similar across all three thiothymines. While the classical approximation gives reasonable rate constants for 2-thiothymine, it severely underestimates them for 4-thiothymine and 2,4 dithiothymine, by several orders of magnitude. This work indicates the importance of quantum effects in driving photosensitization.
Collapse
Affiliation(s)
- Meghna A Manae
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
31
|
Zhao X, Boruah B, Chin KF, Đokić M, Modak JM, Soo HS. Upcycling to Sustainably Reuse Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100843. [PMID: 34240472 DOI: 10.1002/adma.202100843] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/23/2021] [Indexed: 06/13/2023]
Abstract
Plastics are now indispensable in daily lives. However, the pollution from plastics is also increasingly becoming a serious environmental issue. Recent years have seen more sustainable approaches and technologies, commonly known as upcycling, to transform plastics into value-added materials and chemical feedstocks. In this review, the latest research on upcycling is presented, with a greater focus on the use of renewable energy as well as the more selective methods to repurpose synthetic polymers. First, thermal upcycling approaches are briefly introduced, including the redeployment of plastics for construction uses, 3D printing precursors, and lightweight materials. Then, some of the latest novel strategies to deconstruct condensation polymers to monomers for repolymerization or introduce vulnerable linkers to make the plastics more degradable are discussed. Subsequently, the review will explore the breakthroughs in plastics upcycling by heterogeneous and homogeneous photocatalysis, as well as electrocatalysis, which transform plastics into more versatile fine chemicals and materials while simultaneously mitigating global climate change. In addition, some of the biotechnological advances in the discovery and engineering of microbes that can decompose plastics are also presented. Finally, the current challenges and outlook for future plastics upcycling are discussed to stimulate global cooperation in this field.
Collapse
Affiliation(s)
- Xin Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bhanupriya Boruah
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Department of Chemical Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Kek Foo Chin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Miloš Đokić
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jayant M Modak
- Department of Chemical Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Artificial Photosynthesis (Solar Fuels) Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
32
|
Park G, Karimi M, Liu WC, Gabbai FP. Green‐Light‐Driven Reductive Elimination of Chlorine from a Carbene‐Xanthylium Gold(III) Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Hong JE, Jung Y, Min D, Jang M, Kim S, Park J, Park Y. Visible-Light-Induced Organophotocatalytic Difunctionallization: Open-Air Hydroxysulfurization of Aryl Alkenes with Aryl Thiols. J Org Chem 2022; 87:7378-7391. [PMID: 35561230 DOI: 10.1021/acs.joc.2c00595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a regioselective visible-light-induced organophotoredox catalytic difunctionalization method to prepare β-hydroxysulfides using aryl alkenes and aryl thiols as substrates. The reaction provides a wide substrate scope of aryl alkenes (from simple styrene to complex bioactive compounds) and aryl thiols (from diverse heteroaromatic thiols to nonheteroaromatic thiols) (total 45 examples, up to 88% yield). Based on the combined experimental and computational studies, we demonstrate that in situ generated hydroperoxyl radicals from O2 in air react with benzylic radicals, which restrains the reaction between benzylic radicals and the acidic form of thiols in a classical thiol-ene radical reaction. We show that difunctionalization is possible due to the choice of bases, diluted substrate concentrations, increment in catalyst loading, and selection of suitable aryl thiols under aerobic conditions. Considering the biological importance of heteroaromatic thiols and the lack of methods to install them, our approach offers a platform to derive various β-hydroxysulfides that contain aromatic elements.
Collapse
Affiliation(s)
- Jee Eun Hong
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeonghun Jung
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Dahye Min
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Minji Jang
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Soomin Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| |
Collapse
|
34
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
35
|
Visible‐Light‐Promoted Synthesis of Arylthiopyrimidines through Oxidative Coupling of Pyrimidine Disulfides with Arylhydrazines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Cao YX, Zhu G, Li Y, Le Breton N, Gourlaouen C, Choua S, Boixel J, Jacquot de Rouville HP, Soulé JF. Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C-O Bond Cleavage. J Am Chem Soc 2022; 144:5902-5909. [PMID: 35316065 DOI: 10.1021/jacs.1c12961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced arylation of N-substituted acridinium salts has been developed and has exhibited a high functional group tolerance (e.g., halogen, nitrile, ketone, ester, and nitro). A broad range of well-decorated C9-arylated acridinium-based catalysts with fine-tuned photophysical and photochemical properties, namely, excited-state lifetimes and redox potentials have been synthetized in a one-step procedure. These functionalized acridinium salts were later evaluated in the photoredox-catalyzed fragmentation of 1,2-diol derivatives (lignin models). Among them, 2-bromophenyl substituted N-methyl acridinium has outperformed all photoredox catalysts, including commercial Fukuzumi's catalyst, for the selective CβO-Ar bond cleavage of diol monoarylethers to afford 1,2-diols in good yields.
Collapse
Affiliation(s)
- Yi-Xuan Cao
- Univ Rennes, CNRS, UMR 6226, F-3500 Rennes, France
| | - Gan Zhu
- Univ Rennes, CNRS, UMR 6226, F-3500 Rennes, France.,Department of Chemistry, Jinan University, 511443 Guangzhou, China
| | - Yiqun Li
- Department of Chemistry, Jinan University, 511443 Guangzhou, China
| | - Nolwenn Le Breton
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sylvie Choua
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
37
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angew Chem Int Ed Engl 2022; 61:e202107811. [PMID: 34478188 PMCID: PMC9303540 DOI: 10.1002/anie.202107811] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.
Collapse
Affiliation(s)
- Shangze Wu
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Jaspreet Kaur
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Tobias A. Karl
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Xianhai Tian
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
38
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shangze Wu
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Jaspreet Kaur
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Tobias A. Karl
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Xianhai Tian
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
39
|
Wang X, Gao Y, Chen Y, Sun H, Li C, Pang C, Gao Y, Zhang X, Cheng R, Xu H, Wang J. Transition Metal‐Free Aerobic Oxidation of Aryl Secondary and Primary Alcohols to Carbonyl Compounds in Open Air. ChemistrySelect 2022. [DOI: 10.1002/slct.202103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuerong Wang
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Yu Gao
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Ying Chen
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Huilin Sun
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Caicui Li
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Chaohai Pang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables Analysis and Test Center Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University Haikou 570228 China
| | - Xiaolin Zhang
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Ruijing Cheng
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Huanjun Xu
- School of Science Qiongtai Normal University Haikou 571127 China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University Haikou 570228 China
| | - Jinhui Wang
- School of Science Qiongtai Normal University Haikou 571127 China
- Department of Medicinal Chemistry and Natural Medicine Chemistry College of Pharmacy Harbin Medical University Harbin 150081 China
| |
Collapse
|
40
|
Matsuda M, Uchiyama M, Itabashi Y, Ohkubo K, Kamigaito M. Acridinium salts as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d1py01568k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acridinium salts with high excited-state oxidative power are employed as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations under visible light.
Collapse
Affiliation(s)
- Marina Matsuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
41
|
Mora-Rodríguez SE, Camacho-Ramírez A, Cervantes-González J, Vázquez MA, Cervantes-Jauregui JA, Feliciano A, Guerra-Contreras A, Lagunas-Rivera S. Organic dyes supported on silicon-based materials: synthesis and applications as photocatalysts. Org Chem Front 2022. [DOI: 10.1039/d1qo01751a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most important advance in photocatalysis in the last decade has been the synthesis and application of organic compounds to promote this process.
Collapse
Affiliation(s)
- Salma E. Mora-Rodríguez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Abygail Camacho-Ramírez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Javier Cervantes-González
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Miguel A. Vázquez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Jorge A. Cervantes-Jauregui
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Alberto Feliciano
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Antonio Guerra-Contreras
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Selene Lagunas-Rivera
- Cátedra-CONACyT, Departamento de Química, Universidad de Guanajuato, DCNyE, Noria Alta s/n, Guanajuato, Gto., 36050, Mexico
| |
Collapse
|
42
|
Li S, Tian D, Zhao X, Yin Y, Lee R, Jiang Z. Visible light-driven copper( ii) catalyzed aerobic oxidative cleavage of carbon–carbon bonds: a combined experimental and theoretical study. Org Chem Front 2022. [DOI: 10.1039/d2qo01264b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By switching on visible blue light, aerobic oxidation of various substrates, such as α-substituted, β-substituted and α-halo styrenes, was first realized with a copper(ii) catalyst.
Collapse
Affiliation(s)
- Sanliang Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Dong Tian
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
43
|
Ma T, Hua J, Bian M, Qin H, Lin X, Yang X, Liu C, Yang Z, Fang Z, Guo K. Visible light-promoted aerobic oxidative cleavage and cyclization of olefins to access 3-hydroxy-isoindolinones. Org Chem Front 2022. [DOI: 10.1039/d1qo01087e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environmentally friendly synthetic approach is described from 2-vinylbenzamide to 3-hydroxy-isoindolinones through visible light-promoted transformations via iron/disulfide catalysis and molecular oxygen oxidation.
Collapse
Affiliation(s)
- Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu industrial technology research institute, Nanjing 210031, P.R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210003, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
44
|
Wang YH, Yang Q, Walsh PJ, Schelter EJ. Light-mediated aerobic oxidation of C(sp 3)–H bonds by a Ce( iv) hexachloride complex. Org Chem Front 2022. [DOI: 10.1039/d2qo00362g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photochemical C(sp3)–H oxygenation of arene and alkane substrates (including methane) catalyzed by [NEt4]2[CeIVCl6] under mild conditions (1 atm, 25 °C) is described.
Collapse
Affiliation(s)
- Yu-Heng Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qiaomu Yang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Cao H, Kurganskii I, Pang J, Duan R, Zhao J, Fedin M, Li MD, Li C. Charge Transfer, Intersystem Crossing, and Electron Spin Dynamics in a Compact Perylenemonoimide-Phenoxazine Electron Donor-Acceptor Dyad. J Phys Chem B 2021; 125:12859-12875. [PMID: 34767365 DOI: 10.1021/acs.jpcb.1c08471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
With phenoxazine (PXZ) as the electron donor and perylene-3,4-dicarboximide (PMI) as the electron acceptor, we prepared a compact, orthogonal electron donor-acceptor dyad (PMI-PXZ) to study the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC). A weak charge transfer (CT) absorption band, due to S0 → 1CT transition, was observed (ε = 2840 M-1 cm-1 at 554 nm, FWHM: 2850 cm-1), which is different from that of the previously reported analogue dyad with phenothiazine as the electron donor (PMI-PTZ), for which no CT absorption band was observed. A long-lived triplet state was observed (lifetime τT = 182 μs) with nanosecond transient absorption spectroscopy, and the singlet oxygen quantum yield (ΦΔ = 76%) is higher than that of the previously reported analogue dyad PMI-PTZ (ΦΔ = 57%). Ultrafast charge separation (ca. 0.14 ps) and slow charge recombination (1.4 ns) were observed with femtosecond transient absorption spectroscopy. With time-resolved electron paramagnetic resonance spectroscopy (TREPR), we confirmed the SOCT-ISC mechanism, and the electron spin polarization phase pattern of the triplet-state TREPR spectrum is (e, e, a, e, a, a), which is dramatically different from that of PMI-PTZ (a, e, a, e, a, e), indicating that the triplet-state TREPR spectrum of a specific chromophore in the electron donor-acceptor dyads is not only dependent on the geometry of the dyads but also dependent on the structure of the electron donor (or acceptor). Even one-atom variation in the donor structure may cause significant influence on the electron spin selectivity of the ISC of the electron donor-acceptor dyads.
Collapse
Affiliation(s)
- Huaiman Cao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ivan Kurganskii
- International Tomography Center, SB RAS Institutskaya Str., 3A, Novosibirsk 630090, Russia
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Ruomeng Duan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Matvey Fedin
- International Tomography Center, SB RAS Institutskaya Str., 3A, Novosibirsk 630090, Russia
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Chen Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| |
Collapse
|
46
|
Banu S, Singh K, Tyagi S, Yadav A, Yadav PP. Harnessing selective PET and EnT catalysis by chlorophyll to synthesize N-alkylated quinoline-2(1 H)-ones, isoquinoline-1(2 H)-ones and 1,2,4-trioxanes. Org Biomol Chem 2021; 19:9433-9438. [PMID: 34676851 DOI: 10.1039/d1ob01865e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic syntheses of quinoline-2(1H)-ones, isoquinoline-1(2H)-ones and 1,2,4-trioxanes were achieved by selective photo-induced electron transfer (PET) and energy transfer (EnT), respectively, by chlorophyll under visible light irradiation. Quinoline-2(1H)-ones, isoquinoline-1(2H)-ones and 1,2,4-trioxanes are biologically potent scaffolds and their syntheses following mild reaction protocols are highly sought after. This work showcases the divergent photocatalytic roles of chlorophyll viz., electron transfer in the case of quinolines or isoquinolines and energy transfer with allyl alcohols as substrates, affording their aerobic oxidation under green reaction conditions. The mechanistic investigations affirm that the catalytic cycle follows the electron-transfer pathway in carrying out the oxidation of N-alkyl(iso)quinolinium salts. Furthermore, the method provides an environmentally benign, simple reaction strategy for organic transformations of (N)-heterocycles.
Collapse
Affiliation(s)
- Saira Banu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| | - Kuldeep Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| | - Shaifali Tyagi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| | - Anjali Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
| | - Prem P Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
47
|
Pokutsa A, Ohkubo K, Zaborovski A, Bloniarz P. UV‐induced oxygenation of toluene enhanced by Co (acac)
2
/9‐mesityl‐10‐methylacridinium ion/
N
‐hydroxyphthalimide tandem. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander Pokutsa
- Department of Physical Chemistry of Fuel Fossils NAS of Ukraine Institute of Physical Organic Chemistry and Chemistry of Coal NAS of Ukraine Lviv Ukraine
| | - Kei Ohkubo
- Institute for Advanced Co‐Creation Studies Osaka University Osaka Japan
- Institute for Open and Transdisciplinary Research Initiatives Osaka University Osaka Japan
| | - Andriy Zaborovski
- Department of Physical Chemistry of Fuel Fossils NAS of Ukraine Institute of Physical Organic Chemistry and Chemistry of Coal NAS of Ukraine Lviv Ukraine
| | - Pawel Bloniarz
- Chemistry Department Rzeszow University of Technology Rzeszow Poland
| |
Collapse
|
48
|
|
49
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
50
|
Shibata T, Sekine A, Akino M, Ito M. Ni-catalyzed non-activated C-S bond cleavage at ambient temperature for the synthesis of sulfur-containing polycyclic compounds. Chem Commun (Camb) 2021; 57:9048-9051. [PMID: 34382056 DOI: 10.1039/d1cc03226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A Ni-catalyzed intramolecular reaction of diarylthioether-tethered 1,8-diynes gave sulfur-containing tetracyclic compounds at ambient temperature. The transformation was initiated by non-activated sp2 C-S bond cleavage along with consecutive alkyne insertions. A double intramolecular reaction of a tetrayne and an intermolecular reaction of monoynes were also available, and the corresponding polycyclic compounds were obtained. Moreover, the obtained cycloadduct showed photo-catalytic activity in benzylic oxidation.
Collapse
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Ayato Sekine
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Mika Akino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| |
Collapse
|