1
|
Huang CF, Su P, Fisher TD, Levitsky J, Kelleher NL, Forte E. Mass spectrometry-based proteomics for advancing solid organ transplantation research. FRONTIERS IN TRANSPLANTATION 2023; 2:1286881. [PMID: 38993855 PMCID: PMC11235370 DOI: 10.3389/frtra.2023.1286881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Scarcity of high-quality organs, suboptimal organ quality assessment, unsatisfactory pre-implantation procedures, and poor long-term organ and patient survival are the main challenges currently faced by the solid organ transplant (SOT) field. New biomarkers for assessing graft quality pre-implantation, detecting, and predicting graft injury, rejection, dysfunction, and survival are critical to provide clinicians with invaluable prediction tools and guidance for personalized patients' treatment. Additionally, new therapeutic targets are also needed to reduce injury and rejection and improve transplant outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers of health and disease statuses and therapeutic targets. A protein can exist in different molecular forms, called proteoforms. As the function of a protein depends on its exact composition, proteoforms can offer a more accurate basis for connection to complex phenotypes than protein from which they derive. Mass spectrometry-based proteomics has been largely used in SOT research for identification of candidate biomarkers and therapeutic intervention targets by so-called "bottom-up" proteomics (BUP). However, such BUP approaches analyze small peptides in lieu of intact proteins and provide incomplete information on the exact molecular composition of the proteins of interest. In contrast, "Top-down" proteomics (TDP), which analyze intact proteins retaining proteoform-level information, have been only recently adopted in transplantation studies and already led to the identification of promising proteoforms as biomarkers for organ rejection and dysfunction. We anticipate that the use of top-down strategies in combination with new technological advancements in single-cell and spatial proteomics could drive future breakthroughs in biomarker and therapeutic target discovery in SOT.
Collapse
Affiliation(s)
- Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Pei Su
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Gao SQ, Zhao JH, Guan Y, Tang YS, Li Y, Liu LY. Mass spectrometry imaging technology in metabolomics: A systematic review. Biomed Chromatogr 2023; 37:e5494. [PMID: 36044038 DOI: 10.1002/bmc.5494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput MS with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix-assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
Collapse
Affiliation(s)
- Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
3
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
4
|
Luo H, Du Q, Zhong Z, Xu Y, Peng J. Protein-coated microplastics corona complex: An underestimated risk of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157948. [PMID: 35963400 DOI: 10.1016/j.scitotenv.2022.157948] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Traditionally, toxicity of microplastics is ascribed to the chemicals adsorbed on them. However, microplastics can also interact with biomolecules, such as secretory proteins from aquatic organisms, and form protein-coated microplastics corona complex with unknown toxic effects. Here, we investigated the toxic effects of polystyrene microplastics (PS) and bovine serum albumin (BSA) coated PS corona complex (PS + BSA) on adult zebrafish (Danio rerio) intestines. The food intake ratio, accumulation and distribution of microplastics, histopathological changes, and molecular effects related to the antioxidant system in the intestine were studied. For the first time, we observed that PS + BSA aggregated on the inner surface of the zebrafish intestine, whereas PS dispersed. The aggregation of PS + BSA resulted in increased microplastics accumulation and longer residence time in the zebrafish intestine, which inhibited food intake and generated reactive oxygen species (ROS) in the intestine. Furthermore, the functions of the Keap1-Nrf2-ARE antioxidant signaling pathway and the activation of antioxidant enzymes were significantly affected by PS + BSA after a 21-day exposure. Ultimately, a higher accumulation of ROS and stronger inhibition of antioxidants led to more severe intestinal injury. These results suggest that the increased toxicity of protein-coated microplastics corona complex may be affected by oxidative damage and can result in the inhibition of digestion due to their aggregation and longer residence time in the intestine. Therefore, the ecological risk of microplastics may be underestimated owing to the interactive mechanisms of microplastics and protein coronas.
Collapse
Affiliation(s)
- Hongwei Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zuanjia Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Massaro A, Stella R, Negro A, Bragolusi M, Miano B, Arcangeli G, Biancotto G, Piro R, Tata A. New strategies for the differentiation of fresh and frozen/thawed fish: A rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
7
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
8
|
Maasz G, Takács P, Boda P, Varbiro G, Pirger Z. Mayfly and fish species identification and sex determination in bleak (Alburnus alburnus) by MALDI-TOF mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:317-325. [PMID: 28558278 DOI: 10.1016/j.scitotenv.2017.05.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Besides food quality control of fish or cephalopods, the novel mass spectrometry (MS) approaches could be effective and beneficial methods for the investigation of biodiversity in ecological research. Our aims were to verify the applicability of MALDI-TOF MS in the rapid identification of closely related species, and to further develop it for sex determination in phenotypically similar fish focusing on the low mass range. For MALDI-TOF MS spectra analysis, ClinProTools software was applied, but our observed classification was also confirmed by Self Organizing Map. For verifying the wide applicability of the method, brains from invertebrate and vertebrate species were used in order to detect the species related markers from two mayflies and eight fish as well as sex-related markers within bleak. Seven Ephemera larvae and sixty-one fish species related markers were observed and nineteen sex-related markers were identified in bleak. Similar patterns were observed between the individuals within one species. In contrast, there were markedly diverse patterns between the different species and sexes visualized by SOMs. Two different Ephemera species and male or female fish were identified with 100% accuracy. The various fish species were classified into 8 species with a high level of accuracy (96.2%). Based on MS data, dendrogram was generated from different fish species by using ClinProTools software. This MS-based dendrogram shows relatively high correspondence with the phylogenetic relationships of both the studied species and orders. In summary, MALDI-TOF MS provides a cheap, reliable, sensitive and fast identification tool for researchers in the case of closely related species using mass spectra acquired in a low mass range to define specific molecular profiles. Moreover, we presented evidence for the first time for determination of sex within one fish species by using this method. We conclude that it is a powerful tool that can revolutionize ecological and environmental research.
Collapse
Affiliation(s)
- G Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary; Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary.
| | - P Takács
- Department of Hydrozoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| | - P Boda
- Department of Tisza River Research, MTA Centre for Ecological Research, 4032 Debrecen, Hungary
| | - G Varbiro
- Department of Tisza River Research, MTA Centre for Ecological Research, 4032 Debrecen, Hungary
| | - Z Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| |
Collapse
|
9
|
Abstract
Bacillus anthracis—a Gram-positive, spore-forming bacterium—causes anthrax, a highly lethal disease with high bacteremia titers. Such rapid growth requires ample access to nutrients, including iron. However, access to this critical metal is heavily restricted in mammals, which requires B. anthracis to employ petrobactin, an iron-scavenging small molecule known as a siderophore. Petrobactin biosynthesis is mediated by asb gene products, and import of the iron-bound (holo)-siderophore into the bacterium has been well studied. In contrast, little is known about the mechanism of petrobactin export following its production in B. anthracis cells. Using a combination of bioinformatics data, gene deletions, and laser ablation electrospray ionization mass spectrometry (LAESI-MS), we identified a resistance-nodulation-cell division (RND)-type transporter, termed ApeX, as a putative petrobactin exporter. Deletion of apeX abrogated export of intact petrobactin, which accumulated inside the cell. However, growth of ΔapeX mutants in iron-depleted medium was not affected, and virulence in mice was not attenuated. Instead, petrobactin components were determined to be exported through a different protein, which enables iron transport sufficient for growth, albeit with a slightly lower affinity for iron. This is the first report to identify a functional siderophore exporter in B. anthracis and the in vivo functionality of siderophore components. Moreover, this is the first application of LAESI-MS to sample a virulence factor/metabolite directly from bacterial culture media and cell pellets of a human pathogen. Bacillus anthracis requires iron for growth and employs the siderophore petrobactin to scavenge this trace metal during infections. While we understand much about petrobactin biosynthesis and ferric petrobactin import, how apo-petrobactin (iron free) is exported remains unknown. This study used a combination of bioinformatics, genetics, and mass spectrometry to identify the petrobactin exporter. After screening 17 mutants with mutations of candidate exporter genes, we identified the apo-petrobactin exporter (termed ApeX) as a member of the resistance-nodulation-cell division (RND) family of transporters. In the absence of ApeX, petrobactin accumulates inside the cell while continuing to export petrobactin components that are capable of transporting iron. Thus, the loss of ApeX does not affect the ability of B. anthracis to cause disease in mice. This has implications for treatment strategies designed to target and control pathogenicity of B. anthracis in humans.
Collapse
|
10
|
Byliński H, Gębicki J, Dymerski T, Namieśnik J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Crit Rev Anal Chem 2017; 47:340-358. [DOI: 10.1080/10408347.2017.1298986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Dymerski
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
11
|
Mu L, Gao Y, Hu X. Characterization of Biological Secretions Binding to Graphene Oxide in Water and the Specific Toxicological Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8530-8537. [PMID: 27419256 DOI: 10.1021/acs.est.6b02494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the widening application of graphene oxide nanosheets (GONS), their safety has attracted much attention. Secretions from aquatic organisms are ubiquitous in natural water, but the effects of secretions on the characteristics and toxicity of GONS remain largely unknown. To help fill this knowledge gap, we characterized the GONS with biological secretions (GOBS) and the associated changes in apparent toxicity. Small organic molecules, proteins, nucleotides and mucopolysaccharides from secretions in zebrafish culture water bound to GONS. Compared with GONS, GOBS showed special nanoplate topography with thicknesses of approximately 10 nm and lateral lengths ranging from 19.5 to 282 nm. GOBS with smaller lateral sizes exhibited more negative surface charges and lower aggregation state than GONS. Furthermore, GOBS triggered higher toxicity than GONS, such as death, malformation, upregulation of β-galactosidase and loss in mitochondrial membrane potential of zebrafish embryos. The well-dispersive GOBS covered embryos, inhibiting oxygen and ion exchange; these phenomena were the specific mechanisms of the adverse effects. In future work, the acquired natural coatings on nanomaterials should be paid much attention in nanotoxicology, especially for the relationships among topography, aggregation state, and toxicity.
Collapse
Affiliation(s)
- Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
12
|
Abstract
Differential lipid metabolic requirements of sexually-mature males and females may influence the regulation of lipid metabolism-associated genes and hence the content of adipose tissue. We measured the expression of eight lipid metabolism-associated genes (fatty acid synthase, FASN; acylglycerol- 3- phosphate O-acyltransferase 9, AGPAT9; peroxisomal proliferator-activated receptor γ, PPARγ; lipoprotein lipase, LPL; carnitine palmitoyl transferase 1 A, CPT1A; carnitine palmitoyl transferase 1 B, CPT1B; acyl-COA dehydrogenase long chain, ACADL; monoglyceride lipase, MGL) in eight tissues (hypothalamus, HYP; liver; heart; pectoralis major muscle, PM; gastrocnemius muscle, GAS; abdominal fat, AF; clavicular fat, CF; subcutaneous fat, SF) of five male and five female white feather chickens using real time PCR at 217 d (when the females were at peak egg production). There were no difference between sexes, nor were there sex by tissue interactions for CPT1A and MGL. In both cases expression was greater for liver than the other tissues. When interactions of sex by tissue were significant, the FASN mRNA abundance in HYP, liver, and PM was greater for females than males. There was no sexual dimorphism for any tissue for PPARγ. Overall values were greater for adipose depots than HYP and liver with muscles intermediate for AGPAT9. LPL mRNA abundance in PM and AF was greater for females than males, with the pattern reversed for heart and SF. CPT1B mRNA abundance in GAS and CF was greater for females than males, with the relationship reversed for liver. ACADL mRNA abundance in HYP, liver, and GAS was greater for females than males, and lower in PM than males. The results demonstrated that expression of lipid metablism–associated genes varies among sexes in mature chickens depending on the gene and the tissue.
Collapse
|
13
|
|
14
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
15
|
Bartels B, Svatoš A. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. FRONTIERS IN PLANT SCIENCE 2015; 6:471. [PMID: 26217345 PMCID: PMC4498035 DOI: 10.3389/fpls.2015.00471] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques-namely, laser ablation of biological samples and electrospray ionization-as well as variations of the LAESI ion source for specific targets of interest are described.
Collapse
Affiliation(s)
| | - Aleš Svatoš
- *Correspondence: Aleš Svatoš,Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Max-Planck-Gesellschaft, Hans-Knöll-Straße 8, Jena D-07745, Germany,
| |
Collapse
|
16
|
Beach DG, Walsh CM, McCarron P. High-throughput quantitative analysis of domoic acid directly from mussel tissue using Laser Ablation Electrospray Ionization - tandem mass spectrometry. Toxicon 2014; 92:75-80. [PMID: 25449096 DOI: 10.1016/j.toxicon.2014.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Eliminating sample extraction or liquid chromatography steps from methods for analysis of the neurotoxin Domoic Acid (DA) in shellfish could greatly increase throughput in food safety testing laboratories worldwide. To this end, we have investigated the use of Laser Ablation Electrospray Ionization (LAESI) with tandem mass spectrometry (MS/MS) detection for DA analysis directly from mussel tissue homogenates without sample extraction, cleanup or separation. DA could be selectively detected directly from mussel tissue homogenates using MS/MS in selected reaction monitoring scan mode. The quantitative capabilities of LAESI-MS/MS for DA analysis from mussel tissue were evaluated by analysis of four mussel tissue reference materials using matrix-matched calibration. Linear response was observed from 1 mg/kg to 40 mg/kg and the method limit of detection was 1 mg/kg. Results for DA analysis in tissue within the linear range were in good agreement with two established methods, LC-UV and LC-MS/MS (recoveries from 103 to 125%). Beyond the linear range, extraction and clean-up were required to achieve good quantitation. Most notable is the extremely rapid analysis time of about 10 s per sample by LAESI-MS/MS, which corresponds to a significant increase in sample throughput compared with existing methodology for routine DA analysis.
Collapse
Affiliation(s)
- Daniel G Beach
- National Research Council Canada, Measurement Science and Standards, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Callee M Walsh
- Protea Biosciences Group, Inc., 955 Hartman Run Road, Morgantown, WV, 26505, USA
| | - Pearse McCarron
- National Research Council Canada, Measurement Science and Standards, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
17
|
Smarzewska S, Ciesielski W. Application of a Graphene Oxide–Carbon Paste Electrode for the Determination of Lead in Rainbow Trout from Central Europe. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9925-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Nielen MWF, van Beek TA. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 2014; 406:6805-15. [PMID: 24961635 PMCID: PMC4196196 DOI: 10.1007/s00216-014-7948-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI time-of-flight MSI was investigated for macroscopic and microscopic imaging of pesticides, mycotoxins, and plant metabolites on rose leaves, orange and lemon fruit, ergot bodies, cherry tomatoes, and maize kernels. Accurate mass ion-map data were acquired at sampling locations with an x–y center-to-center distance of 0.2–1.0 mm and were superimposed onto co-registered optical images. The spatially-resolved ion maps of pesticides on rose leaves suggest co-application of registered and banned pesticides. Ion maps of the fungicide imazalil reveal that this compound is only localized on the peel of citrus fruit. However, according to three-dimensional LAESI-MSI the penetration depth of imazalil into the peel has significant local variation. Ion maps of different plant alkaloids on ergot bodies from rye reveal co-localization in accordance with expectations. The feasibility of using untargeted MSI for food analysis was revealed by ion maps of plant metabolites in cherry tomatoes and maize-kernel slices. For tomatoes, traveling-wave ion mobility (TWIM) was used to discriminate between different lycoperoside glycoalkaloid isomers; for maize quadrupole time-of-flight tandem mass spectrometry (MS–MS) was successfully used to elucidate the structure of a localized unknown. It is envisaged that LAESI-MSI will contribute to future research in food science, agriforensics, and plant metabolomics. ᅟ ![]()
Collapse
Affiliation(s)
- Michel W F Nielen
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands,
| | | |
Collapse
|
19
|
Terán GE, Mangione S, Mirande JM. Gill-derived glands in species ofAstyanax(Teleostei: Characidae). ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillermo E. Terán
- Fundación Miguel Lillo; CONICET; Miguel Lillo 251 San Miguel de Tucumán Zip Code: 4000 Tucumán Argentina
| | - Susana Mangione
- Fundación Miguel Lillo; Miguel Lillo 251 San Miguel de Tucumán Zip Code: 4000 Tucumán Argentina
| | - J. Marcos Mirande
- Fundación Miguel Lillo; CONICET; Miguel Lillo 251 San Miguel de Tucumán Zip Code: 4000 Tucumán Argentina
| |
Collapse
|
20
|
El-Baba TJ, Lutomski CA, Wang B, Inutan ED, Trimpin S. Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Anal Bioanal Chem 2014; 406:4053-61. [DOI: 10.1007/s00216-014-7778-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
|
21
|
Shrestha B, Vertes A. High-Throughput Cell and Tissue Analysis with Enhanced Molecular Coverage by Laser Ablation Electrospray Ionization Mass Spectrometry Using Ion Mobility Separation. Anal Chem 2014; 86:4308-15. [DOI: 10.1021/ac500007t] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bindesh Shrestha
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, District of Columbia 20052, United States
| | - Akos Vertes
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
22
|
Ren X, Liu J, Zhang C, Sun J, Luo H. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:115-122. [PMID: 24285396 DOI: 10.1002/rcm.6767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. METHODS A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). RESULTS The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. CONCLUSIONS The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics.
Collapse
Affiliation(s)
- Xinxin Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|