1
|
Hasan MI, Aggarwal S. Matrix matters: How extracellular substances shape biofilm structure and mechanical properties. Colloids Surf B Biointerfaces 2025; 246:114341. [PMID: 39536603 DOI: 10.1016/j.colsurfb.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Biofilms possess unique mechanical properties that are vital to their stability and function. Biofilms are made of extracellular polymeric substances (EPS) secreted by microorganisms and comprise polysaccharides, proteins, extracellular DNA (eDNA), and lipids. EPS is the primary contributor and driver of the biofilm structure and mechanical properties such as stiffness, cohesion, and adhesion. EPS enhances the elasticity and viscosity of biofilms, allowing them to withstand mechanical stresses, shear forces, and deformation. Therefore, biofilms are notoriously difficult to remove and can result in billions of dollars in losses for various industries due to their adverse effects, such as contamination, pressure loss, and corrosion. As a result, it is essential to comprehend the mechanical properties of biofilms to control or remove them in various scenarios. We undertook a fundamental study to determine the relationship between individual EPS components and biofilm mechanical properties. In this study, a CDC biofilm reactor was used to grow pure culture biofilms (Staphylococcus epidermidis) which were treated with six EPS modifier agents (Ca2+, Mg2+, periodic acid, protease K, lipase, and DNAase I) to modify or cleave specific EPS components. The mechanical properties (Young's Modulus) of treated biofilms were subsequently tested using atomic force microscopy (AFM), the biofilm EPS functional groups were measured via the Fourier transform infrared (FTIR) spectroscopy, and biofilm structural characteristics using confocal imaging. The FTIR results showed that EPS modifier agents successfully reduced their target EPS components. Similarly, the confocal microscopic analysis results showed that most of these modifier agents (except lipase) significantly reduced (P-value <0.05) the biovolume and thickness of treated biofilms. Conversely, most of these modifier agents (except protease K) significantly increased (P-value <0.05) the roughness coefficient of the biofilms. Finally, data from AFM showed that biofilm mechanical properties (Young's modulus) significantly (P-value <0.05) changed with their EPS composition. These results have significant ramifications for biofilm management and control in myriad scenarios.
Collapse
Affiliation(s)
- Md Ibnul Hasan
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| |
Collapse
|
2
|
Hancock AM, Datta SS. Interplay between environmental yielding and dynamic forcing modulates bacterial growth. Biophys J 2024; 123:957-967. [PMID: 38454600 PMCID: PMC11052696 DOI: 10.1016/j.bpj.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.
Collapse
Affiliation(s)
- Anna M Hancock
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
3
|
Xiong X, Wan W, Ding B, Cai M, Lu M, Liu W. Type VI secretion system drives bacterial diversity and functions in multispecies biofilms. Microbiol Res 2024; 279:127570. [PMID: 38096690 DOI: 10.1016/j.micres.2023.127570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Type VI secretion system (T6SS) plays an essential role in interspecies interactions and provides an advantage for a strain with T6SS in multispecies biofilms. However, how T6SS drives the bacterial community structure and functions in multispecies biofilms still needs to be determined. Using gene deletion and Illumina sequencing technique, we estimated bacterial community responses in multispecies biofilms to T6SS by introducing T6SS-containing Pseudomonas putida KT2440. Results showed that the niche structure shifts of multispecies biofilms were remarkably higher in the presence of T6SS than in the absence of T6SS. The presence of T6SS significantly drove the variation in microbial composition, reduced the alpha-diversity of bacterial communities in multispecies biofilms, and separately decreased and increased the relative abundance of Proteobacteria and Bacteroidota. Co-occurrence network analysis with inferred putative bacterial interactions indicated that P. putida KT2440 mainly displayed strong negative associations with the genera of Psychrobacter, Cellvibrio, Stenotrophomonas, and Brevundimonas. Moreover, the function redundancy index of the bacterial community was strikingly higher in the presence of T6SS than in the absence of T6SS, regardless of whether relative abundances of bacterial taxa were inhibited or promoted. Remarkably, the increased metabolic network similarity with T6SS-containing P. putida KT2440 could enhance the antibacterial activity of P. putida KT2440 on other bacterial taxa. Our findings extend knowledge of microbial adaptation strategies to potential bacterial weapons and could contribute to predicting biodiversity loss and change in ecological functions caused by T6SS.
Collapse
Affiliation(s)
- Xiang Xiong
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China
| | - Bangjing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China
| | - Miaomiao Cai
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China
| | - Mingzhu Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Peng L, Matellan C, Bosch‐Fortea M, Gonzalez‐Molina J, Frigerio M, Salentinig S, del Rio Hernandez A, Gautrot JE. Mesenchymal Stem Cells Sense the Toughness of Nanomaterials and Interfaces. Adv Healthc Mater 2023; 12:e2203297. [PMID: 36717365 PMCID: PMC11468436 DOI: 10.1002/adhm.202203297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Stem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness-mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell-generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l-lysine) nanosheets assembled at liquid-liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer-assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.
Collapse
Affiliation(s)
- Lihui Peng
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Carlos Matellan
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Minerva Bosch‐Fortea
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Jordi Gonzalez‐Molina
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Matteo Frigerio
- Department of ChemistryUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Stefan Salentinig
- Department of ChemistryUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Armando del Rio Hernandez
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Julien E. Gautrot
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
5
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
6
|
Martín-Roca J, Bianco V, Alarcón F, Monnappa AK, Natale P, Monroy F, Orgaz B, López-Montero I, Valeriani C. Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling. J Chem Phys 2023; 158:074902. [PMID: 36813707 DOI: 10.1063/5.0131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.
Collapse
Affiliation(s)
- José Martín-Roca
- Departamento de Estructrura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Valentino Bianco
- Departamento de Quimica Fisica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Alarcón
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
| | - Ajay K Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), 28041 Madrid, Spain
| | - Paolo Natale
- Departamento de Quimica Fisica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Monroy
- Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), 28041 Madrid, Spain
| | - Belen Orgaz
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ivan López-Montero
- Departamento de Quimica Fisica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructrura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Wells M, Schneider R, Bhattarai B, Currie H, Chavez B, Christopher G, Rumbaugh K, Gordon V. Perspective: The viscoelastic properties of biofilm infections and mechanical interactions with phagocytic immune cells. Front Cell Infect Microbiol 2023; 13:1102199. [PMID: 36875516 PMCID: PMC9978752 DOI: 10.3389/fcimb.2023.1102199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Biofilms are viscoelastic materials that are a prominent public health problem and a cause of most chronic bacterial infections, in large part due to their resistance to clearance by the immune system. Viscoelastic materials combine both solid-like and fluid-like mechanics, and the viscoelastic properties of biofilms are an emergent property of the intercellular cohesion characterizing the biofilm state (planktonic bacteria do not have an equivalent property). However, how the mechanical properties of biofilms are related to the recalcitrant disease that they cause, specifically to their resistance to phagocytic clearance by the immune system, remains almost entirely unstudied. We believe this is an important gap that is ripe for a large range of investigations. Here we present an overview of what is known about biofilm infections and their interactions with the immune system, biofilm mechanics and their potential relationship with phagocytosis, and we give an illustrative example of one important biofilm-pathogen (Pseudomonas aeruginosa) which is the most-studied in this context. We hope to inspire investment and growth in this relatively-untapped field of research, which has the potential to reveal mechanical properties of biofilms as targets for therapeutics meant to enhance the efficacy of the immune system.
Collapse
Affiliation(s)
- Marilyn Wells
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Rebecca Schneider
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bikash Bhattarai
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Hailey Currie
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Bella Chavez
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
| | - Gordon Christopher
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vernita Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, United States
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Li M, Nahum Y, Matouš K, Stoodley P, Nerenberg R. Effects of biofilm heterogeneity on the apparent mechanical properties obtained by shear rheometry. Biotechnol Bioeng 2023; 120:553-561. [PMID: 36305479 DOI: 10.1002/bit.28276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/13/2023]
Abstract
Rheometry is an experimental technique widely used to determine the mechanical properties of biofilms. However, it characterizes the bulk mechanical behavior of the whole biofilm. The effects of biofilm mechanical heterogeneity on rheometry measurements are not known. We used laboratory experiments and computer modeling to explore the effects of biofilm mechanical heterogeneity on the results obtained by rheometry. A synthetic biofilm with layered mechanical properties was studied, and a viscoelastic biofilm theory was employed using the Kelvin-Voigt model. Agar gels with different concentrations were used to prepare the layered, heterogeneous biofilm, which was characterized for mechanical properties in shear mode with a rheometer. Both experiments and simulations indicated that the biofilm properties from rheometry were strongly biased by the weakest portion of the biofilm. The simulation results using linearly stratified mechanical properties from a previous study also showed that the weaker portions of the biofilm dominated the mechanical properties in creep tests. We note that the model can be used as a predictive tool to explore the mechanical behavior of complex biofilm structures beyond those accessible to experiments. Since most biofilms display some degree of mechanical heterogeneity, our results suggest caution should be used in the interpretation of rheometry data. It does not necessarily provide the "average" mechanical properties of the entire biofilm if the mechanical properties are stratified.
Collapse
Affiliation(s)
- Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yanina Nahum
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Karel Matouš
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
9
|
Geisel S, Secchi E, Vermant J. Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022; 12:20220032. [PMID: 36330324 PMCID: PMC9560794 DOI: 10.1098/rsfs.2022.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 08/01/2023] Open
Abstract
Bacterial biofilms are communities living in a matrix consisting of self-produced, hydrated extracellular polymeric substances. Most microorganisms adopt the biofilm lifestyle since it protects by conferring resistance to antibiotics and physico-chemical stress factors. Consequently, mechanical removal is often necessary but rendered difficult by the biofilm's complex, viscoelastic response, and adhesive properties. Overall, the mechanical behaviour of biofilms also plays a role in the spreading, dispersal and subsequent colonization of new surfaces. Therefore, the characterization of the mechanical properties of biofilms plays a crucial role in controlling and combating biofilms in industrial and medical environments. We performed in situ shear rheological measurements of Bacillus subtilis biofilms grown between the plates of a rotational rheometer under well-controlled conditions relevant to many biofilm habitats. We investigated how the mechanical history preceding rheological measurements influenced biofilm mechanics and compared these results to the techniques commonly used in the literature. We also compare our results to measurements using interfacial rheology on bacterial pellicles formed at the air-water interface. This work aims to help understand how different growth and measurement conditions contribute to the large variability of mechanical properties reported in the literature and provide a new tool for the rigorous characterization of matrix components and biofilms.
Collapse
Affiliation(s)
- Steffen Geisel
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jan Vermant
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
The pathological properties of airway mucus in cystic fibrosis (CF) are dictated by mucus concentration and composition, with mucins and DNA being responsible for mucus viscoelastic properties. As CF pulmonary disease progresses, the concentrations of mucins and DNA increase and are associated with increased mucus viscoelasticity and decreased transport. Similarly, the biophysical properties of bacterial biofilms are heavily influenced by the composition of their extracellular polymeric substances (EPS). While the roles of polymer concentration and composition in mucus and biofilm mechanical properties have been evaluated independently, the relationship between mucus concentration and composition and the biophysical properties of biofilms grown therein remains unknown. Pseudomonas aeruginosa biofilms were grown in airway mucus as a function of overall concentration and DNA concentration to mimic healthy, and CF pathophysiology and biophysical properties were evaluated with macro- and microrheology. Biofilms were also characterized after exposure to DNase or DTT to examine the effects of DNA and mucin degradation, respectively. Identifying critical targets in biofilms for disrupting mechanical stability in highly concentrated mucus may lead to the development of efficacious biofilm therapies and ultimately improve CF patient outcomes. Overall mucus concentration was the predominant contributor to biofilm viscoelasticity and both DNA degradation and mucin reduction resulted in compromised biofilm mechanical strength. IMPORTANCE Pathological mucus in cystic fibrosis (CF) is highly concentrated and insufficiently cleared from the airway, causing chronic inflammation and infection. Pseudomonas aeruginosa establishes chronic infection in the form of biofilms within mucus, and this study determined that biofilms formed in more concentrated mucus were more robust and less susceptible to mechanical and chemical challenges compared to biofilms grown in lower concentrated mucus. Neither DNA degradation nor disulfide bond reduction was sufficient to fully degrade biofilms. Mucus rehydration should remain a priority for treating CF pulmonary disease with concomitant multimechanistic biofilm degradation agents and antibiotics to clear chronic infection.
Collapse
|
11
|
Zemła J, Iyer PS, Pyka-Fościak G, Mermod N, Lekka M. Rheological properties of skeletal muscles in a Duchenne muscular dystrophy murine model before and after autologous cell therapy. J Biomech 2021; 128:110770. [PMID: 34628203 DOI: 10.1016/j.jbiomech.2021.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is still an incurable muscle degenerative disease; thus, numerous studies focused on novel therapeutic approaches. However, a simple assay of muscle function restoration remains needed. Herein, we used an oscillatory shear rheometer to evaluate changes in rheological properties of mouse muscles (tibialis anterior, TA) and their restoration upon autologous cell therapy by comparing the viscoelastic properties of normal, diseased and treated muscles. Amplitude sweep tests of muscle samples were performed under 20% compression over a range of shear strain between 0.01 and 2% and frequency of 1 rad/s. The samples were tested in plane-plane geometry and horizontal myofiber alignment. Typical linear viscoelastic region (LVER) patterns were found for each muscle type. For healthy muscles, a broad LVER between shear deformations (γ) of 0.013-0.62% was observed. The LVER of DMD mdx/SCID muscles was found at 0.14% to 0.46% shear deformation, and no shear dependence of storage (G') and loss (G") moduli at γ range changing from 0.034% to 0.26% was found for transplanted tissues. G'LVER and G"LVER moduli of healthy muscles were significantly higher than G'LVER and G"LVER of dystrophic tissues. Additionally, muscle resistance assessment by rheometer indicated that muscles transplanted with stem cells restored elastic properties to levels close to those of healthy muscles. Interestingly, histological staining and rheological data indicate that the loss factor is strongly related to structural changes of examined muscles.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Pavithra S Iyer
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
12
|
Yates-Alston S, Sarkar S, Cochran M, Kuthirummal N, Levi N. Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms. J Microbiol Methods 2021; 190:106328. [PMID: 34536464 DOI: 10.1016/j.mimet.2021.106328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.
Collapse
Affiliation(s)
- Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Matthew Cochran
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| |
Collapse
|
13
|
Ghosh UU, Ali H, Ghosh R, Kumar A. Bacterial streamers as colloidal systems: Five grand challenges. J Colloid Interface Sci 2021; 594:265-278. [PMID: 33765646 DOI: 10.1016/j.jcis.2021.02.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Bacteria can thrive in biofilms, which are intricately organized communities with cells encased in a self-secreted matrix of extracellular polymeric substances (EPS). Imposed hydrodynamic stresses can transform this active colloidal dispersion of bacteria and EPS into slender thread-like entities called streamers. In this perspective article, the reader is introduced to the world of such deformable 'bacteria-EPS' composites that are a subclass of the generic flow-induced colloidal structures. While bacterial streamers have been shown to form in a variety of hydrodynamic conditions (turbulent and creeping flows), its abiotic analogues have only been demonstrated in low Reynolds number (Re < 1) particle-laden polymeric flows. Streamers are relevant to a variety of situations ranging from natural formations in caves and river beds to clogging of biomedical devices and filtration membranes. A critical review of the relevant biophysical aspects of streamer formation phenomena and unique attributes of its material behavior are distilled to unveil five grand scientific challenges. The coupling between colloidal hydrodynamics, device geometry and streamer formation are highlighted.
Collapse
Affiliation(s)
- Udita U Ghosh
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
14
|
Gloag ES, Wozniak DJ, Stoodley P, Hall-Stoodley L. Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Sci Rep 2021; 11:5020. [PMID: 33658597 PMCID: PMC7930093 DOI: 10.1038/s41598-021-84525-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus is emerging as a cause of recalcitrant chronic pulmonary infections, particularly in people with cystic fibrosis (CF). Biofilm formation has been implicated in the pathology of this organism, however the role of biofilm formation in infection is unclear. Two colony-variants of M. abscessus are routinely isolated from CF samples, smooth (MaSm) and rough (MaRg). These two variants display distinct colony morphologies due to the presence (MaSm) or absence (MaRg) of cell wall glycopeptidolipids (GPLs). We hypothesized that MaSm and MaRg variant biofilms might have different mechanical properties. To test this hypothesis, we performed uniaxial mechanical indentation, and shear rheometry on MaSm and MaRg colony-biofilms. We identified that MaRg biofilms were significantly stiffer than MaSm under a normal force, while MaSm biofilms were more pliant compared to MaRg, under both normal and shear forces. Furthermore, using theoretical indices of mucociliary and cough clearance, we identified that M. abscessus biofilms may be more resistant to mechanical forms of clearance from the lung, compared to another common pulmonary pathogen, Pseudomonas aeruginosa. Thus, the mechanical properties of M. abscessus biofilms may contribute to the persistent nature of pulmonary infections caused by this organism.
Collapse
Affiliation(s)
- Erin S Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA.
| |
Collapse
|
15
|
Dubbin K, Dong Z, Park DM, Alvarado J, Su J, Wasson E, Robertson C, Jackson J, Bose A, Moya ML, Jiao Y, Hynes WF. Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. NANO LETTERS 2021; 21:1352-1359. [PMID: 33508203 DOI: 10.1021/acs.nanolett.0c04100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two E. coli strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered Caulobacter crescentus strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.
Collapse
Affiliation(s)
- Karen Dubbin
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Dan M Park
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Javier Alvarado
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jimmy Su
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Elisa Wasson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Claire Robertson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Julie Jackson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Arpita Bose
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Monica L Moya
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Yongqin Jiao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - William F Hynes
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
16
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
17
|
McGlynn JA, Druggan KJ, Croland KJ, Schultz KM. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. Acta Biomater 2021; 121:405-417. [PMID: 33278674 PMCID: PMC12010360 DOI: 10.1016/j.actbio.2020.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Biological materials have length scale dependent structure enabling complex cell-material interactions and driving cellular processes. Synthetic biomaterials are designed to mimic aspects of these biological materials for applications including enhancing cell delivery during wound healing. To mimic native microenvironments, we must understand how cells manipulate their surroundings over several length scales. Our work characterizes length scale dependent rheology in a well-established 3D cell culture platform for human mesenchymal stem cells (hMSCs). hMSCs re-engineer their microenvironment through matrix metalloproteinase (MMP) secretions and cytoskeletal tension. Remodeling occurs across length scales: MMPs degrade cross-links on nanometer scales resulting in micrometer-sized paths that hMSCs migrate through, eventually resulting in bulk scaffold degradation. We use multiple particle tracking microrheology (MPT) and bi-disperse MPT to characterize hMSC-mediated length scale dependent pericellular remodeling. MPT measures particle Brownian motion to calculate rheological properties. We use MPT to measure larger length scales with 4.5 µm particles. Bi-disperse MPT simultaneously measures two different length scales (0.5 and 2.0 µm). We measure that hMSCs preferentially remodel larger length scales measured as a higher mobility of larger particles. We inhibit cytoskeletal tension by inhibiting myosin-II and no longer measure this difference in particle mobility. This indicates that cytoskeletal tension is the source of cell-mediated length scale dependent rheological changes. Particle mobility correlates with cell speed across length scales, relating material rheology to cell behavior. These results quantify length scale dependent pericellular remodeling and provide insight into how these microenvironments can be designed into materials to direct cell behavior.
Collapse
Affiliation(s)
- John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
18
|
Pavissich JP, Li M, Nerenberg R. Spatial distribution of mechanical properties in Pseudomonas aeruginosa biofilms, and their potential impacts on biofilm deformation. Biotechnol Bioeng 2021; 118:1564-1575. [PMID: 33415727 DOI: 10.1002/bit.27671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
The mechanical properties of biofilms can be used to predict biofilm deformation under external forces, for example, under fluid flow. We used magnetic tweezers to spatially map the compliance of Pseudomonas aeruginosa biofilms at the microscale, then applied modeling to assess its effects on biofilm deformation. Biofilms were grown in capillary flow cells with Reynolds numbers (Re) ranging from 0.28 to 13.9, bulk dissolved oxygen (DO) concentrations from 1 mg/L to 8 mg/L, and bulk calcium ion (Ca2+ ) concentrations of 0 and 100 mg CaCl2 /L. Higher Re numbers resulted in more uniform biofilm morphologies. The biofilm was stiffer at the center of the flow cell than near the walls. Lower bulk DO led to more stratified biofilms. Higher Ca2+ concentrations led to increased stiffness and more uniform mechanical properties. Using the experimental mechanical properties, fluid-structure interaction models predicted up to 64% greater deformation for heterogeneous biofilms, compared with a homogeneous biofilms with the same average properties. However, the deviation depended on the biofilm morphology and flow regime. Our results show significant spatial mechanical variability exists at the microscale, and that this variability can potentially affect biofilm deformation. The average biofilm mechanical properties, provided in many studies, should be used with caution when predicting biofilm deformation.
Collapse
Affiliation(s)
- Juan P Pavissich
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
19
|
Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm 2020; 2:100017. [PMID: 33447803 PMCID: PMC7798440 DOI: 10.1016/j.bioflm.2019.100017] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.
Collapse
Affiliation(s)
- Erin S. Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
20
|
Differential Effects of Heated Perfusate on Morphology, Viability, and Dissemination of Staphylococcus epidermidis Biofilms. Appl Environ Microbiol 2020; 86:AEM.01193-20. [PMID: 32801173 PMCID: PMC7531952 DOI: 10.1128/aem.01193-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material. The biofilm phenotype offers bacterial communities protection from environmental factors, as evidenced by its role in the viability, persistence, and virulence of cells under conditions in which flow is present, such as in riverbeds, industrial piping networks, and the human circulatory system. Here, we examined the hypothesis that temperature—an environmental factor that affects the growth of the Gram-positive bacterium Staphylococcus epidermidis—controls, through dual mechanisms, persistence of this bacterial strain in a shear environment characteristic of the human circulatory system. We demonstrated that temperature and antibiotics impact the surface-adhered biofilm and material disseminated downstream in different ways. Specifically, by means of three-dimensional (3D) confocal and scanning electron microscopy, an increase in surface-adhered biofilm heterogeneity was observed with increasing temperature. Additionally, we found a 4-log decrease in cell viability at the biofilm surface as the perfusate temperature was increased from 37°C to 50°C. Finally, the viability of cell-containing fragments that were disseminated from the substrate was assessed by downstream sampling, culture, and optical density measurement. We found that although temperature decreased the viability of the surface-adhered biofilm, the downstream material remained viable. And yet, in the presence of antibiotics, the growth of disseminated material was nearly completely inhibited, even though the addition of antibiotics had no significant impact on the viability of the surface-adhered biofilm. The mechanism involves both biofilm structural damage, as quantified by morphology of debrided material, and reduced cell viability, as quantified by assay of bacterial cells present in the surface-adherent biofilm and in the downstream effluent. The results potentially identify parameter ranges in which elevated temperature could augment current antibiotic treatment regimens. IMPORTANCE Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material.
Collapse
|
21
|
Jana S, Charlton SGV, Eland LE, Burgess JG, Wipat A, Curtis TP, Chen J. Nonlinear rheological characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 2020; 6:19. [PMID: 32286319 PMCID: PMC7156450 DOI: 10.1038/s41522-020-0126-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms in natural and artificial environments perform a wide array of beneficial or detrimental functions and exhibit resistance to physical as well as chemical perturbations. In dynamic environments, where periodic or aperiodic flows over surfaces are involved, biofilms can be subjected to large shear forces. The ability to withstand these forces, which is often attributed to the resilience of the extracellular matrix. This attribute of the extracellular matrix is referred to as viscoelasticity and is a result of self-assembly and cross-linking of multiple polymeric components that are secreted by the microbes. We aim to understand the viscoelastic characteristic of biofilms subjected to large shear forces by performing Large Amplitude Oscillatory Shear (LAOS) experiments on four species of bacterial biofilms: Bacillus subtilis, Comamonas denitrificans, Pseudomonas fluorescens and Pseudomonas aeruginosa. We find that nonlinear viscoelastic measures such as intracycle strain stiffening and intracycle shear thickening for each of the tested species, exhibit subtle or distinct differences in the plot of strain amplitude versus frequency (Pipkin diagram). The biofilms also exhibit variability in the onset of nonlinear behaviour and energy dissipation characteristics, which could be a result of heterogeneity of the extracellular matrix constituents of the different biofilms. The results provide insight into the nonlinear rheological behaviour of biofilms as they are subjected to large strains or strain rates; a situation that is commonly encountered in nature, but rarely investigated.
Collapse
Affiliation(s)
- Saikat Jana
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK.
| | | | - Lucy E Eland
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - J Grant Burgess
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anil Wipat
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
22
|
Chuang PJ, Swaminathan V, Pavlovsky L, Marquez-Catral L, Jones DL, Song L. Negative influence of biofilm on CoCrMo corrosion. J Biomed Mater Res A 2019; 107:2556-2566. [PMID: 31355999 DOI: 10.1002/jbm.a.36761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022]
Abstract
Minimal studies exist investigating biofilm-induced corrosion of orthopaedic implants. This study investigates potential contributions of Pseudomonas aeruginosa and Staphylococcus aureus biofilms on corrosion resistance of CoCrMo under static and fretting conditions. Biofilms were cultured on CoCrMo coupons for either 4 weeks (static culture) or 6 days (fretting culture; pin-on-disk with a Ti6Al4V hemispherical tip pin). Morphology of biofilms and corrosion of coupon surfaces were analyzed via SEM. Open circuit potential and electrochemical impedance spectroscopy measurements were collected for corrosion performance evaluation. Results showed no visible corrosion on coupon surfaces in static culture, which suggests these biofilms alone do not induce severe corrosion under the conditions of this study. However, electrochemical data showed biofilm presence lowered coupon electrochemical impedance in static and fretting cultures, suggesting resistive and capacitive characteristics of the metal oxide-biofilm-media interface were altered. Under fretting, the P. aeruginosa group exhibited a distinct damage morphology and Co:Cr:Mo ratio within the wear scar when compared with S. aureus and the bacteria-free control. These differences suggest the presence of P. aeruginosa biofilms may negatively impact corrosion resistance at the fretting interface. Taken together these results demonstrate biofilms can contribute to implant corrosion by influencing the electrochemical impedance of implant metal surfaces.
Collapse
|
23
|
White AR, Jalali M, Sheng J. A new ecology-on-a-chip microfluidic platform to study interactions of microbes with a rising oil droplet. Sci Rep 2019; 9:13737. [PMID: 31551440 PMCID: PMC6760120 DOI: 10.1038/s41598-019-50153-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022] Open
Abstract
Advances in microfluidics technology has enabled many discoveries on microbial mechanisms and phenotypes owing to its exquisite controls over biological and chemical environments. However, emulating accurate ecologically relevant flow environments (e.g. microbes around a rising oil droplet) in microfluidics remains challenging. Here, we present a microfluidic platform, i.e. ecology-on-a-chip (eChip), that simulates environmental conditions around an oil droplet rising through ocean water as commonly occurred during a deep-sea oil spill or a natural seep, and enables detailed observations of microbe-oil interactions at scales relevant to marine ecology (i.e. spatial scales of individual bacterium in a dense suspension and temporal scales from milliseconds to weeks or months). Owing to the unique capabilities, we present unprecedented observations of polymeric microbial aggregates formed on rising oil droplets and their associated hydrodynamic impacts including flow fields and momentum budgets. Using the platform with Pseudomonas, Marinobacter, and Alcarnivorax, we have shown that polymeric aggregates formed by them present significant differences in morphology, growth rates, and hydrodynamic impacts. This platform enables us to investigate unexplored array of microbial interactions with oil drops.
Collapse
Affiliation(s)
- Andrew R White
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Maryam Jalali
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Jian Sheng
- Department of Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
24
|
Charlton SGV, White MA, Jana S, Eland LE, Jayathilake PG, Burgess JG, Chen J, Wipat A, Curtis TP. Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. J Bacteriol 2019; 201:e00101-19. [PMID: 31182499 PMCID: PMC6707926 DOI: 10.1128/jb.00101-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.
Collapse
Affiliation(s)
- Samuel G V Charlton
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A White
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Saikat Jana
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy E Eland
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - J Grant Burgess
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Araújo GRDS, Viana NB, Gómez F, Pontes B, Frases S. The mechanical properties of microbial surfaces and biofilms. ACTA ACUST UNITED AC 2019; 5:100028. [PMID: 32743144 PMCID: PMC7389442 DOI: 10.1016/j.tcsw.2019.100028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Microbes can modify their surface structure as an adaptive mechanism for survival and dissemination in the environment or inside the host. Altering their ability to respond to mechanical stimuli is part of this adaptive process. Since the 1990s, powerful micromanipulation tools have been developed that allow mechanical studies of microbial cell surfaces, exploring little known aspects of their dynamic behavior. This review concentrates on the study of mechanical and rheological properties of bacteria and fungi, focusing on their cell surface dynamics and biofilm formation.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathan B Viana
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fran Gómez
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
27
|
Jia Y, Zheng M, Xu Q, Zhong C. Rheological behaviors of Pickering emulsions stabilized by TEMPO-oxidized bacterial cellulose. Carbohydr Polym 2019; 215:263-271. [DOI: 10.1016/j.carbpol.2019.03.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
|
28
|
Halvey AK, Macdonald B, Dhyani A, Tuteja A. Design of surfaces for controlling hard and soft fouling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180266. [PMID: 30967072 PMCID: PMC6335287 DOI: 10.1098/rsta.2018.0266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 05/29/2023]
Abstract
In this review, we present a framework to guide the design of surfaces which are resistant to solid fouling, based on the modulus and length scale of the fouling material. Solid fouling is defined as the undesired attachment of solid contaminants including ice, clathrates, waxes, inorganic scale, polymers, proteins, dust and biological materials. We first provide an overview of the surface design approaches typically applied across the scope of solid fouling and explain how these disparate research efforts can be united to an extent under a single framework. We discuss how the elastic modulus and the operating length scale of a foulant determine its ability or inability to elastically deform surfaces. When surface deformation occurs, minimization of the substrate elastic modulus is critical for the facile de-bonding of a solid contaminant. Foulants with low modulus or small deposition sizes cannot deform an elastic bulk material and instead de-bond more readily from surfaces with chemistries that minimize their interfacial free energy or induce a particular repellant interaction with the foulant. Overall, we review reported surface design strategies for the reduction in solid fouling, and provide perspective regarding how our framework, together with the modulus and length scale of a foulant, can guide future antifouling surface designs. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Alex Kate Halvey
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Macdonald
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhishek Dhyani
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, Bassler BL, Stone HA. Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804153. [PMID: 30368924 PMCID: PMC8865467 DOI: 10.1002/adma.201804153] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
Biofilms, surface-attached communities of bacterial cells, are a concern in health and in industrial operations because of persistent infections, clogging of flows, and surface fouling. Extracellular matrices provide mechanical protection to biofilm-dwelling cells as well as protection from chemical insults, including antibiotics. Understanding how biofilm material properties arise from constituent matrix components and how these properties change in different environments is crucial for designing biofilm removal strategies. Here, using rheological characterization and surface analyses of Vibrio cholerae biofilms, it is discovered how extracellular polysaccharides, proteins, and cells function together to define biofilm mechanical and interfacial properties. Using insight gained from our measurements, a facile capillary peeling technology is developed to remove biofilms from surfaces or to transfer intact biofilms from one surface to another. It is shown that the findings are applicable to other biofilm-forming bacterial species and to multiple surfaces. Thus, the technology and the understanding that have been developed could potentially be employed to characterize and/or treat biofilm-related infections and industrial biofouling problems.
Collapse
Affiliation(s)
- Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Alexis Moreau
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sepideh Khodaparast
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Antonio Perazzo
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Jie Feng
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sampriti Mukherjee
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| |
Collapse
|
30
|
Seo Y, Leong J, Park JD, Hong YT, Chu SH, Park C, Kim DH, Deng YH, Dushnov V, Soh J, Rogers S, Yang YY, Kong H. Diatom Microbubbler for Active Biofilm Removal in Confined Spaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35685-35692. [PMID: 30107112 PMCID: PMC8216637 DOI: 10.1021/acsami.8b08643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bacterial biofilms form on and within many living tissues, medical devices, and engineered materials, threatening human health and sustainability. Removing biofilms remains a grand challenge despite tremendous efforts made so far, particularly when they are formed in confined spaces. One primary cause is the limited transport of antibacterial agents into extracellular polymeric substances (EPS) of the biofilm. In this study, we hypothesized that a microparticle engineered to be self-locomotive with microbubbles would clean a structure fouled by biofilm by fracturing the EPS and subsequently improving transports of the antiseptic reagent. We examined this hypothesis by doping a hollow cylinder-shaped diatom biosilica with manganese oxide (MnO2) nanosheets. In an antiseptic H2O2 solution, the diatoms doped by MnO2 nanosheets, denoted as diatom bubbler, discharged oxygen gas bubbles continuously and became self-motile. Subsequently, the diatoms infiltrated the bacterial biofilm formed on either flat or microgrooved silicon substrates and continued to generate microbubbles. The resulting microbubbles merged and converted surface energy to mechanical energy high enough to fracture the matrix of biofilm. Consequently, H2O2 molecules diffused into the biofilm and killed most bacterial cells. Overall, this study provides a unique and powerful tool that can significantly impact current efforts to clean a wide array of biofouled products and devices.
Collapse
Affiliation(s)
- Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jun Dong Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sang-Hyon Chu
- National Institute of Aerospace, 100 Exploration Way, Hampton, Virginia 23666, United States
| | - Cheol Park
- Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Dong Hyun Kim
- Department of Human and Culture Convergence Technology R&BD Group, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do 426-910, South Korea
| | - Yu-Heng Deng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vitaliy Dushnov
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joonghui Soh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Department of Bioengineering, Department of Pathobiology, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Chaudhary G, Fudge DS, Macias-Rodriguez B, Ewoldt RH. Concentration-independent mechanics and structure of hagfish slime. Acta Biomater 2018; 79:123-134. [PMID: 30170194 DOI: 10.1016/j.actbio.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
The defense mechanism of hagfish slime is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a concentrated material into a comparably "infinite" sea of water to form a dilute, sticky, cohesive elastic gel. This raises questions about the robustness of gel formation and rheological properties across a range of concentrations, which we study here for the first time. Across a nearly 100-fold change in concentration, we discover that the gel has similar viscoelastic time-dependent properties with constant power-law exponent (α=0.18±0.01), constant relative damping tanδ=G''/G'≈0.2-0.3, and varying overall stiffness that scales linearly with the concentration (∼c0.99±0.05). The power-law viscoelasticity (fit by a fractional Kelvin-Voigt model) is persistent at all concentrations with nearly constant fractal dimension. This is unlike other materials and suggests that the underlying material structure of slime remains self-similar irrespective of concentration. This interpretation is consistent with our microscopy studies of the fiber network. We derive a structure-rheology model to test the hypothesis that the origins of ultra-soft elasticity are based on bending of the fibers. The model predictions show an excellent agreement with the experiments. Our findings illustrate the unusual and robust properties of slime which may be vital in its physiological use and provide inspiration for the design of new engineered materials. STATEMENT OF SIGNIFICANCE Hagfish produce a unique gel-like material to defend themselves against predator attacks. The successful use of the defense gel is remarkable considering that hagfish cannot control the concentration of the resulting gel directly; they simply exude a small quantity of biomaterial which then expands by a factor of 10,000 (by volume) into an "infinite" sea of water. This raises questions about the robustness of gel formation and properties across a range of concentrations. This study provides the first ever understanding of the mechanics of hagfish slime over a very wide range of concentration. We discover that some viscoelastic properties of slime are remarkably constant regardless of its concentration. Such a characteristic is uncommon in most known materials.
Collapse
|
32
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
33
|
von Bronk B, Götz A, Opitz M. Complex microbial systems across different levels of description. Phys Biol 2018; 15:051002. [PMID: 29757151 DOI: 10.1088/1478-3975/aac473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complex biological systems offer a variety of interesting phenomena at the different physical scales. With increasing abstraction, details of the microscopic scales can often be extrapolated to average or typical macroscopic properties. However, emergent properties and cross-scale interactions can impede naïve abstractions and necessitate comprehensive investigations of these complex systems. In this review paper, we focus on microbial communities, and first, summarize a general hierarchy of relevant scales and description levels to understand these complex systems: (1) genetic networks, (2) single cells, (3) populations, and (4) emergent multi-cellular properties. Second, we employ two illustrating examples, microbial competition and biofilm formation, to elucidate how cross-scale interactions and emergent properties enrich the observed multi-cellular behavior in these systems. Finally, we conclude with pointing out the necessity of multi-scale investigations to understand complex biological systems and discuss recent investigations.
Collapse
Affiliation(s)
- Benedikt von Bronk
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | | | | |
Collapse
|
34
|
Magnetorelaxometry in the Presence of a DC Bias Field of Ferromagnetic Nanoparticles Bearing a Viscoelastic Corona. SENSORS 2018; 18:s18051661. [PMID: 29789454 PMCID: PMC5982569 DOI: 10.3390/s18051661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
With allowance for orientational Brownian motion, the magnetorelaxometry (MRX) signal, i.e., the decay of magnetization generated by an ensemble of ferromagnet nanoparticles, each of which bears a macromolecular corona (a loose layer of polymer gel) is studied. The rheology of corona is modelled by the Jeffreys scheme. The latter, although comprising only three phenomenological parameters, enables one to describe a wide spectrum of viscoelastic media: from linearly viscous liquids to weakly-fluent gels. The "transverse" configuration of MRX is considered where the system is subjected to a DC (constant bias) field, whereas the probing field is applied perpendicularly to the bias one. The analysis shows that the rate of magnetization decay strongly depends on the state of corona and slows down with enhancement of the corona elasticity. In addition, for the case of "transverse" MRX, we consider the integral time, i.e., the characteristic that is applicable to relaxation processes with an arbitrary number of decay modes. Expressions for the dependence of the integral time on the corona elasticity parameter and temperature are derived.
Collapse
|
35
|
Tarifa MC, Genovese D, Lozano JE, Brugnoni LI. In situ microstructure and rheological behavior of yeast biofilms from the juice processing industries. BIOFOULING 2018; 34:74-85. [PMID: 29228797 DOI: 10.1080/08927014.2017.1407758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The factors affecting the mechanical properties of biofilms formed by yeast species (Rhodotorula mucilaginosa, Candida krusei, C. kefyr and C. tropicalis) isolated from the juice processing industries have been investigated. Variables studied were: the food matrix (apple/pear juice), the sugar concentration (6/12 °Bx) and the hydrodynamic conditions (static/turbulent flow). A range of environmental cues were included as the mechanical properties of biofilms are complex. Yeast counts were significantly higher in turbulent flow compared with under static conditions. The thickness of the biofilm ranged from 38 to 148 μm, from static to turbulent flow. Yeast biofilms grown under turbulent flow conditions were viscoelastic with a predominant solid-like behavior and were structurally stronger than those grown under static conditions, indicating gel-type structures. Only the type of flow had a significant effect on [Formula: see text] and G*. Flow velocity and nutrient status modulated the biofilm thickness, the biomass and the mechanical properties. A better knowledge of the factors controlling biofilm formation will help in the development of control strategies.
Collapse
Affiliation(s)
- María C Tarifa
- a Institute of Biological and Biomedical Sciences of the South INBIOSUR) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Diego Genovese
- b Pilot Plant of Chemical Engineering (PLAPIQUI) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Jorge E Lozano
- b Pilot Plant of Chemical Engineering (PLAPIQUI) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| | - Lorena I Brugnoni
- a Institute of Biological and Biomedical Sciences of the South INBIOSUR) , Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Bahía Blanca , Argentina
| |
Collapse
|
36
|
Castro P, Elvira L, Maestre JR, Montero de Espinosa F. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. SENSORS 2017; 17:s17061395. [PMID: 28617343 PMCID: PMC5492035 DOI: 10.3390/s17061395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/24/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM) resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor) that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus (G* = G′ + jG″) of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli, is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms.
Collapse
Affiliation(s)
- Pedro Castro
- Institute of Physical and Information Technologies, CSIC, C/Serrano, 144, 28006 Madrid, Spain.
| | - Luis Elvira
- Institute of Physical and Information Technologies, CSIC, C/Serrano, 144, 28006 Madrid, Spain.
| | - Juan Ramón Maestre
- Servicio de Microbiología Clínica, Hospital Central de la Defensa Gómez-Ulla, Glorieta del Ejército, s/n, 28047 Madrid, Spain.
| | | |
Collapse
|
37
|
Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms. Appl Environ Microbiol 2017; 83:AEM.03483-16. [PMID: 28411222 DOI: 10.1128/aem.03483-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors.IMPORTANCEStaphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections.
Collapse
|
38
|
Majumdar S, Hazra S, Choudhury MD, Sinha SD, Das S, Middya TR, Tarafdar S, Dutta T. A study of the rheological properties of visco-elastic materials using fractional calculus. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Tallawi M, Opitz M, Lieleg O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci 2017; 5:887-900. [DOI: 10.1039/c6bm00832a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we highlight recent research on the relationship between biofilm matrix composition, biofilm mechanics and environmental stimuli.
Collapse
Affiliation(s)
- Marwa Tallawi
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| |
Collapse
|
40
|
Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy. Biointerphases 2016; 11:041005. [PMID: 27907987 DOI: 10.1116/1.4968809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (ks) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, ks is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.
Collapse
|
41
|
Paquet-Mercier F, Parvinzadeh Gashti M, Bellavance J, Taghavi SM, Greener J. Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength. LAB ON A CHIP 2016; 16:4710-4717. [PMID: 27808313 DOI: 10.1039/c6lc01101b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Continuous, non-intrusive measurements of time-varying viscosity of Pseudomonas sp. biofilms are made using a microfluidic method that combines video tracking with a semi-empirical viscous flow model. The approach uses measured velocity and height of tracked biofilm segments, which move under the constant laminar flow of a nutrient solution. Following a low viscosity growth stage, rapid thickening was observed. During this stage, viscosity increased by over an order of magnitude in less than ten hours. The technique was also demonstrated as a promising platform for parallel experiments by subjecting multiple biofilm-laden microchannels to nutrient solutions containing NaCl in the range of 0 to 34 mM. Preliminary data suggest a strong relationship between ionic strength and biofilm properties, such as average viscosity and rapid thickening onset time. The technique opens the way for a combinatorial approach to study the response of biofilm viscosity under well-controlled physical, chemical and biological growth conditions.
Collapse
Affiliation(s)
- F Paquet-Mercier
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | - J Bellavance
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - S M Taghavi
- Département de Génie Chimique, Université Laval, Québec, QC G1V 0A6, Canada
| | - J Greener
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
42
|
Greener J, Parvinzadeh Gashti M, Eslami A, Zarabadi MP, Taghavi SM. A microfluidic method and custom model for continuous, non-intrusive biofilm viscosity measurements under different nutrient conditions. BIOMICROFLUIDICS 2016; 10:064107. [PMID: 27965730 PMCID: PMC5116028 DOI: 10.1063/1.4968522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/09/2016] [Indexed: 05/24/2023]
Abstract
Straight, low-aspect ratio micro flow cells are used to support biofilm attachment and preferential accumulation at the short side-wall, which progressively reduces the effective channel width. The biofilm shifts downstream at measurable velocities under the imposed force from the constant laminar co-flowing nutrient stream. The dynamic behaviour of the biofilm viscosity is modeled semi-analytically, based on experimental measurements of biofilm dimensions and velocity as inputs. The technique advances the study of biofilm mechanical properties by strongly limiting biases related to non-Newtonian biofilm properties (e.g., shear dependent viscosity) with excellent time resolution. To demonstrate the proof of principle, young Pseudomonas sp. biofilms were analyzed under different nutrient concentrations and constant micro-flow conditions. The striking results show that large initial differences in biofilm viscosities grown under different nutrient concentrations become nearly identical in less than one day, followed by a continuous thickening process. The technique verifies that in 50 h from inoculation to early maturation stages, biofilm viscosity could grow by over 2 orders of magnitude. The approach opens the way for detailed studies of mechanical properties under a wide variety of physiochemical conditions, such as ionic strength, temperature, and shear stress.
Collapse
Affiliation(s)
- J Greener
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - M Parvinzadeh Gashti
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - A Eslami
- Department of Chemical Engineering, Université Laval , Québec, Québec G1V 0A6, Canada
| | - M P Zarabadi
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - S M Taghavi
- Department of Chemical Engineering, Université Laval , Québec, Québec G1V 0A6, Canada
| |
Collapse
|
43
|
Richardson IP, Sturtevant R, Heung M, Solomon MJ, Younger JG, VanEpps JS. Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment. ASAIO J 2016; 62:92-9. [PMID: 26501916 DOI: 10.1097/mat.0000000000000300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Central line-associated bloodstream infections (CLABSIs) are not easily treated, and many catheters (e.g., hemodialysis catheters) are not easily replaced. Biofilms (the source of infection) on catheter surfaces are notoriously difficult to eradicate. We have recently demonstrated that modest elevations of temperature lead to increased staphylococcal susceptibility to vancomycin and significantly soften the biofilm matrix. In this study, using a combination of microbiological, computational, and experimental studies, we demonstrate the efficacy, feasibility, and safety of using heat as an adjuvant treatment for infected hemodialysis catheters. Specifically, we show that treating with heat in the presence of antibiotics led to additive killing of Staphylococcus epidermidis with similar trends seen for Staphylococcus aureus and Klebsiella pneumoniae. The magnitude of temperature elevation required is relatively modest (45-50°C) and similar to that used as an adjuvant to traditional cancer therapy. Using a custom-designed benchtop model of a hemodialysis catheter, positioned with tip in the human vena cava as well as computational fluid dynamic simulations, we demonstrate that these temperature elevations are likely achievable in situ with minimal increased in overall blood temperature.
Collapse
Affiliation(s)
- Ian P Richardson
- From the *Department of Emergency Medicine, †Division of Nephrology, Department of Internal Medicine, and ‡Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
44
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
45
|
Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. SOFT MATTER 2016; 12:5718-26. [PMID: 27273453 DOI: 10.1039/c6sm00687f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cells in biofilms sense and interact with their environment through the extracellular matrix. The physicochemical properties of the matrix, particularly at the biofilm-environment interface, determine how cells respond to changing conditions. In this study we describe the application of atomic force microscopy and confocal imaging to probe in situ the mechanical properties of these interfacial regions and to elucidate how key matrix components can contribute to the physical sensing by the cells. We describe how the Young's modulus of microcolonies differs according to the size and morphology of microcolonies, as well as the flow rate. The Young's modulus increased as a function of microcolony diameter, which was correlated with the production of the polysaccharide Psl at later stages of maturation for hemispherical or mushroom shaped microcolonies. The Young's modulus of the periphery of the biofilm colony was however independent of the hydrodynamic shear. The morphology of the microcolonies also influenced interfacial or peripheral stiffness. Microcolonies with a diffuse morphology had a lower Young's modulus than isolated, circular ones and this phenomenon was due to a deficiency of Psl. In this way, changes in the specific polysaccharide components imbue the biofilm with distinct physical properties that may modulate the way in which bacteria perceive or respond to their environment. Further, the physical properties of the polysaccharides are closely linked to the specific architectures formed by the developing biofilm.
Collapse
Affiliation(s)
- Binu Kundukad
- BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore
| | - Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Yang Liang
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Scott A Rice
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore and Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore and Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
46
|
Hashemnejad SM, Kundu S. Strain stiffening and negative normal stress in alginate hydrogels. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24081] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seyed Meysam Hashemnejad
- Dave C. Swalm School of Chemical Engineering, Mississippi State University; MS State Mississippi 39762
| | - Santanu Kundu
- Dave C. Swalm School of Chemical Engineering, Mississippi State University; MS State Mississippi 39762
| |
Collapse
|
47
|
Abstract
Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms.
Collapse
|
48
|
Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms. Appl Environ Microbiol 2016; 82:2424-2432. [PMID: 26873313 DOI: 10.1128/aem.03957-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.
Collapse
|
49
|
Biomechanical Analysis of Infectious Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:99-114. [PMID: 27193540 DOI: 10.1007/978-3-319-32189-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The removal of infectious biofilms from tissues or implanted devices and their transmission through fluid transport systems depends in part of the mechanical properties of their polymeric matrix. Linking the various physical and chemical microscopic interactions to macroscopic deformation and failure modes promises to unveil design principles for novel therapeutic strategies targeting biofilm eradication, and provide a predictive capability to accelerate the development of devices, water lines, etc, that minimise microbial dispersal. Here, our current understanding of biofilm mechanics is appraised from the perspective of biophysics , with an emphasis on constitutive modelling that has been highly successful in soft matter. Fitting rheometric data to viscoelastic models has quantified linear and nonlinear stress relaxation mechanisms, how they vary between species and environments, and how candidate chemical treatments alter the mechanical response. The rich interplay between growth, mechanics and hydrodynamics is just becoming amenable to computational modelling and promises to provide unprecedented characterisation of infectious biofilms in their native state.
Collapse
|
50
|
Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 2015; 99:123-34. [PMID: 26365835 DOI: 10.1111/mmi.13219] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
Abstract
Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.
Collapse
Affiliation(s)
- Kelly Schwartz
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mahesh Ganesan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David E Payne
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|