1
|
Yang J, Cheng N. Beyond traditional methods: nanomaterials pave the way for precise nutrient detection in nutritionally fortified foods. Crit Rev Food Sci Nutr 2025:1-36. [PMID: 40356436 DOI: 10.1080/10408398.2025.2499618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Detecting trace elements in nutritionally fortified foods is essential for safeguarding public health, as these micronutrients play a critical role in various biological processes, including enzyme functionality, cellular metabolism, and the structural integrity of macromolecules; however, current analytical methods are often limited by high operational costs, complex sample preparation, and the requirement for specialized technical expertise. This review highlights the transformative potential of nanotechnology in addressing these challenges, showcasing how nanomaterials enhance trace element detection through specific ligand recognition, oxidation-reduction reactions, adsorption, enzyme-like activities, and resonance energy transfer mechanisms. We discuss the integration of monodentate, bidentate, and polydentate ligands in nanomaterial-based detection systems to improve specificity and stability, and explore the implications of technologies such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescence, electrochemical signal, and spectral signal for advancing detection capabilities. Incorporating nanomaterial-based detection systems with advanced data processing technologies and portable inspection equipment is anticipated to enhance analytical capabilities, paving the way for real-time monitoring that fortifies food safety protocols, ensuring the quality and safety of fortified foods and ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Jianing Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
| |
Collapse
|
2
|
Schauenburg D, Weil T. Not So Bioorthogonal Chemistry. J Am Chem Soc 2025; 147:8049-8062. [PMID: 40017419 PMCID: PMC11912343 DOI: 10.1021/jacs.4c15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
The advent of bioorthogonal chemistry has transformed scientific research, offering a powerful tool for selective and noninvasive labeling of (bio)molecules within complex biological environments. This innovative approach has facilitated the study of intricate cellular processes, protein dynamics, and interactions. Nevertheless, a number of challenges remain to be addressed, including the need for improved reaction kinetics, enhanced biocompatibility, and the development of a more diverse and orthogonal set of reactions. While scientists continue to search for veritable solutions, bioorthogonal chemistry remains a transformative tool with a vast potential for advancing our understanding of biology and medicine. This Perspective offers insights into reactions commonly classified as "bioorthogonal", which, however, may not always demonstrate the desired selectivity regarding the interactions between their components and the additives or catalysts used under the reaction conditions.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Yoshikawa R, Hamada S, Matsuo JI. Strain-promoted azide-alkyne cycloaddition enhanced by secondary interactions. Org Biomol Chem 2025; 23:1837-1840. [PMID: 39821266 DOI: 10.1039/d4ob01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Azide-alkyne cycloaddition of cyclooct-2-yn-1-ol and 2-(azidophenyl)boronic acid proceeded rapidly at room temperature with complete regioselectivity to afford a triazole having a boronate ester group. The secondary interaction to form a boronate ion contributed to cycloaddition rate acceleration and the control of regioselectivity. The interaction to form an imine or hemiaminal was also evaluated.
Collapse
Affiliation(s)
- Riko Yoshikawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shohei Hamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
4
|
Tan J, Wang C, Hu Z, Zhang X. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230094. [PMID: 40040824 PMCID: PMC11875451 DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacauChina
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuChina
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacauChina
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
5
|
Blom P, Huizing PC, de Monlevad JPRC, van Kessel MAHJ, Lücker S. Obtaining complete and canonical ammonia-oxidizing bacteria through specific labeling and cell sorting. ISME COMMUNICATIONS 2025; 5:ycae145. [PMID: 40177467 PMCID: PMC11964087 DOI: 10.1093/ismeco/ycae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 04/05/2025]
Abstract
Mitigation of the negative environmental consequences of excess anthropogenic nitrogen input requires a thorough understanding of the processes driving the biogeochemical nitrogen cycle. Nitrification is one of the key nitrogen-cycling processes and is performed by ammonia-oxidizing bacteria and archaea, nitrite-oxidizing bacteria, and complete nitrifiers. However, the fastidious growth of nitrifiers largely hampered their isolation using classical cultivation techniques, as most nitrifiers do not grow on solid media. Here, we present a workflow for the targeted enrichment and isolation of complete and canonical ammonia-oxidizing bacteria by combining function-specific in vivo fluorescent labeling with cell sorting. Optimized floc disruption and labeling techniques enlarged the fraction of planktonic cells and the fluorescent signal intensity, respectively, while maintaining cell viability. Sorted fractions were incubated in ammonium-containing mineral media and were screened for nitrite and nitrate production. Nitrifying cultures were upscaled and characterized with 16S ribosomal ribonucleic acid and amoA gene-targeted polymerase chain reactions and fluorescence in situ hybridization. Overall, we obtained one axenic and one enriched Nitrosomonas, and seven comammox Nitrospira enrichment cultures from five bioreactors, a recirculating aquaculture system biofilter, and agricultural soil. In conclusion, the presented workflow enables the fast and targeted retrieval of ammonia oxidizers from complex samples, allowing for in-depth physiological characterization.
Collapse
Affiliation(s)
- Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Pascal C Huizing
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - João P R C de Monlevad
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
6
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
7
|
Makanai H, Mochizuki D, Nishihara T, Tanabe K. Hoechst modification by strain-promoted azide-alkyne cycloaddition for transport of functional molecules into the cell nucleus. Bioorg Med Chem Lett 2024; 112:129916. [PMID: 39116953 DOI: 10.1016/j.bmcl.2024.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The delivery of functional molecules to the cell nucleus enables the visualization of nuclear function and the development of effective medical treatments. In this study, we successfully modified the Hoechst molecule, which is a well-documented nuclear-staining agent, using the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We prepared Hoechst derivatives bearing an azide group (Hoe-N3) and characterized their SPAAC reactions in the presence of corresponding molecules with a dibenzylcyclooctyne unit (DBCO). The SPAAC reaction of Hoe-N3 with alkylamine bearing DBCO, fluorescent TAMRA, or Cy5 molecules bearing DBCO led to the formation of the coupling products Hoe-Amine, Hoe-TAMRA, and Hoe-Cy5, respectively. These Hoechst derivatives retained their DNA-binding properties. In addition, Hoe-TAMRA and Hoe-Cy5 exhibited properties of dual accumulation in the cell nucleus and mitochondria. Initial incubation of these molecules in living cells resulted in its accumulation in mitochondria, while after mitochondrial depolarization, it was smoothly released from mitochondria and translocated into the cell nucleus. Thus, mitochondrial depolarization could be monitored by measuring the emission of Hoe-TAMRA and Hoe-Cy5 at the cell nucleus.
Collapse
Affiliation(s)
- Hiroki Makanai
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Daisuke Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
8
|
Yang C, Lu K, Li J, Wu H, Chen W. Rapid Construction of 18F-Triazolyl-tetrazines through the Click Reaction. J Org Chem 2024; 89:14673-14678. [PMID: 38875503 DOI: 10.1021/acs.joc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Due to the fast reaction rate, 18F-labeled tetrazines have been widely applied in positron emission tomography (PET) imaging in cancer research and drug discovery. In this work, several functional 18F-triazolyl-tetrazines were rapidly obtained through an optimized copper-catalyzed alkyene-azide cycloaddition reaction system in >99% radiochemical conversions. Notably, the commonly used 18F-labeled azides were isolated through cartridges and directly used for cycloadditions, which greatly simplified the labeling procedure. The assembled triazolyl-tetrazines demonstrated high in vitro stability and reaction kinetics, exhibiting considerable potential for the development of PET agents.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Kai Lu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Haoxing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Sato F, Alejandra HPL, Takemae H, Inagaki NF, Ito T, Tera M. Enhancing Cell Aggregation and Migration via Double-Click Cross-Linking with Azide-Modified Hyaluronic Acid. Bioconjug Chem 2024; 35:1318-1323. [PMID: 39213494 DOI: 10.1021/acs.bioconjchem.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present a novel approach to the formation of cell aggregates by employing click chemistry with water-soluble zwitterionic dibenzo cyclooctadiyne (WS-CODY) and azide-modified hyaluronic acid (HA-N3) as a linker to facilitate rapid and stable cell aggregation. By optimizing the concentrations of HA-N3 and WS-CODY, we achieved efficient cross-linking between azide-modified cell surfaces and HA-N3, generating cell aggregates within 10 min, and the resulting aggregates remained stable for up to 5 days, with cell viability maintained at approximately 80%. Systematic experiments revealed that a stoichiometric balance between HA-N3 and WS-CODY is important for effective cross-linking, highlighting the roles of both cell-surface azide modification and HA in the aggregate formation. We also investigated the genetic basis of altered cell behavior within these aggregates. Transcriptome analysis (RNA-seq) of aggregates postcultivation revealed a marked fluctuation of genes associated with 'cell migration' and 'cell adhesion', including notable changes in the expression of HYAL1, ICAM-1, CEACAM5 and RHOB. These findings suggest that HA-N3-mediated cell aggregation can induce intrinsic cellular responses that not only facilitate cell aggregate formation but also modulate cell-matrix interactions. We term this phenomenon 'chemo-resilience', The simplicity and efficacy of this click chemistry-based approach suggest it may have broad applicability for forming cell aggregates and modulating cell-matrix interactions in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Fumiya Sato
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hernandez Paniagua Liliana Alejandra
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
12
|
Smiley AT, Babilonia-Díaz N, Krueger AJ, Aihara H, Tompkins KJ, Lemmex ACD, Gordon WR. Sequence-Directed Covalent Protein-RNA Linkages in a Single Step Using Engineered HUH-Tags. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607811. [PMID: 39185166 PMCID: PMC11343116 DOI: 10.1101/2024.08.13.607811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Replication-initiating HUH-endonucleases (Reps) are enzymes that form covalent bonds with single-stranded DNA (ssDNA) in a sequence specific manner to initiate rolling circle replication. These nucleases have been co-opted for use in biotechnology as sequence specific protein-ssDNA bioconjugation fusion partners dubbed 'HUH-tags'. Here, we describe the engineering and in vitro characterization of a series of laboratory evolved HUH-tags capable of forming robust sequence-directed covalent bonds with unmodified RNA substrates. We show that promiscuous Rep-RNA interaction can be enhanced through directed evolution from nearly undetectable levels in wildtype enzymes to robust reactivity in final engineered iterations. Taken together, these engineered HUH-tags represent a promising platform for enabling site-specific protein-RNA covalent bioconjugation in vitro, potentially mediating a host of new applications and offering a valuable addition to the HUH-tag repertoire.
Collapse
Affiliation(s)
- Adam T Smiley
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| | | | - August J Krueger
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| | - Hideki Aihara
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| | - Kassidy J Tompkins
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| | - Andrew C D Lemmex
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| | - Wendy R Gordon
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics
| |
Collapse
|
13
|
Saha B, Lee JH, Kwon I, Chung H. Site-Specific Conjugation of Bottlebrush Polymers to Therapeutic Protein via Bioorthogonal Chemistry. Biomacromolecules 2024; 25:3200-3211. [PMID: 38591457 DOI: 10.1021/acs.biomac.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.
Collapse
Affiliation(s)
- Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
14
|
Du J, Kong Y, Wen Y, Shen E, Xing H. HUH Endonuclease: A Sequence-specific Fusion Protein Tag for Precise DNA-Protein Conjugation. Bioorg Chem 2024; 144:107118. [PMID: 38330720 DOI: 10.1016/j.bioorg.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Synthetic DNA-protein conjugates have found widespread applications in diagnostics and therapeutics, prompting a growing interest in developing chemical biology methodologies for the precise and site-specific preparation of covalent DNA-protein conjugates. In this review article, we concentrate on techniques to achieve precise control over the structural and site-specific aspects of DNA-protein conjugates. We summarize conventional methods involving unnatural amino acids and self-labeling proteins, accompanied by a discussion of their potential limitations. Our primary focus is on introducing HUH endonuclease as a novel generation of fusion protein tags for DNA-protein conjugate preparation. The detailed conjugation mechanisms and structures of representative endonucleases are surveyed, showcasing their advantages as fusion protein tag in sequence selectivity, biological orthogonality, and no requirement for DNA modification. Additionally, we present the burgeoning applications of HUH-tag-based DNA-protein conjugates in protein assembly, biosensing, and gene editing. Furthermore, we delve into the future research directions of the HUH-tag, highlighting its significant potential for applications in the biomedical and DNA nanotechnology fields.
Collapse
Affiliation(s)
- Jiajun Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Enxi Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China.
| |
Collapse
|
15
|
Chen A, Re RN, Davis TD, Tran K, Moriuchi YW, Wu S, La Clair JJ, Louie GV, Bowman ME, Clarke DJ, Mackay CL, Campopiano DJ, Noel JP, Burkart MD. Visualizing the Interface of Biotin and Fatty Acid Biosynthesis through SuFEx Probes. J Am Chem Soc 2024; 146:1388-1395. [PMID: 38176024 DOI: 10.1021/jacs.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Kelley Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Gordon V Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - David J Clarke
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - C Logan Mackay
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Dominic J Campopiano
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
16
|
Zhang Q, Kuang G, Wang L, Duan P, Sun W, Ye F. Designing Bioorthogonal Reactions for Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0251. [PMID: 38107023 PMCID: PMC10723801 DOI: 10.34133/research.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Bioorthogonal reactions are a class of chemical reactions that can be carried out in living organisms without interfering with other reactions, possessing high yield, high selectivity, and high efficiency. Since the first proposal of the conception by Professor Carolyn Bertozzi in 2003, bioorthogonal chemistry has attracted great attention and has been quickly developed. As an important chemical biology tool, bioorthogonal reactions have been applied broadly in biomedicine, including bio-labeling, nucleic acid functionalization, drug discovery, drug activation, synthesis of antibody-drug conjugates, and proteolysis-targeting chimeras. Given this, we summarized the basic knowledge, development history, research status, and prospects of bioorthogonal reactions and their biomedical applications. The main purpose of this paper is to furnish an overview of the intriguing bioorthogonal reactions in a variety of biomedical applications and to provide guidance for the design of novel reactions to enrich bioorthogonal chemistry toolkits.
Collapse
Affiliation(s)
- Qingfei Zhang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Gaizhen Kuang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Li Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weijian Sun
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangfu Ye
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Pelgrom LR, Davis GM, O'Shaughnessy S, Wezenberg EJM, Van Kasteren SI, Finlay DK, Sinclair LV. QUAS-R: An SLC1A5-mediated glutamine uptake assay with single-cell resolution reveals metabolic heterogeneity with immune populations. Cell Rep 2023; 42:112828. [PMID: 37478011 DOI: 10.1016/j.celrep.2023.112828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
System-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell. In this manner, the bona fide active uptake of glutamine via SLC1A5/ASCT2 could be quantified. We used this assay to interrogate the transport capacity of complex immune subpopulations, both in vitro and in vivo. Taken together, our findings provide an easy sensitive single-cell assay to assess which cells support their function via SLC1A5-mediated uptake. This is a significant addition to the single-cell metabolic toolbox required to decode the metabolic landscape of complex immune microenvironments.
Collapse
Affiliation(s)
- Leonard R Pelgrom
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Gavin M Davis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland
| | - Simon O'Shaughnessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland
| | - Emilie J M Wezenberg
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02R590 Dublin, Ireland.
| | - Linda V Sinclair
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
19
|
Chowdhury A, Chatterjee S, Kushwaha A, Nanda S, Dhilip Kumar TJ, Bandyopadhyay A. Sulfonyl Diazaborine 'Click' Chemistry Enables Rapid and Efficient Bioorthogonal Labeling. Chemistry 2023; 29:e202300393. [PMID: 37155600 DOI: 10.1002/chem.202300393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Finding an ideal bioorthogonal reaction that responds to a wide range of biological queries and applications is of great interest in biomedical applications. Rapid diazaborine (DAB) formation in water by the reactions of ortho-carbonyl phenylboronic acid with α-nucleophiles is an attractive conjugation module. Nevertheless, these conjugation reactions demand to satisfy stringent criteria for bioorthogonal applications. Here we show that widely used sulfonyl hydrazide (SHz) offers a stable DAB conjugate by combining with ortho-carbonyl phenylboronic acid at physiological pH, competent for an optimal biorthogonal reaction. Remarkably, the reaction conversion is quantitative and rapid (k2 >103 M-1 s-1 ) at low micromolar concentrations, and it preserves comparable efficacy in a complex biological milieu. DFT calculations support that SHz facilitates DAB formation via the most stable hydrazone intermediate and the lowest energy transition state compared to other biocompatible α-nucleophiles. This conjugation is extremely efficient on living cell surfaces, enabling compelling pretargeted imaging and peptide delivery. We anticipate this work will permit addressing a wide range of cell biology queries and drug discovery platforms exploiting commercially available sulfonyl hydrazide fluorophores and derivatives.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Apoorv Kushwaha
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sidhanta Nanda
- Immunology Lab, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - T J Dhilip Kumar
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
20
|
Lee CS, Fan J, Hwang HS, Kim S, Chen C, Kang M, Aghaloo T, James AW, Lee M. Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering. NANO LETTERS 2023; 23:1202-1210. [PMID: 36762874 PMCID: PMC10106420 DOI: 10.1021/acs.nanolett.2c04159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles have received a great interest as safe biocarriers in biomedical engineering. There is a need to develop more efficient delivery strategies to improve localized therapeutic efficacy and minimize off-target adverse effects. Here, exosome mimetics (EMs) are reported for bone targeting involving the introduction of hydroxyapatite-binding moieties through bioorthogonal functionalization. Bone-binding ability of the engineered EMs is verified with hydroxyapatite-coated scaffolds and an ex vivo bone-binding assay. The EM-bound construct provided a biocompatible substrate for cell adhesion, proliferation, and osteogenic differentiation. Particularly, the incorporation of Smoothened agonist (SAG) into EMs greatly increased the osteogenic capacity through the activation of hedgehog signaling. Furthermore, the scaffold integrated with EM/SAG significantly improved in vivo reossification. Lastly, biodistribution studies confirmed the accumulation of systemically administered EMs in bone tissue. This facile engineering strategy could be a versatile tool to promote bone regeneration, offering a promising nanomedicine approach to the sophisticated treatment of bone diseases.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Hee Sook Hwang
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Minjee Kang
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Aaron W. James
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, CA 90095, United States
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
21
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
22
|
Zhao W, Huang C, Zhao B, Wen J, Lu Y, Li N, He Q, Bao J, Zhang X, Pi Z, Dong Y, Chen Y. Magnetic Relaxation Switching Immunosensors via a Click Chemistry-Mediated Controllable Aggregation Strategy for Direct Detection of Chlorpyrifos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1727-1734. [PMID: 36638207 DOI: 10.1021/acs.jafc.2c06858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chlorpyrifos (CPF) is the most frequently found organophosphate pesticide residue in solid food samples and can cause increasing public concerns about potential risks to human health. Traditional detection signals of such small molecules are mostly generated by target-mediated indirect conversion, which tends to be detrimental to sensitivity and accuracy. Herein, a novel magnetic relaxation switching detection platform was developed for target-mediated direct and sensitive detection of CPF with a controllable aggregation strategy based on a bioorthogonal ligation reaction between tetrazine (Tz) and trans-cyclooctene (TCO) ligands. Under optimal conditions, this sensor can achieve a detection limit of 37 pg/mL with a broad linear range of 0.1-500 ng/mL in 45 min, which is approximately 51-fold lower than that of the gas chromatography analysis and 13-fold lower than that of the enzyme-linked immunosorbent assay. The proposed click chemistry-mediated controllable aggregation strategy is direct, rapid, and sensitive, indicating great potential for residue screening in food matrices.
Collapse
Affiliation(s)
- Weiqi Zhao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Binjie Zhao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Junping Wen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yingying Lu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Nan Li
- Daye Public Inspection and Test Center, Daye, 435100 Hubei, China
| | - Qifu He
- Daye Public Inspection and Test Center, Daye, 435100 Hubei, China
| | - Junwang Bao
- Daye Public Inspection and Test Center, Daye, 435100 Hubei, China
| | - Xiuwen Zhang
- Daye Public Inspection and Test Center, Daye, 435100 Hubei, China
| | - Zhixiong Pi
- Daye Public Inspection and Test Center, Daye, 435100 Hubei, China
| | - Yongzhen Dong
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yiping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Shenzhen Institute of Food Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, Guangdong, China
| |
Collapse
|
23
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
24
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Huang C, Zhao J, Lu R, Wang J, Nugen SR, Chen Y, Wang X. A phage-based magnetic relaxation switching biosensor using bioorthogonal reaction signal amplification for Salmonella detection in foods. Food Chem 2022; 400:134035. [DOI: 10.1016/j.foodchem.2022.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
26
|
Kim C, Nevozhay D, Aburto RR, Pehere A, Pang L, Dillard R, Wang Z, Smith C, Mathieu KB, Zhang M, Hazle JD, Bast RC, Sokolov K. One-Pot, One-Step Synthesis of Drug-Loaded Magnetic Multimicelle Aggregates. Bioconjug Chem 2022; 33:969-981. [PMID: 35522527 PMCID: PMC9121875 DOI: 10.1021/acs.bioconjchem.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Lipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols. Simplification of the current multistep procedures can lead to a number of important technological advantages including significantly decreased processing time, higher reaction yield, better product reproducibility, and improved quality. Here, we introduce a one-pot, single-step synthesis of drug-loaded magnetic multimicelle aggregates (MaMAs), which is based on controlled flow infusion of an iron oxide nanoparticle/lipid mixture into an aqueous drug solution under ultrasonication. Furthermore, we prepared molecular-targeted MaMAs by directional antibody conjugation through an Fc moiety using Cu-free click chemistry. Fluorescence imaging and quantification confirmed that antibody-conjugated MaMAs showed high cell-specific targeting that was enhanced by magnetic delivery.
Collapse
Affiliation(s)
- Chang
Soo Kim
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dmitry Nevozhay
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebeca Romero Aburto
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ashok Pehere
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Lan Pang
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebecca Dillard
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Ziqiu Wang
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Clayton Smith
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Kelsey Boitnott Mathieu
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marie Zhang
- Imagion
Biosystems, Inc., San Diego, California 92121, United States
| | - John D. Hazle
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert C. Bast
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Konstantin Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
28
|
|
29
|
Xin X, Zhang Y, Gaetani M, Lundström SL, Zubarev RA, Zhou Y, Corkery DP, Wu YW. Ultrafast and Selective Labeling of Endogenous Proteins Using Affinity-based Benzotriazole Chemistry. Chem Sci 2022; 13:7240-7246. [PMID: 35799822 PMCID: PMC9214888 DOI: 10.1039/d1sc05974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chemical modification of proteins is enormously useful for characterizing protein function in complex biological systems and for drug development. Selective labeling of native or endogenous proteins is challenging owing to the existence of distinct functional groups in proteins and in living systems. Chemistry for rapid and selective labeling of proteins remains in high demand. Here we have developed novel affinity labeling probes using benzotriazole (BTA) chemistry. We showed that affinity-based BTA probes selectively and covalently label a lysine residue in the vicinity of the ligand binding site of a target protein with a reaction half-time of 28 s. The reaction rate constant is comparable to the fastest biorthogonal chemistry. This approach was used to selectively label different cytosolic and membrane proteins in vitro and in live cells. BTA chemistry could be widely useful for labeling of native/endogenous proteins, target identification and development of covalent inhibitors. Affinity-based benzotriazole (BTA) probes selectively and covalently label native proteins or endogenous proteins in cells with a fast reaction rate. It is enormously useful for characterizing protein function in biological systems and for drug development.![]()
Collapse
Affiliation(s)
- Xiaoyi Xin
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University Xuzhou 221004 China
| | - Dale P Corkery
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yao-Wen Wu
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| |
Collapse
|
30
|
Tevet S, Wagle SS, Slor G, Amir RJ. Tuning the Reactivity of Micellar Nanoreactors by Precise Adjustments of the Amphiphile and Substrate Hydrophobicity. Macromolecules 2021; 54:11419-11426. [PMID: 34987270 PMCID: PMC8717824 DOI: 10.1021/acs.macromol.1c01755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Indexed: 01/12/2023]
Abstract
Polymeric assemblies, such as micelles, are gaining increasing attention due to their ability to serve as nanoreactors for the execution of organic reactions in aqueous media. The ability to conduct organic transformations, which have been traditionally limited to organic media, in water is essential for the further development of important fields ranging from green catalysis to bioorthogonal chemistry. Considering the recent progress that has been made to expand the range of organometallic reactions conducted using nanoreactors, we aimed to gain a deeper understanding of the roles of the hydrophobicity of both the core of micellar nanoreactors and the substrates on the reaction rates in water. Toward this goal, we designed a set of five metal-loaded micelles composed of polyethylene glycol-dendron amphiphiles and studied their ability to serve as nanoreactors for a palladium-mediated depropargylation reaction of four substrates with different log P values. Using dendrons as the hydrophobic block, we could precisely tune the lipophilicity of the nanoreactors, which allowed us to reveal linear correlations between the rate constants and the hydrophobicity of the amphiphiles (estimated by the dendron's cLog P). While exponential dependence was obtained for the lipophilicity of the substrates, a similar degree of rate acceleration was observed due to the increase in the hydrophobicity of the amphiphiles regardless of the effect of the substrate's log P. Our results demonstrate that while increasing the hydrophobicity of the substrates may be used to accelerate reaction rates, tuning the hydrophobicity of the micellar nanoreactors can serve as a vital tool for further optimization of the reactivity and selectivity of nanoreactors.
Collapse
Affiliation(s)
- Shahar Tevet
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shreyas S. Wagle
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Gadi Slor
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Blavatnik
Center for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
31
|
Kuhlemann A, Beliu G, Janzen D, Petrini EM, Taban D, Helmerich DA, Doose S, Bruno M, Barberis A, Villmann C, Sauer M, Werner C. Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy. Front Synaptic Neurosci 2021; 13:727406. [PMID: 34899260 PMCID: PMC8664562 DOI: 10.3389/fnsyn.2021.727406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.
Collapse
Affiliation(s)
- Alexander Kuhlemann
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Enrica Maria Petrini
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Danush Taban
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Martina Bruno
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Andrea Barberis
- Neuroscience and Brain Technologies Department, Istituto Italiano Di Tecnologia, Genova, Italy
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| |
Collapse
|
32
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
33
|
Gupta A, Das R, Makabenta JM, Gupta A, Zhang X, Jeon T, Huang R, Liu Y, Gopalakrishnan S, Milán RC, Rotello VM. Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. MATERIALS HORIZONS 2021; 8:3424-3431. [PMID: 34700339 PMCID: PMC8629964 DOI: 10.1039/d1mh01408k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioorthogonal transformation of imaging and therapeutic substrates using transition metal catalysts (TMCs) provides a toolkit with diverse applications in biomedicine. Controlled localization of bioorthogonal catalysis is key for enhancing their therapeutic efficacy by minimizing off-target effects. Red blood cells (RBCs) are highly biocompatible and are susceptible to hemolysis by bacterial toxins, providing them with intrinsic targeting to bacterial infections. A hitchhiking strategy using RBCs is reported, that activates bioorthogonal catalysis at infection sites. A library of nanoparticles embedded with TMCs (nanozymes) featuring diverse functional groups with different binding ability to RBCs is generated. These engineered nanozymes bind to RBCs and subsequently release upon hemolysis by bacterial toxins, resulting in selective accumulation at the site of bacterial infections. The antimicrobial action is specific: catalytic activation of pro-antibiotics eradicated pathogenic biofilms without harming non-virulent bacterial species.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Riddha Das
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, MA 01003, Amherst, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Roberto-Cao Milán
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
34
|
Bae J, Zhang G, Park H, Warren WS, Wang Q. 15N-Azides as practical and effective tags for developing long-lived hyperpolarized agents. Chem Sci 2021; 12:14309-14315. [PMID: 34760217 DOI: 10.1039/d1sc04647k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/08/2021] [Indexed: 01/24/2023] Open
Abstract
Azide moieties, unique linear species containing three nitrogen atoms, represent an attractive class of molecular tag for hyperpolarized magnetic resonance imaging (HP-MRI). Here we demonstrate (15N)3-azide-containing molecules exhibit long-lasting hyperpolarization lifetimes up to 9.8 min at 1 T with remarkably high polarization levels up to 11.6% in water, thus establishing (15N)3-azide as a powerful spin storage for hyperpolarization. A single (15N)-labeled azide has also been examined as an effective alternative tag with long-lived hyperpolarization. A variety of biologically important molecules are studied in this work, including choline, glucose, amino acid, and drug derivatives, demonstrating great potential of 15N-labeled azides as universal hyperpolarized tags for nuclear magnetic resonance imaging applications.
Collapse
Affiliation(s)
- Junu Bae
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Guannan Zhang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Hyejin Park
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Warren S Warren
- Department of Chemistry, Duke University Durham North Carolina 27708 USA .,Department of Physics, Duke University Durham North Carolina 27708 USA.,Department of Radiology and Biomedical Engineering, Duke University Durham North Carolina 27708 USA
| | - Qiu Wang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
35
|
Yan K, Triana V, Kalmady SV, Aku-Dominguez K, Memon S, Brown A, Greiner R, Derda R. Learning the structure-activity relationship (SAR) of the Wittig reaction from genetically-encoded substrates. Chem Sci 2021; 12:14301-14308. [PMID: 34760216 PMCID: PMC8565473 DOI: 10.1039/d1sc04146k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Wittig reaction can be used for late stage functionalization of proteins and peptides to ligate glycans, pharmacophores, and many other functionalities. In this manuscript, we modified 160 000 N-terminal glyoxaldehyde peptides displayed on phage with the Wittig reaction by using a biotin labeled ylide under conditions that functionalize only 1% of the library population. Deep-sequencing of the biotinylated and input populations estimated the rate of conversion for each sequence. This “deep conversion” (DC) from deep sequencing correlates with rate constants measured by HPLC. Peptide sequences with fast and slow reactivity highlighted the critical role of primary backbone amides (N–H) in accelerating the rate of the aqueous Wittig reaction. Experimental measurement of reaction rates and density functional theory (DFT) computation of the transition state geometries corroborated this relationship. We also collected deep-sequencing data to build structure–activity relationship (SAR) models that can predict the DC value of the Wittig reaction. By using these data, we trained two classifier models based on gradient boosted trees. These classifiers achieved area under the ROC (receiver operating characteristic) curve (ROC AUC) of 81.2 ± 0.4 and 73.7 ± 0.8 (90–92% accuracy) in determining whether a sequence belonged to the top 5% or the bottom 5% in terms of its reactivity. This model can suggest new peptides never observed experimentally with ‘HIGH’ or ‘LOW’ reactivity. Experimental measurement of reaction rates for 11 new sequences corroborated the predictions for 8 of them. We anticipate that phage-displayed peptides and related mRNA or DNA-displayed substrates can be employed in a similar fashion to study the substrate scope and mechanisms of many other chemical reactions. 160 000 peptides displayed on phage were subjected to the Wittig reaction with a biotinylated ylide. Deep-sequencing estimated the conversion rate for each sequence and unveiled the relationship between sequences and the rate of the Wittig reaction.![]()
Collapse
Affiliation(s)
- Kejia Yan
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Vivian Triana
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Sunil Vasu Kalmady
- Department of Computer Science, University of Alberta Alberta AB T6G 2E8 Canada
| | | | - Sharyar Memon
- Department of Electrical and Computer Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Russell Greiner
- Department of Computer Science, University of Alberta Alberta AB T6G 2E8 Canada.,Alberta Machine Intelligence Institute Alberta AB T5J 3B1 Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
36
|
Xie F, Jia X, Zhu Z, Wu Y, Jiang H, Yang H, Cao Y, Zhu R, Zhou B, Du J, Tang Y. Chemical trigger-enabled bioconjugation reaction. Org Biomol Chem 2021; 19:8343-8351. [PMID: 34518846 DOI: 10.1039/d1ob01177d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of conceptually novel and practically useful bioconjugation reactions has been an intense pursuit of chemical biology research. Herein, we report an unprecedented bioconjugation reaction that hinges on a chemical trigger-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition of trans-cycloheptene (TCH) with tetrazine. Unlike the conventional strain-promoted bioconjugation reactions that utilize built-in strained alkenes as reactants, the current one features a "trigger-release-conjugate" reaction model, in which a highly strained TCH species is released from a bench-stable bicyclic N-nitrosourea (BNU) derivative upon treatment with an external stimulus. It is noteworthy that the reactivity-stability balance of BNU derivatives could be tuned by manipulating their N-1 substituents. As a proof-of-concept case, this new chemical trigger-enabled IEDDA reaction has been applied to in vitro protein labeling and pretargeted cell imaging. This work opens a new avenue to utilize BNU derivatives as a new class of chemical reporters in bioconjugate chemistry.
Collapse
Affiliation(s)
- Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Zhu Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yunfei Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yu Cao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
38
|
Cordonnier A, Boyer D, Besse S, Valleix R, Mahiou R, Quintana M, Briat A, Benbakkar M, Penault-Llorca F, Maisonial-Besset A, Maunit B, Tarrit S, Vivier M, Witkowski T, Mazuel L, Degoul F, Miot-Noirault E, Chezal JM. Synthesis and in vitro preliminary evaluation of prostate-specific membrane antigen targeted upconversion nanoparticles as a first step towards radio/fluorescence-guided surgery of prostate cancer. J Mater Chem B 2021; 9:7423-7434. [PMID: 34373887 DOI: 10.1039/d1tb00777g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.
Collapse
Affiliation(s)
- Axel Cordonnier
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France. and Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Damien Boyer
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Rodolphe Valleix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Rachid Mahiou
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Arnaud Briat
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Mhammed Benbakkar
- Université Clermont Auvergne, CNRS, Laboratoire Magmas et Volcans, UMR 6524, F-63000 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France. and Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Benoit Maunit
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Sébastien Tarrit
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Magali Vivier
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Leslie Mazuel
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Françoise Degoul
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
39
|
Peng K, Moreth D, Schatzschneider U. C^N^N Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
40
|
Tomoshige S, Ishikawa M. In vivo synthetic chemistry of proteolysis targeting chimeras (PROTACs). Bioorg Med Chem 2021; 41:116221. [PMID: 34034148 DOI: 10.1016/j.bmc.2021.116221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Chemical knockdown of therapeutic targets using proteolysis targeting chimeras (PROTACs) is a rapidly developing field in drug discovery, but PROTACs are bifunctional molecules that generally show poor bioavailability due to their relatively high molecular weight. Recent developments aimed at the development of next-generation PROTACs include the in vivo synthesis of PROTAC molecules, and the exploitation of PROTACs as chemical tools for in vivo synthesis of ubiquitinated proteins. This short review covers recent advances in these areas and discusses the prospects for in vivo synthetic PROTAC technology.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
41
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of
trans
‐Cyclooctenes with High Reactivity and Favorable Physiochemical Properties**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jessica E. Pigga
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Julia E. Rosenberger
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Samantha J. Boyd
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware 163 The Green Newark DE 19716 USA
| |
Collapse
|
42
|
Pigga JE, Rosenberger JE, Jemas A, Boyd SJ, Dmitrenko O, Xie Y, Fox JM. General, Divergent Platform for Diastereoselective Synthesis of trans-Cyclooctenes with High Reactivity and Favorable Physiochemical Properties*. Angew Chem Int Ed Engl 2021; 60:14975-14980. [PMID: 33742526 DOI: 10.1002/anie.202101483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Indexed: 12/24/2022]
Abstract
trans-Cyclooctenes (TCOs) are essential partners in the fastest known bioorthogonal reactions, but current synthetic methods are limited by poor diastereoselectivity. Especially hard to access are hydrophilic TCOs with favorable physicochemical properties for live cell or in vivo experiments. Described is a new class of TCOs, "a-TCOs", prepared in high yield by stereocontrolled 1,2-additions of nucleophiles to trans-cyclooct-4-enone, which itself was prepared on a large scale in two steps from 1,5-cyclooctadiene. Computational transition-state models rationalize the diastereoselectivity of 1,2-additions to deliver a-TCO products, which were also shown to be more reactive than standard TCOs and less hydrophobic than even a trans-oxocene analogue. Illustrating the favorable physicochemical properties of a-TCOs, a fluorescent TAMRA derivative in live HeLa cells was shown to be cell-permeable through intracellular Diels-Alder chemistry and to wash out more rapidly than other TCOs.
Collapse
Affiliation(s)
- Jessica E Pigga
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Julia E Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Samantha J Boyd
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| |
Collapse
|
43
|
Wang J, Wang X, Fan X, Chen PR. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. ACS CENTRAL SCIENCE 2021; 7:929-943. [PMID: 34235254 PMCID: PMC8227596 DOI: 10.1021/acscentsci.1c00124] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/02/2023]
Abstract
Bioorthogonal cleavage chemistry has been rapidly emerging as a powerful tool for manipulation and gain-of-function studies of biomolecules in living systems. While the initial bond formation-centered bioorthogonal reactions have been widely adopted for labeling, tracing, and capturing biomolecules, the newly developed bond cleavage-enabled bioorthogonal reactions have opened new possibilities for rescuing small molecules as well as biomacromolecules in living systems, allowing multidimensional controls over biological processes in vitro and in vivo. In this Outlook, we first summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins. As we embarked on this fruitful progress, we outlined the unmet scientific needs and future directions along this exciting avenue. We believe that the potential of BCRs will be further unleashed when combined with other frontier technologies, such as genetic code expansion and proximity-enabled chemical labeling.
Collapse
Affiliation(s)
- Jie Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xin Wang
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
- Peking−Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
45
|
Warther D, Dursun E, Recher M, Ursuegui S, Mosser M, Sobska J, Krezel W, Chaubet G, Wagner A. Plasma induced acceleration and selectivity in strain-promoted azide-alkyne cycloadditions. Org Biomol Chem 2021; 19:5063-5067. [PMID: 34027531 DOI: 10.1039/d1ob00529d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strain-promoted azide-alkyne cycloaddition (SPAAC) is an important member of the bioorthogonal reaction family. Over the past decade, much work has been dedicated to the generation of new strained alkynes with improved reactivity. While kinetics studies of SPAAC are often conducted in organic solvents, buffered solutions or mixtures, these media do not reflect the complexity of in vivo systems. In this work, we show that performing SPAAC in human plasma leads to intriguing kinetics and selectivity effects. In particular, we observed that reactions in plasma could be accelerated up to 70-fold compared to those in methanol, and that selective couplings between a pair of reagents could be possible in competition experiments. These findings highlight the value of evaluating bioorthogonal reactions in such a complex medium, especially when in vivo applications are planned, as unsuspected behaviour can be observed, disrupting the usual rules governing the reactivity in simple solvent systems.
Collapse
Affiliation(s)
- David Warther
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Enes Dursun
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Marion Recher
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Michel Mosser
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Joanna Sobska
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U964), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U964), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
46
|
Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021; 22:2976-2984. [PMID: 34129319 PMCID: PMC8278386 DOI: 10.1021/acs.biomac.1c00378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Responsive nanogel
systems are interesting for the drug delivery
of bioactive molecules due to their high stability in aqueous media.
The development of nanogels that are able to respond to biochemical
cues and compatible with the encapsulation and the release of large
and sensitive payloads remains challenging. Here, multistimuli-responsive
nanogels were synthesized using a bio-orthogonal and reversible reaction
and were designed for the selective release of encapsulated cargos
in a spatiotemporally controlled manner. The nanogels were composed
of a functionalized polysaccharide cross-linked with pH-responsive
hydrazone linkages. The effect of the pH value of the environment
on the nanogels was fully reversible, leading to a reversible control
of the release of the payloads and a “stop-and-go” release
profile. In addition to the pH-sensitive nature of the hydrazone network,
the dextran backbone can be degraded through enzymatic cleavage. Furthermore,
the cross-linkers were designed to be responsive to oxidoreductive
cues.
Disulfide groups, responsive to reducing environments, and thioketal
groups, responsive to oxidative environments, were integrated into
the nanogel network. The release of model payloads was investigated
in response to changes in the pH value of the environment or to the
presence of reducing or oxidizing agents.
Collapse
Affiliation(s)
| | - Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Dr, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
47
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
48
|
Alamudi SH, Liu X, Chang YT. Azide-based bioorthogonal chemistry: Reactions and its advances in cellular and biomolecular imaging. BIOPHYSICS REVIEWS 2021; 2:021301. [PMID: 38505123 PMCID: PMC10903415 DOI: 10.1063/5.0050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 03/21/2024]
Abstract
Since the term "bioorthogonal" was first demonstrated in 2003, new tools for bioorthogonal chemistry have been rapidly developed. Bioorthogonal chemistry has now been widely utilized for applications in imaging various biomolecules, such as proteins, glycoconjugates, nucleic acids, and lipids. Contrasting the chemical reactions or synthesis that are typically executed in vitro with organic solvents, bioorthogonal reactions can occur inside cells under physiological conditions. Functional groups or chemical reporters for bioorthogonal chemistry are highly selective and will not perturb the native functions of biological systems. Advances in azide-based bioorthogonal chemical reporters make it possible to perform chemical reactions in living systems for wide-ranging applications. This review discusses the milestones of azide-based bioorthogonal reactions, from Staudinger ligation and copper(I)-catalyzed azide-alkyne cycloaddition to strain-promoted azide-alkyne cycloaddition. The development of bioorthogonal reporters and their capability of being built into biomolecules in vivo have been extensively applied in cellular imaging. We focus on strategies used for metabolic incorporation of chemically tagged molecular building blocks (e.g., amino acids, carbohydrates, nucleotides, and lipids) into cells via cellular machinery systems. With the aid of exogenous bioorthogonally compatible small fluorescent probes, we can selectively visualize intracellular architectures, such as protein, glycans, nucleic acids, and lipids, with high specificity to help in answering complex biological problems.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (ASTAR), 31 Biopolis Way, #07‐01, Singapore 138669
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | |
Collapse
|
49
|
de Sousa Araújo E, Domingues Stocco T, Fernandes de Sousa G, Afewerki S, Marciano FR, Alexandre Finzi Corat M, Michelle Machado de Paula M, Ferreira Cândido Lima Verde T, Cristina Moreira Silva M, Oliveira Lobo A. Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy. Colloids Surf B Biointerfaces 2021; 205:111850. [PMID: 34015729 DOI: 10.1016/j.colsurfb.2021.111850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Currently, oxygen supply for in vitro cell culture is one of the major challenges in tissue engineering, especially in three-dimensional (3D) structures, such as polymeric hydrogels, because oxygen is an essential element for cells survival. In this context, oxygen levels must be maintained in articular cartilage to promote the differentiation, viability, and proliferation of chondrocytes due to the low level of oxygen presence in this region. Although some technologies employ oxygen-generating materials to add sufficient oxygen levels, the limitations and challenges of current technologies include the lack of controlled, sustained, and prolonged release of the oxygen. Moreover, the fabrication methods may leave some impurities or residues resulting in toxicity to the cells. "Click" chemistry is a facile, versatile, and compatible chemical strategy to engineer hydrogels for tissue engineering applications. Herein, we disclose the engineering of oxygen-generating microparticles in chondrocytes-laden hydrogels through a versatile catalyst-free tetrazine and norbornene inverse electron demand Diels‒Alder (iEDDA) click reaction. The hydrogels combine chondroitin sulfate (CS) and poly(ethylene glycol) (PEG) crosslinked in situ, displaying tunable rheological and mechanical properties, for sustained and prolonged oxygen-release. Gene expression analysis of the chondrocytes by real-time reverse transcription polymerase chain reaction (RT-PCR) demonstrated promising cell response within the engineered hydrogel.
Collapse
Affiliation(s)
- Erlane de Sousa Araújo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, Teresina, PI, 64049-550, Brazil
| | - Thiago Domingues Stocco
- Faculty of Medical Sciences, Unicamp - State University of Campinas, Campinas, SP, 13083-877, Brazil; University of Santo Amaro, São Paulo, SP, 04829-300, Brazil
| | - Gustavo Fernandes de Sousa
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, Teresina, PI, 64049-550, Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States; Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, United States.
| | | | - Marcus Alexandre Finzi Corat
- Multidisciplinary Center for Biological Research, Unicamp - State University of Campinas, Campinas, SP, 13083-877, Brazil
| | | | - Thiago Ferreira Cândido Lima Verde
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, Teresina, PI, 64049-550, Brazil
| | - Mayara Cristina Moreira Silva
- Multidisciplinary Center for Biological Research, Unicamp - State University of Campinas, Campinas, SP, 13083-877, Brazil
| | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, Teresina, PI, 64049-550, Brazil; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States.
| |
Collapse
|
50
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|